第三讲 线性规划与非线性规划

合集下载

——线性规划与非线性规划

——线性规划与非线性规划
软件中多为 Dantzig 单纯形法.
参考书目:薛嘉庆.线性规划.北京:高等教育出版社,1989 刁在筠 郑汉鼑等. 运筹学.北京:高等教育出版社,2001
4. 特殊的线性规划
当所有决策变量都取整数时,称为整数规划(IP). 当所有决策变量只取 0 或 1 时,称为 0-1 规划. 当只有部分决策变量取整数时,称为混合整数规划(混合 IP).
数学建模会涉及数学的众多学科:微分方程,运筹学,概率统计,图论,层次分析,变 分法……,要求建模者有较高的数学素养,有综合应用已学到的数学方法和思维对问题进行 分析、抽象及简化的能力.
数学建模既是建立实际问题的数学模型.
一、最优化模型
数学建模的目的是使决策人的“利益”最大化,因此而建立的数学模型即所谓的最优化 模型.
一般形式与其标准形式问题的求解等价,因为这两个问题的可行解一一对应,目标函数 值对应相等.所以如果这两个问题之一有最优解,那么另一个也必有最优解,且最优值相等.
2. 线性规划的特点 (1)线性规划的可行域是凸集:凸多边形、凸多面体或空集.
凸集
非凸集
凸多边形
凸多面体
(2)目标函数的等值面(或等值线)是平行的(超)平面(或直线).
运筹学
——线性规划与非线性规划
线性规划与非线性规划是运筹学的一个分支.
运筹学研究什么呢?运筹学是研究“如何做出正确决策或选择,以达到最好结果”的一 门数学学科.
有一句成语形象地说明了运筹学的特点:运筹帷幄,决胜千里.
数学因实际的需要而产生,数学的很多重大发现也因实际的需要而出现. 数学建模竞赛既因实际的重要需要而在世界范围内(在我国近十几年)各大学蓬勃开展. 没有受到条条框框制约、富有聪明才智的大学生们,在每次竞赛中都能对实际中的一些重要 问题与难题给出富有新鲜创意的解决办法,往往因此产生重大的社会效益和经济效益.建模 竞赛就是知识的“强行军”.竞赛会极大地激发学生们的创造性思维,是对学生们思考能力 和动手能力的考验.竞赛能让学生们切身感受到学习各科知识的必要性、重要性,成为学生 们认真学习的推动力.

非线性规划

非线性规划

非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。

与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。

非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。

非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。

满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。

为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。

这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。

非线性规划的难点在于寻找全局最优解。

由于非线性函数的复杂性,这些问题通常很难解析地求解。

因此,常常使用迭代算法来逼近最优解。

非线性规划的一个重要应用是在经济学中的生产计划问题。

生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。

非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。

另一个应用是在工程学中的优化设计问题。

例如,优化某个结构的形状、尺寸和材料以满足一组要求。

非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。

在管理学中,非线性规划可以用于资源分配和风险管理问题。

例如,优化一个公司的广告预算,以最大程度地提高销售额。

非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。

总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。

它在经济学、工程学和管理学等领域有广泛的应用。

尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。

非线性规划知识点讲解总结

非线性规划知识点讲解总结

非线性规划知识点讲解总结1. 非线性规划的基本概念非线性规划是指目标函数和/或约束条件包含非线性项的优化问题。

一般来说,非线性规划问题可以表示为如下形式:\[\min f(x)\]\[s.t. \ g_i(x) \leq 0, \ i=1,2,...,m\]\[h_j(x)=0, \ j=1,2,...,p\]其中,\(x \in R^n\)是优化变量,\(f(x)\)是目标函数,\(g_i(x)\)和\(h_j(x)\)分别表示不等式约束和等式约束。

