空间力系
力学第三章空间力系
第三章空间力系二、基本内容1. 基本概念1) 力在空间直角坐标轴的投影(a) 直接投影法:巳知力F 和直角坐标轴夹角a 、丫,则力F 在三个轴上的投 影分别为X = F cos aZ = Feos/(b) 间接投影法(即二次投影法):巳知力F 和夹角八°,则力F 在三个轴上的 投影分别为X = F sin/cos^9Y = F sin/sin 。
Z = F cos/2) 力矩的计算(a) 力对点之矩—、目的和要求能熟练地计算力在空间直角坐标轴上的投影。
熟练掌握力对点之矩与力对轴之矩的计算。
对空间力偶的性质及其作用效应有清晰的理解。
了解空间力系向一点简化的方法,明确空间力系合成的四种结果。
能正确地画出各种常见空间的约束反力。
会应用各种形式的空间力系平衡方程求解简单空间平衡问题。
对平行力系中心和重心应有清晰的概念,能熟练地应用坐标公式求物体 的重心。
1、2、3、4、5、6^ 7、在空间情况下力对点之矩为一个定位矢量,其定义为i j kM0(F) = rx F = x y z = (yZ - zY)i + (zX - xZ)j + (xY - yX)kX Y Zr = xi + yj + zk F = Xi+ Yj + Zk其中尸为力尸作用点的位置矢径(b)力对轴之矩在空间情况下力对轴之矩为一代数量,其大小等于此力在垂直于该轴的平面上的投影对该轴与此平面的交点之矩,其正负号按右手螺旋法则来确定,即M Z(F) = ±F u,h = +2AOAB在直角坐标条下有Mx (乃=yZ-zY M y (F)=zX-xZ M z (F) =xY-yX(c)力矩关系定理力对己知点之矩在通过该点的任意轴上的投影等于同一力对该轴之矩。
在直角坐标系下有Mo(F)^M x(F)i+My(F)j+M2(F)k(d)合力矩定理空间力系的合力对任一点之矩等于力系中各力对同一点之矩的矢量和,即Mo g)二 W, (F)空间力系的合力对任一轴(例如z轴)之矩等于力系中各力对同一轴之矩的代数和,即M z(F R)=ZM z(F)=Z(xY-yX)3)空间力偶及其等效条件(a)力偶矩矢空间力偶对刚体的作用效果决定于三个要素(力偶矩大小、力偶作用面方位及力偶的转向),它可用力偶矩矢肱表示。
工程力学第五章 空间力系
cos(k, MO (F ))
Mz MO (F )
0.25
§4 - 3 空间力系向一点简化
仍设物体上只作用三个力F1 、 F2 和 F3 , 它们组成空间任意力系,在空间内任意取一 O 点,
分别将三力向此点简化。
右击
三按钮功能相同
O点称为简化中心;
R’ =F1’ + F2’ + F3’; M = M1 + M2 + M3 ; 对于力的数目为 n 的空间任意力系,推广为:
解:受力分析如图
W = 200N
∑X = 0, XA + XB-T cos30ºsin30 º= 0 ∑Y = 0, YA - T cos30 ºcos30 º= 0 ∑Z = 0, ZA + ZB - W + T sin30 º= 0
d MO MO sin
R
R
4、空间力系简化为平衡的情形
主矢R’ = 0;主矩M O = 0
§4 - 5 空间力系的平衡方程
由: R ( X )2 (Y)2 ( Z)2 0
MO [ M x (F )]2 [ M y (F )]2 [ M z (F )]2 0
合力矩定理
MO
O
O
O R’
R” d R’
d
R
R
R =∑Fi ,d= |MO| / R
∵力偶(R,R’’)的矩MO等于R 对O点的矩,即
MO = MO(R) ,而又有 MO = ∑MO(F)
∴得关系式
MO( R ) = ∑MO(F )
即:空间任意力系的合力对于任意一点的矩等于
各分力对同一点的矩的矢量和。
阴影部分的面积。
空间力系介绍
y
x