目标是找到使目标函数取得最小值的\(x\)。

2. 非线性规划的解决方法非线性规划问题的求解是一个复杂的过程,通常需要使用数值优化方法来解决。

目前,常用的非线性规划求解方法主要包括梯度方法、牛顿方法和拟牛顿方法。

(1)梯度方法梯度方法是一种基于目标函数梯度信息的优化方法。

该方法的基本思想是在迭代过程中不断沿着梯度下降的方向更新优化变量,以期望找到最小值点。

梯度方法的优点是简单易实现,但缺点是可能陷入局部最优解,收敛速度慢。

(2)牛顿方法牛顿方法是一种基于目标函数的二阶导数信息的优化方法。

该方法通过构造目标函数的泰勒展开式,并利用二阶导数信息来迭代更新优化变量,以期望找到最小值点。

牛顿方法的优点是收敛速度快,但缺点是计算复杂度高,需要计算目标函数的二阶导数。

(3)拟牛顿方法拟牛顿方法是一种通过近似求解目标函数的Hessian矩阵来更新优化变量的优化方法。

该方法能够克服牛顿方法的计算复杂度高的问题,同时又能保持相对快速的收敛速度。

拟牛顿方法的典型代表包括DFP方法和BFGS方法。

3. 非线性规划的应用非线性规划方法在实际生活和工程问题中都有着广泛的应用。

以下将介绍非线性规划在生产优化、资源分配和风险管理等领域的应用。

(1)生产优化在制造业中,生产线的优化调度问题通常是一个非线性规划问题。

通过对生产线的机器设备、生产工艺和生产速度等因素进行建模,并设置相应的目标函数和约束条件,可以使用非线性规划方法来求解最优的生产调度方案,以最大程度地提高生产效率和减少成本。

非线性规划的基本概念及问题概述

非线性规划的基本概念及问题概述

牛顿法在凸优化问题上表现较好,但在非凸问题 上可能陷入局部最优解。
拟牛顿法
01
拟牛顿法是一种改进的牛顿法,通过构造海森矩阵 的近似来降低计算成本。
02
拟牛顿法在每一步迭代中更新搜索方向,并逐渐逼 近最优解。
03
拟牛顿法在处理大规模非线性规划问题时表现较好 ,但仍然需要计算目标函数的二阶导数。
共轭梯度法
共轭梯度法结合了梯度法和牛 顿法的思想,通过迭代更新搜 索方向来寻找最优解。
共轭梯度法的迭代方向是梯度 方向和上一次迭代方向的线性 组合,可以加快收敛速度。
共轭梯度法适用于大规模优化 问题,尤其在约束条件较多或 非凸函数情况下表现较好。
05
非线性规划的挑战与解决方 案
局部最优解问题
局部最优解问题
案例二:生产计划优化问题
总结词
生产计划优化问题旨在通过合理安排生 产计划,降低生产成本并满足市场需求 。
VS
详细描述
生产计划优化问题需要考虑生产过程中的 各种因素,如原材料需求、设备能力、劳 动力成本等。目标函数通常是非线性的, 因为生产成本和产量之间的关系是非线性 的。约束条件可能包括资源限制、交货期 限制等。
例子
最小化成本函数,其中成本是生产量 的函数,生产量受到资源、生产能力 等约束。
最大化问题
最大化目标函数
在给定的约束条件下,找到一组变量 ,使得目标函数达到最大值。
例子
最大化收益函数,其中收益是销售量 的函数,销售量受到市场需求、价格 等约束。
约束条件下的优化问题
01
在满足一系列约束条件下,寻找最优解,使得目标函数达到最 优值。
梯度法适用于目标函数和约束条件比较简单的情况,但对于非凸函数或约束条件复 杂的情况可能不收敛或收敛到局部最优解。

线性规划与非线性规划

线性规划与非线性规划
21
求解例一
max z 7x1 5x2
3x1 2x2 90 4x1 6x2 200
7x2 210
x1 0, x2 0
min z 7x1 5x2
3x1 2x2 90 4x1 6x2 200
7x2 210
x1 0, x2 0
min z f T x
s.t. A x b
单位。若一吨甲和一吨乙的经济价值分别为7 万元和5万元,三中资源分别为90吨、200 m3 和210个单位,试决定应生产这两种产品各多 少吨才能创造总经济价值最高?
3
(1)假定自变量(决策变量)
x1 :生产产品甲的数量(吨)
x2 :生产产品乙的数量(吨)
(2)分析并表达限制条件(约束条件)
资源A 限制: 3x1 2x2 90 资源B 限制: 4x1 6x2 200 资源C 限制: 7x2 210
三个问题
1. 什么是线性规划问题? 2. 如何求解线性规划问题? 3. 求解线性规划问题的注意事项。
1
一、什么是线性规划问题?
线性规划是研究在一组线性约束条件下,某 一个线性函数的最大值或最小值问题。一般 线性规划问题数学模型为:
min(或 max)z f1x1 f2 x2 L fn xn s.t. a11x1 a12 x2 L a1n xn (或 ,或 )b1
非负条件: x1 0, x2 0
4
(3)分析目标
以Z表示生产甲和乙两种产品各为x1 和 (x2吨)
时产生的经济价值,则有:
z 7x1 5x2
综上可得: max z 7x1 5x2
3x1 2x2 90 4x1 6x2 200
7x2 210
x1 0, x2 0
5

非线性规划

非线性规划

非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。

与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。

非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。

非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。

以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。

它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。

常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。

2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。

常见的优化软件有MATLAB、GAMS、AMPL等。

3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。

它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。

4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。

它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。

以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。

在实际应用中,选择合适的方法和工具是非常重要的。

非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。

《非线性规划》课件

《非线性规划》课件
非线性规划的优化目标是找到使目标函数达到最大值或最小值的最优解。这些目标可以是经济、社会或 科学领域中的实际问题。
非线性规划的约束条件
非线性规划的约束条件是指限制问题解的一组方程或不等式。这些约束条件可以包括物理限制、资源约 束和行为限制等。
非线性规划的求解方法
线性化方法
将非线性问题转化为等价的 线性问题,然后使用线性规 划方法求解。
牛顿法
使用牛顿迭代法逐步逼近最 优解。
拟牛顿法
使用近似Hessian矩阵的方法 优化牛顿法。
变尺度法、全局优化方法
1
变尺度法
通过改变尺度,将问题转化为更易求解的形式。
2
全局优化方法
使用启发式算法寻找全局最优解。
非线性规划的应用领域
生产计划问题
优化生产计划,提高效率和利润。
交通运输问题
优化交通网络和运输流程。
优化电力系统
使电力系统运行更加高效和可靠。
决策支持系统
为决策者提供优化建议和决策支持。
医资源分配和治疗方案。
非线性规划的挑战
复杂的问题结构和求解困难。
未来的研究方向
未来的研究方向包括改进算法性能、适用于大规模问题的方法和考虑不确定性的优化模型等。
《非线性规划》PPT课件
在这个《非线性规划》PPT课件中,我们将深入探讨非线性规划的各个方面, 并介绍其在不同领域的应用。让我们一起开启这个激动人心的学习之旅!
什么是非线性规划?
非线性规划是一种在优化问题中寻找最优解的数学方法。它处理的是有非线 性约束条件和目标函数的优化问题。
非线性规划的优化目标

非线性规划

非线性规划

非线性规划报告一、什么是非线性规划?因为在实际问题求解中,很多情况下,目标函数以及约束条件不可能都是线性的,往往包含非线性函数,那么这时就是非线性规划问题。

简单概括,非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

二、非线性规划和线性规划的区别是什么?除了目标函数和约束条件的形式不同外,线性规划的最优解只可能在可行域的边界达到(特别是顶点处),而非线性规划可能在可行域的任意一点达到。

三、非线性规划的一般模型:min f(x)()0,j 1,...q s.t. ()0,i 1,...j i h x g x p≤=⎧⎪⎨==⎪⎩ 其中:1,2,,[...]n x x x x =称为决策变量,f 为目标函数,j h 和i g 称为约束函数,()0i g x =称为等式约束,()0j h x ≤称为不等式约束。