3.空间力系的平衡
空间力系的简化:与平面任意力系的简化方法一样,空
间力系也可以简化为一个主矢和一个主矩。
FR ' ( Fx )2 ( Fy )2 ( Fz )2
Mo [ M x (F)]2 [ M y (F)]2 [ M z (F)]2
• 空间力系的平衡方程 平衡的必要与充分条件:
M=o0, F=R0
平衡方程:
Fx 0
Fy 0
Fz Mx My
0 (F) (F)
00
M z(F) 0
3.空间力系平衡问题的平面解法
在工程中,常将空间力系投影到三个坐标平 面上,画出构件受力图的主视、俯视、侧视等三 视图,分别列出它们的平衡方程,同样可解出所 求的未知量。这种将空间问题转化为平面问题的 研究方法,称为空间问题的平面解法。
x
y Fx
Fxy
A Fy
2.力对轴之矩
合力矩定理 :如一空间力系由F1、F2、…、Fn组 成,其合力为FR,则合力FR对某轴之矩等于各分
力对同一轴之矩的代数和。
M z (FR ) M z (F)
例1:图示力F=1000N,求F对z轴的矩Mz。 FZ
z
Fx
Fy
Fxy
x
5
Fy
Fx
Fxy
10
则力在三个坐标轴上的投影 分别为 :
z
Fz
Fx Fy
F F
sin sin
cos sin
Fz F cos
若已知力在三个坐标轴上的投
F 影Fx、Fy、Fz,也可求出力的大小 x
和方向,即 :
第三章 空间力系
Ft tan Fa Ft tan Fr cos
第三章 空间力系
【课堂练习】图示力F作用在A点,此力在x轴、y轴、z轴 上的投影分别是多少?
第三章 空间力系
三、交于一点且互相垂直的三力的合成
力直角平行六面体法则
F=
Fx2 Fy2 Fz2
Fx cosα= F
Fy cosβ= F
第三章 空间力系
(2)力F对各坐标轴之矩为: Mz(F )= Mz(Fx)+Mz(Fy)= -Fx· y+Fy· x= -10.98 N· m Mx(F )=Mx(Fy)+Mx(Fz)= -Fy· z-Fz· y= -105 N· m My(F)=My(Fx)+My(Fz)=Fx· z+Fz· x=53.3 N· m。
解:
(1)确定车刀刀尖为研究对象,以工件主轴为水平轴空间 直角坐标系。
第三章 空间力系
( 2)刀尖受力分析
刀尖受到径向力Fx(沿x轴方向)、轴向力Fy(沿y轴方 向)、圆周力Fz(沿z轴方向)的作用。 (3)用力直角平行六面体法则求合力F 以三力Fx、Fy、Fz为棱边作一直角平行六面体,则此六面 体的对角线即为三力的合力F=19.6 kN
第三章 空间力系 三、空间力系的平衡条件和平衡方程
力矢的主矢和力系对空间任意一点的主矩都等于零。
FR' 0
,
Mo 0
Fy =0 Fy=0 Fz=0 Fz =0 Mx(F )=0 Mz(F )=0
• 空间汇交力系力系 Fx =0 • 空间平行力系力系 Fy=0 • 空间任意力系力系 Fx=0 • 空间力偶系力系
第三章 空间力系 四、空间力系平衡的平面解法
1.确定研究对象,画出受力图。
理论力学 第4章-空间力系
第四章 空间力系
§4-1空间汇交力系
一 空间汇交力系的合成: 1)单 个 力 沿 坐 标 轴 的 分 解 : a)力 的 平 行 六 面 体 法 则 力 的 大 小 : X=Fcosα Y=Fcosβ Z = Fcosγ 力 的 方 向 : 与 x ,y,z 方 向 相 同 为 正 与 x ,y ,z 方 向 相 反 为 负
d) 空 间 汇 交 力 系 的 合 成 :合 力 QQ定 理 . 合力大小: R= ( ∑ X)2 + ( ∑ Y ) 2 + ( ∑ Z ) 2 合 力 方 向 :方 向 余 弦
§4-2 力对轴之矩和力对点之矩
1. 力偶矩矢: 空间力偶对刚体作用矢的效果取 决于以下三个因数