四、非线性规划的两类问题 1、无约束的极值问题我们一般都将求解的非线性规划问题都转化为无约束的最优化问题。

这里主要介绍求解无约束问题的解析法,解析法就是通过计算()fx 的一阶,二阶偏导数及其函数的解析性质来实现极值的求解方法。

这里介绍牛顿法(详见手写稿件)。

2、有约束的极值问题带有约束条件的极值问题称为约束极值问题,求解约束极值问题要比求解无约束极值问题困难得多。

为了简化优化工作,通常采取以下解题思路: (1) 将约束极值问题转化为无约束极值问题。

(2) 将非线性规划问题转化为线性规划问题。

(3) 将复杂的问题分解为若干简单问题。

这里主要介绍二次规划模型。

二次规划的显著特征是“目标函数”是二次函数,且约束条件又是线性的。

在matlab 中二次规划模型表示如下:1min2,.. ,.TT x Hx f x Ax b s t Aeq x beq lb x ub +≤⎧⎪⋅=⎨⎪≤≤⎩其中:H 表示实对称矩阵;f ,b ,beq ,lb ,ub 是列向量;A ,Aeq 是相应维数矩阵。

非线性规划的概念和原理

非线性规划的概念和原理

第五章 非线性规划的概念和原理非线性规划的理论是在线性规划的基础上发展起来的。

1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。

以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。

一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。

非线性规划的各种算法大都有自己特定的适用范围。

都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。

这正是需要人们进一步研究的课题。

5.1 非线性规划的实例及数学模型[例题6.1] 投资问题:假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。

已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高?解:令决策变量为j x ,则j x 应满足条件()10j j x x -= 同时j x 应满足约束条件1nj jj a xb =≤∑目标函数是要求盈利率()1121,,,njjj n nj jj c xf x x x a x===∑∑最大。

[例题6.2] 厂址选择问题:设有n 个市场,第j 个市场位置为(),j j p q ,它对某种货物的需要量为j b ()1,2,,j n =。

现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =。

试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。

解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==,则第i 个仓库到第j 个市场的距离为i j d =目标函数为1111mnmni ji j i ji j i j zd z =====∑∑∑∑约束条件为:(1) 每个仓库向各市场提供的货物量之和不能超过它的存储容量; (2) 每个市场从各仓库得到的货物量之和应等于它的需要量; (3) 运输量不能为负数。

线性规划知识点

线性规划知识点

线性规划知识点引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在工程、经济学、管理学等领域有着广泛的应用。

本文将详细介绍线性规划的相关知识点。

一、线性规划的定义与基本概念1.1 目标函数:线性规划的目标是通过最大化或最小化目标函数来达到最优解。

目标函数是一条线性方程,表示需要优化的目标。

1.2 约束条件:线性规划问题还需要满足一组线性约束条件,这些条件对决策变量的取值范围进行了限制。

1.3 决策变量:决策变量是指在线性规划问题中需要进行决策的变量,其取值将影响目标函数的值。

二、线性规划的基本模型2.1 标准型线性规划:标准型线性规划是指目标函数为最小化问题,约束条件为等式形式的线性规划问题。

2.2 松弛变量与人工变量:为了将约束条件转化为等式形式,我们引入松弛变量和人工变量。

2.3 基变量与非基变量:在标准型线性规划中,基变量和非基变量是用来描述决策变量的状态的。

三、线性规划的解法3.1 单纯形法:单纯形法是一种常用的线性规划解法,通过迭代计算基变量和非基变量的取值,直到找到最优解。

3.2 对偶性理论:线性规划问题与其对偶问题之间存在着对偶关系。

对偶性理论可以帮助我们求解原始问题的最优解。

3.3 整数线性规划:当决策变量需要取整数值时,我们可以使用整数线性规划方法来求解。

整数线性规划问题更加复杂,通常需要使用分支定界等方法求解。

四、线性规划的应用领域4.1 生产计划:线性规划可以用于优化生产计划,通过合理安排生产资源和生产量,实现最大化利润或最小化成本。

4.2 运输问题:线性规划可以用于解决运输问题,通过合理分配运输量和运输路径,实现最优的物流方案。

4.3 资源分配:线性规划可以用于资源分配问题,如人力资源、资金分配等,通过最优化决策,实现资源的合理利用。

五、线性规划的局限性与拓展5.1 非线性规划:线性规划只适用于目标函数和约束条件为线性关系的问题。

对于非线性问题,我们需要使用非线性规划方法进行求解。

非线性规划基本概念

非线性规划基本概念

序列二次规划法原理及步骤
• 原理:序列二次规划法是一种迭代求解非线性规划问题的方法。它在每次迭代中构造一个二次规划子问题,通 过求解该子问题得到原问题的一个近似解,然后利用该近似解的信息构造下一个二次规划子问题,如此循环直 至收敛到最优解。
序列二次规划法原理及步骤
2. 求解二次规划子问题,得到近 似解。
与线性规划不同,非线性规划中的目标函数或约 束条件至少有一个是非线性的。
非线性规划问题通常更加复杂,需要采用特定的 算法和工具进行求解。
非线性规划重要性
01
广泛适用性
非线性规划在各个领域都有广泛 应用,如经济、金融、工程、管 理等。
02
解决复杂问题
03
推动技术进步
非线性规划能够处理涉及复杂非 线性关系的问题,提供更精确的 解决方案。
THANKS
感谢观看
REPORTING
https://
VS
5. 判断终止条件
若满足终止条件,则停止迭代,输出当前 迭代点作为近似最小值点;否则,返回步 骤2继续迭代。
拟牛顿法原理及步骤
原理
1. 初始化
拟牛顿法是一种改进牛顿法的方法, 其基本思想是通过构造一个近似海森 矩阵的逆矩阵来避免直接计算海森矩 阵及其逆矩阵。拟牛顿法利用目标函 数的一阶导数信息来构造一个满足拟 牛顿条件的矩阵来逼近海森矩阵的逆 矩阵,从而在保证收敛速度的同时降 低了计算复杂度。
选择初始点 x0,设置迭代终止条件。 初始化拟牛顿矩阵 B0(或其逆矩阵 H0)。
2. 计算梯度
计算函数在 x0 处的梯度 g0 和 g1。
拟牛顿法原理及步骤
3. 求解搜索方向 通过解线性方程组 Bdp = -gp 或 Hdp = -gp 得到搜索方向 dp。