大小:|M|=Fd 转向:右手定则确定 作用面方位:力偶作用面法线所在的空间位置
2. 列空间一般力系平衡方程:
∑x = 0:
T1 + t1 + (T2 + t2 )sinθ + X A + XB = 0
∑ y = 0:
∑M
x
ZA + Z B (T2 + t) θ = 0 cos
பைடு நூலகம்
= 0 : Z B 2b (T1 + T2 ) cos θ b = 0
∑M
∑M
y
= 0 : t1 R + T2 cos θ r T1 R t2 cos θ r = 0
= 0 : (T1 + t2 )b (T2 + t2 ) sin θ b X B 2b = 0
第三章 空间力系
MO (F)x yFz zFy M x (F ) MO (F ) y zFx xFz M y (F )
MO (F)z xFy yFx M z (F)
1)力 F 的大小为 F Fx2 Fy2 Fz2 5 2 kN
2)力 F 的方向余弦以及与坐标轴的夹角为
cos F ,i 3 0.424; F ,i θ 64.9 52
cos F , j 4 0.566 ; F , j β 55.55 52
cos F ,k 5 0.707 ; F ,k γ 180 45 135 52
Fx F cos , Fy F cos , Fz F cos (3 1)
5
第三章 空间力系
§3-1 空间汇交力系 2)二次投影法(间接投影法)
当力与轴Ox,Oy正向夹角不易确定 时,可先将 F 投影到坐标平面xy上,得 Fxy,再将Fxy投影到x,y轴上,于是投影 的大小为:
Fx Fxy cos F sing cos Fy Fxy sin F sing sin
x
解:由题知:
Fx 4.5kN ;Fy 6.3kN ;Fz 18kN
y Fy
β γ
\力F 的大小
Fz
F Fx2 Fy2 Fz2 19.6 kN
zF
力F 的方向余弦,及与坐标轴的夹角为
cos Fx 4.5 0.220, 76.7
F 19.6
cos Fy 6.3 0.322, 71.1
侧面 风力
b
(a)图为空间汇交力系;(b)图为空间任意力系 (b)图中去了风力为空间平行力系。
理论力学 第四章 空间力系
12
单位:N·m
2.力对轴的矩
力对轴之矩合力矩定理:各力对任一轴之矩等于各分力对同一轴之矩的 代数和。
例:将Fxy再分解为Fx、Fy,根据合力矩定理则有:
Mz( F ) MO( Fxy ) MO( Fx ) MO( Fy ) xFy yFx
即:FR Fi 0
FR
Fx2 Fy2 Fz2
空间汇交力系的平衡方程
Fx 0 Fy 0
Fz 0
6
例题
如图所起重机,已知CE=EB=DE,角α=30o ,CDB平面与水平面 间的夹角∠EBF= 30o ,重物G=10 kN。如不计起重杆的重量,试求起 重杆所受的力和绳子的拉力。
XYZ
mO (F) (yZ zY ) i (zX xZ) j (xY yX) k
11
§4.3力对轴的矩
1.当力作用面 Z轴时: MZ(F ) M0 F F h
Z
2.当力作用面 Z轴时: M z (F) Mo (Fxy ) Fxy h
F
力与轴相交或与轴平行(力与轴在同一平面内),力对该轴的矩为零.
7
例题
解: 1. 取杆AB与重物为研究对象,受力分析如图。
zD
F2
E
C F 30o
B
F1
α
FA G
A
y
x
其侧视图为
z
E F1
F 30o
B
α
FA G
A
y
8
例 题 4-3
2. 列平衡方程。
zD
F2
E
C F 30o
B
F1
Fx 0,
F1 sin 45 F2 sin 45 0
理论力学-空间力系
空间 力矩 三要 素
力矩在该平面内的转向 力矩大小
4.3 空间力系的平衡方程
如图4-5三要素可用这样一个矢量表示:矢量的模
表示力对点之矩的大小;矢量的方位与该力和矩心构
成平面的法线方位相同;矢量的指向按右手螺旋法则
确定,该矢量称为力对点之矩矢,简称力矩矢,记作
MO(F )
MO(F) Fh 2AOAB
2.1 平面汇交力系合成与平衡的几何法
4.1.2 间接投影法
若力F 与坐标轴x、y间的夹角不易确定,可 将力F先投影到坐标平面Oxy上,得到力F 在坐标 平面Oxy上的投影Fxy,然后再将Fxy投影到x、y
4.3 空间力系的平衡方程
如图4-2所示,已知力F与z轴正向的夹角为γ,投影Fxy 与x轴正向的夹角为φ,则由二次投影法,力F在三个坐标轴
x
y
z
cosα=Fx/F
cosβ=Fy/F
cosγ=Fz/F (4-3)
4.3 空间力系的平衡方程
例4-2
设力F 作用于长方体的顶点C,其作用线沿长方体对角线,
如图4-4所示。若长方体三个棱边长为AB=a,BC =b,BE
=c,试求力在图示直角坐标轴上的投影。
解:F 在z Fz=Fcosγ=
c
F
a2 b2 c2
采用二次投影法,得F在x、y
F x=F sinγcosφ= F y=F sinγsinφ=
F a2 b2
b
b
F
a2 b2 c2 a2 b2 a2 b2 c2
a2 b2
a
a
F
a2 b2 c2 a2 b2
a2 b2 c2
4.3 空间力系的平衡方程
4.2.1 空间力对点之矩矢 力与矩心构成平面的方位
力学第四章空间力系
§4-3 空间任意力系的平衡方程
解 取折杆为研究对象,画受力图如图所示,选直角坐 标系0xyz,列平衡方程
Fx = 0
FOx = 0
Fy = 0
FOy = 0
Fz = 0
FOz F = 0
Mx F = 0 MOx Fb = 0
§4-3 空间任意力系的平衡方程
平衡基本方程
空间任意力系平衡的充分必要条件:
各力在各坐标轴上的投影代数和分别等于零; 各力对各坐标轴的矩的代数和分别等于零
即:
Fx = 0
Fy = 0
Fz = 0
MxF = 0 M y F = 0 Mz F = 0
§4-3 空间任意力系的平衡方程
§4-3 空间任意力系的平衡方程
例4-5 用空间平衡力系的平面解法重解例4-4 解 重物匀速上升,鼓轮作匀速转动,即处于平衡姿态。取鼓轮为研究 对象。将力G和Q平移到轴线上,分别作垂直平面、水平平面和侧垂直
平面(图a、b、c)的受力图。
a)
c) b)
§4-3 空间任意力系的平衡方程
由(图a、b、 c),列平衡方程。
§4-2 力对轴之矩
力对轴之矩(N·m):度量力使物体绕轴的转动效应
M z (F ) = M O (Fxy ) = Fxyd
结论:力对某轴之矩是力使物体绕该轴 转动效应的度量,其大小等于力对垂直 于某轴平面内力对O点(即某轴在该面 的投影点)之矩。
力对轴之矩的符规定:
§4-2 力对轴之矩
例4-1 图示力F作用在圆轮的平面内,设力F作用线距z轴 距离为d。试计算力F对z轴之矩。
符号规定:从投影的起点到终点的方向与相应坐标轴 正向一致的就取正号;反之,就取负号。
理论力学 第3章
• 作业: • 习题 3-6,3-12
§ 3-5 空间任意力系的平衡方程
1. 空间任意力系的平衡方程 空间任意力系平衡的必要和充分条件:
该力系的主矢r 和对于r 任一点的主矩都为零 FR 0, MO 0
Fx 0 Fy 0 Fz 0
Mx 0 My 0 Mz 0
所有各力在三个坐标轴中每一个轴上的投影的 代数和等于零,以及这些力对于每一个坐标轴的 矩的代数和也等于零。
解析法表示:
M M xi M y j M zk
Mx 0 My 0 Mz 0
——空间力偶系的平衡方程
例3-5 已知:在工件四个面上同时钻5个孔,每个 孔所受切削力偶矩均为80N·m.
求:工件所受合力偶矩在 x, y轴, z上的投影.
解:
把力偶用力偶矩 矢表示,平行移到 点A .
Mx Mix M3 M4 cos45 M5 cos45 193.1N m
力螺旋 由一力和一力偶组成的力系,其中
的力垂直于力偶的作用面
(1)FR 0, M O 0, FR // M O
中心轴过简化中心的力螺旋
钻头钻孔时施加的力螺旋
r r rr (2)FR 0, MO 0,既FR不, M平O行也不垂直,成任意夹
角
力螺旋中心轴距简化中心为 d M O sin
FR
F1 F2 3.54kN FA 8.66kN
§ 3-2 力对点的矩和力对轴的矩
1. 力对点的矩以矢量表示——力矩矢
力对点之矩 在平面力系中——代数量 在空间力系中——矢量
MO (F) Fh 2ΔOAB
r MO
r (F
)
rr
r F
三要素:
(1)大小:力 F与力臂的乘积
空间力系
定位矢量? 滑移矢量? 定位矢量? 滑移矢量? 力偶矩矢—自由矢量(搬来搬去,滑来滑去) 力偶矩矢—自由矢量(搬来搬去,滑来滑去)
空间力系
空间力偶
3.空间力偶系的合成与平衡 3.空间力偶系的合成与平衡
r r r r 合力偶矩矢: 合力偶矩矢:M = Mxi + My j + Mz k
r r r r r M = M1 + M2 +L+ Mn = ∑ Mi
r r r r r MO (F) = Mx (F) i + My (F) j + Mz (F)k = Fbsinα i −Fasinα j + (Fbsinα sin β − Fasinα cos β ) k
空间力系
空间力矩
思考题
A a F F b D
α
r r MA(F)
r r MAB (F) = MA(F) AB
空间力偶
r r r r r r r r r r 力偶矩矢 M = M( F , F′ ) = rA × F − rB × F′ = rBA × F
空间力系
空间力偶
2.空间力偶的性质 2.空间力偶的性质 (1)力偶对任意点取矩都等于力偶矩,不因矩心的改变而改变。 力偶对任意点取矩都等于力偶矩,不因矩心的改变而改变。 (2)空间力偶等效定理 两个力偶的力偶矩矢相等,则它们是等效的。 两个力偶的力偶矩矢相等,则它们是等效的。 推论1 只要保持力偶矩不变, 推论1:只要保持力偶矩不变,力偶可在其作用面内任意移 转,且可以同时改变力偶中力的大小与力偶臂的长 对刚体的作用效果不变。 短,对刚体的作用效果不变。
x O z
r r MO (F)
B
F
r
理学空间力系
Fy F sin sin Fz F cos
力的方向: cos = Fx
F
解析表达式: F Fx Fy Fz Fxi Fy j Fzk
cos = Fy
F
力的大小: F Fx2 Fy2 Fz2
cos = Fz
F
Copyright © byCrazytalk Studio All rights reserved.
16
理论力学
09:39
❖§4–2 空间力矩理论和力偶理论 3.空间力偶
理论力学
2、力偶的性质 (1)力偶中两力在任意坐标轴上投影的代数和为零。
(2)空间力偶对任意点取矩都等于力偶矩,不因矩心的改变而改变
力偶矩矢 M rBA F
M o (F, F ) M o (F ) M o (F ) rA F rB F
4
09:39
❖§4–1空间汇交力系
理论力学
2、空间汇交力系的合力与平衡条件
空间汇交力系的合力 FR = F1 + F2 + + Fn = Fi
合矢量(力)投影定理
FRx Fix Fx FRy Fiy Fy FRz Fiz Fz
合力的大小 FR ( Fx )2 ( Fy )2 ( Fz )2
(3) 指向:与转向的关系服从右手螺旋定则。 或从力偶矢的末端看去,力偶的 转向为逆时针转向。
用矢量表示。
Copyright © byCrazytalk Studio All rights reserved.
8
09:39
❖§4–2 空间力矩理论和力偶理论 1、力对点的矩以矢量表示 ——力矩矢
理论力学
15
09:39
❖§4–2 空间力矩理论和力偶理论 3.空间力偶
第3章 空间力系
第3章 空间力系
图3-8
第3章 空间力系
使3用.5规范物说体明 的重心和平面图形的形心
3.5.1 物体的重心
重心在日常生活和工程实际中都有重要的意义。例如,在起吊重
物时,如果把重心掌握不好,重物就会倾倒,如图3-11所示;推拉装
有重物的小车时,若重心偏前或偏后,都会感到格外费力等等,所以
有必要对物体的重心进行研究。
因此构成了一个空间平行力系,如图3-12所示。
图3-12
第3章 空间力系
重力G表示的物体的重心坐标公式为
使用规范说明
重心坐标公式就可以用体积的关系来表示,即
第3章 空间力系
匀质物体的重心位置完全取决于物体的几何形状,而与物体的重
使量用无规关范。因说此明,匀质物体的重心也称为形心。
如果物体是匀质薄板或薄壳,设其厚度为 δ,面积为A,则上式
平衡问题。
谢谢
由于空间汇交力系合成的结果是一合力,所以空间汇交力系平衡
的充分和必要条件为力系的合力等于零,即
由此得
式(3-7)称为空间汇交力系的平衡方程,共有3个独立的方程,
最多可求解3个未知量。
第3章 空间力系
使3用.3规范力说对明 轴之矩
在平面问题中,我们讨论了力对点之矩,现在研究空间问题,就
要先引入力对轴之矩的概念。在推门时,门会绕一根铅垂的轴转动。
如果推力的作用线与门轴平行或相交(图3-5a),显然无论用力多大
,门都不会转动;如果推力在垂直于门轴的平面内(图3-5b),此时
就能把门推开。
图3-5
第3章 空间力系
假设作用于门上的力F的方向是任意的,这时可将F在作用点处
第六章空间力系
理论力学
鉴于空间力偶区别于平面力偶的特点,可以用一个矢量 表示空间力偶,该矢量垂直于力偶作用面,指向由右手定则 确定。并且矢的长度表示力偶矩的大小,矢的方位与力偶作 用面的法线方位相同,即如以力偶的转向为右手螺旋的转动 方向,则大拇指指向即为力偶矩矢的方向,如图 6-10 所示。 此矢量称为力偶矩矢,记作 M 由此可知。
第6章 空间力系
理论力学
6.1 空间汇交力系
6.1.1 力在坐标轴上的投影
若已知力与正交坐标系 Oxyz 三轴间夹角,则用直接投影 法,如图 6-1a,力 F 可以对 x,y,z 三个方向上投影,其正 交分力分别为 Fx,Fy,Fz,则其大小为:Fx=Fcos(F,i),Fy =Fcos(F,j),Fz=Fcos(F,k)。
图 6-3
第6章 空间力系
理论力学
解:用二次投影法求解。由图 6-3b 得:
Fx=Ft=Fcosαsinβ (圆周力) Fy=Fa=-Fcosαcosβ (轴向力) Fz=Fr=-Fsinα (径向力) 如已知力在坐标轴上的投影 Fx、Fy、Fz,可按下式决定 力的大小和方向余弦:
F= Fx2+F2y+F2z(6-4) cosα=FFx,cosβ=FFy,cosγ=FFz
上的投影为 Fx=Fsinγcosφ,Fy=Fsinγsinφ,Fz=Fcosγ。若以 Fx、Fy、Fz 表示力 F 沿直角坐标轴 x、y、z 的正交分量,则 力 F 在坐标轴上的投影和力沿坐标轴的正交分矢量间的关系
可表示为:
F=Fx+Fy+Fz=Fxi+Fyj+Fzk
(6-1)
第6章 空间力系
理论力学
第6章 空间力系
理论力学
6.2.3 力对点的矩与力对轴的矩的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较式( 比较式(1-8) Mo(F)=(yFz-zFy)i )=(yF +(zFx-xFz)j +(zF +(xFy-yFx)k Mx(F)=yFz-zFy )=yF My(F)=zFx-xFz )=zF Mz(F)=xFy-yFx )=xF
可用来直接计算力对轴的矩
空间一般力系的简化与平衡 空间一般力系向一点的简 化 1.空间中力的平移 1.空间中力的平移 力F平移到A点,得到力F′ 和作用于 平移到A 得到力F Abc面以力偶矩矢表示的力偶 Abc面以力偶矩矢表示的力偶M。 面以力偶矩矢表示的力偶M 力F向A点平移 向 F′ 和M, F′⊥M
武汉大学工程力学
12
第三章 空间力系
作用线不在同一个平面内的力系称为空间力 系 特殊力系 力对轴、 力对轴、对点的矩及其关系 空间汇交力系 空间一般力系的简化与平衡 空间平行力系 重心和形心 空间力偶系
2012年3月25日星期日
武汉大学工程力学
1
力对轴、对点的矩及其关系 力对轴、 力对轴的矩 力对轴的矩是使刚体绕此轴转动效应的度量,它等 力对轴的矩是使刚体绕此轴转动效应的度量, 于该力在垂直于此轴的平面上的投影对此轴与这平 面的交点的矩 将力F分解成 将力 分解成Fz和Fxy,可见 分解成 Mz(Fz)=0; Mz(Fxy)=MO(Fxy) 故力F对轴 对轴z之矩可写为 故力 对轴 之矩可写为 Mz(F)=MO(Fxy)=±Fxy•h ± 力与轴共面时, 力与轴共面时,力对 轴的矩为零
xc
∑ x ∆V =
i
i
V
yc
∑ y ∆V =
i
i
V
zc
∑ z ∆V =
i
i
V
表明均质物体的重心位置只决定于物体的几何形状 和尺寸。 和尺寸。 形心是物体的几何中心,是一个几何概念, 形心是物体的几何中心,是一个几何概念, 只与几何形状及尺寸有关。 只与几何形状及尺寸有关。
xc = V
∫ xdV
V
yc = V
F
B b h a A z
Mz
γ O
MO
F'
γ为OAB与Oab之 与 之 间的夹角
Mz(F)=M0(F′ )=2∆Oab=2∆OAB•cosγ= MOcosγ ∆ ∆ γ γ 故可知: 故可知:力对某点之矩矢在过该点任一轴上 的投影等于力对该轴之矩。 的投影等于力对该轴之矩。
由于
Mo(F)=[Mo(F)]xi+[Mo(F)]yj+[Mo(F)]zk =Mx(F)i+My(F)j+Mz(F)k
z
x
y
重心和形心 重心 重心是物体各部分所受重力之合力的作用点 起重机翻倾;船舶稳定;旋转机械振动 起重机翻倾;船舶稳定;旋转机械振动 翻倾 稳定 应用合力矩定理
z
Mi
xc =
∑ x ∆G
i
i
G
O
∆Gi zi
C G
yc
∑ y ∆G =
i
i
G
i
yi
x
xi
y
zc xc
zc
∑ z ∆G =
G
yc
i
均质物体的坐标公式与形心的概念 均质情况下可得到
z
空间汇交力系 将原点取在汇交点, 将原点取在汇交点,有 ΣMx(F)≡0, ΣMy(F)≡0; ΣMz(F)≡0 ≡ ≡ ≡ 平衡方程是 平衡方程是: =0; =0; ΣFx=0; ΣFy=0; ΣFz=0
A x y
空间平行力系 取z轴与各力平行,有 轴与各力平行, ΣFx≡0; ΣFy≡0; ΣMz(F)≡0 。 ≡ 平衡方程是 平衡方程是: =0; )=0; ΣFz=0; ΣMx(F)=0; ΣMy(F)=0 空间力偶系 由ΣFx≡0; ΣFy≡0; ΣFz≡0 。 平衡方程是 平衡方程是: ΣMz(F)=0 ; ΣMx(F)=0; ΣMy(F)=0 )=0;
z y
A
M=MO(F) F′
c
O
x
b
F
空间一般力系向一点简化一般可得到一个力和一个力 这个力作用在简化中心上, 偶,这个力作用在简化中心上,它的大小等于原力系 的主矢量,即等于原力系中所有各力的矢量和; 的主矢量,即等于原力系中所有各力的矢量和;这个 力偶的力偶矩矢量等于原力系对简化中心的主矩, 力偶的力偶矩矢量等于原力系对简化中心的主矩,即 等于原力系中各力对简化中心的矩的矢量和
∫ ydV
V
zc = V
∫ zdV
V
确定物体重心的方法 简单形状均质物体的重心
复合形状均质物体的重心 分割法 负体积(面积)法 负体积(面积)
F
O C B
实验方法测定物体的重心 悬挂法 称重法
A
W
悬挂法
C W B
称重法
FB
L
x 称重法
A FA
重心不一定在物体上。 重心不一定在物体上。
2012年3月25日星期日z NhomakorabeaFz
O
F Fxy
x
h
y
F1 F2
力对点的矩与力对通过该点的轴之矩的关系 如图 力F对O点之矩矢MO垂直于OAB平 点之矩矢M 垂直于OAB平 面且大小为: 面且大小为: MO=MO(F)=F•h=2∆OAB )=F h=2∆ 另一方面:力F 对轴z之矩等于其 另一方面: 之矩等于其 之的平面内的分量F 在垂直于轴 z之的平面内的分量 ′ 之的平面内的分量 对交点O之矩 之矩, 对交点 之矩,即:
空间一般力系的简化结果讨论 F`R≠0,Mo=0 F`R≠0,Mo=0 F`R=0,Mo=0
1. F`R⊥Mo F`R≠0,Mo≠0 2. F`R∥Mo 3. F`R与Mo 任意夹角 无法进一 步简化
当主矢和主矩都等于零时,空间力系为平衡力系 主矢和主矩都等于零时,空间力系为平衡力系。
空间一般力系的平衡条件和平衡方程 空间一般力系 可写出平衡方程为 由FR′′=0;MO=0 可写出平衡方程 ; ΣFx=0; ΣFy=0; ΣFz=0 =0; =0; )=0; )=0; )=0 ΣMx(F)=0; ΣMy(F)=0; ΣMz(F)=0