线性规划与非线性规划

线性规划与非线性规划

运筹学——线性规划与非线性规划线性规划与非线性规划是运筹学的一个分支.运筹学研究什么呢?运筹学是研究“如何做出正确决策或选择,以达到最好结果”的一门数学学科.有一句成语形象地说明了运筹学的特点:运筹帷幄,决胜千里.数学因实际的需要而产生,数学的很多重大发现也因实际的需要而出现.数学建模竞赛既因实际的重要需要而在世界范围内(在我国近十几年)各大学蓬勃开展.没有受到条条框框制约、富有聪明才智的大学生们,在每次竞赛中都能对实际中的一些重要问题与难题给出富有新鲜创意的解决办法,往往因此产生重大的社会效益和经济效益.建模竞赛就是知识的“强行军”.竞赛会极大地激发学生们的创造性思维,是对学生们思考能力和动手能力的考验.竞赛能让学生们切身感受到学习各科知识的必要性、重要性,成为学生们认真学习的推动力.数学建模会涉及数学的众多学科:微分方程,运筹学,概率统计,图论,层次分析,变分法……,要求建模者有较高的数学素养,有综合应用已学到的数学方法和思维对问题进行分析、抽象及简化的能力.数学建模既是建立实际问题的数学模型.一、最优化模型数学建模的目的是使决策人的“利益”最大化,因此而建立的数学模型即所谓的最优化模型.决策人在作决策时要有“科学观”,为实现目标(“利益”最大化)应进行“科学决策”.最优化模型正是为实现科学决策而建立的数学模型,是科学决策的科学体现.科学决策的目的是要对为实现目标而提出的设计和操作最佳化,最终实现决策人的“利益”最大化.一个最优化模型包括决策变量、目标函数和约束条件,它将“说明”决策变量在满足约束条件的前提下应使目标函数值最优化(最大或最小).决策变量是指影响并决定目标实现的变量,其变化范围一般是可控制的.目标函数是指根据决策变量建立的目标的函数表达式.约束条件是指决策变量所受的限制(用等式、不等式的函数方程表示).人们建立最优化模型的目的是,希望通过科学的计算方法(称为最优化方法)找出使目标函数值最优(最大或最小)的决策变量的值(称为最优决策).实际问题的7步建模过程:第1步:表述问题.说明目标及各种因素.第2步:分析数据或采集(或收集)并分析数据.第3步:建立数学模型.第4步:对模型求解.即寻找最优决策.第5步:检验、评价模型.如果与实际情况(或实际数据)吻合,则转到第7步,否则转到第6步.第6步:修改或矫正模型,并返回到第1步、第2步或第3步.第7步:模型应用,提出合理化建议.最优化数学模型的一般形式为.,,1,0),,,(,,,1,0),,,(..);,,,(max 212121min)(m p i x x x g p i x x x g t s x x x f z n i n i n +=≥===或 (1.1)其中,),,1(n j x j =是决策变量;),,,(21n x x x f z =是目标函数;),,1(0),,,(21p i x x x g n i ==和),,1(0),,,(21m p i x x x g n i +=≥是约束条件,前者称为等式约束,后者称为不等式约束.不带约束条件的(1)式是无约束问题的模型.由满足所有约束条件的决策向量Tn x x x x ),,,(21=组成的集合称为可行域,通常记为D .求解(1)是指,寻找D x x x x Tn ∈=),,,(**2*1*使),,,(**2*1n x x x f z =为目标函数f 在可行域D 上的最小值(或最大值).*x 称为最优解,),,,(**2*1n x x x f 称为最优值.最优解有严格与非严格和全局与局部之分.优化模型的最优解是指全局最优解.严格极小点 严格极小点 局部 全局 非严格极小点图1 一维函数的最优解图示这里指出:最优化方法解出的多是优化模型的局部最优解.由于最优化方法多为迭代法,所以取不同的初始点一般会得到一个或多个局部最优解,然后再从这些局部最优解中找出“全局”最优解. 二、线性规划(LP)线性规划在银行、教育、林业、石油、运输……等各种行业以及科学的各个领域中有着广泛的应用. 1. 线性规划模型目标函数、约束函数均为线性函数的最优化模型既是所谓的线性规划模型.(1)标准形式.,,1,0,,,1,..;min 22112211max)(n j x m i b x a x a x a t s x c x c x c z j i n in i i n n =≥==++++++=或 (2.1)这里,约束i n in i i b x a x a x a =+++ 2211),,1(m i =是对决策变量的主要约束,称为主约束,而约束),,1(0n j x j =≥(),,1(n j x j =称为非负变量)是对决策变量的符号约束;(1,,)j b i m = 是主约束的右端常数项(通常不妨设为非负数);),,1(n j c j =称为价值系数.(2)式可以写成如下矩阵形式.0,..;min max)(≥==x b x A t s x c z T 或 (2.2)其中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n n mn m m n n b b b b x x x x c c c c a a a a a a a a a A212121212222111211,,,.T n x x x x ),,,(21=——决策向量,T m b b b ),,(1 =——主约束右端常数向量,1(,,)T n c c c =——价值向量.(2)一般形式.,,1,,,,1,0,,,1,,,,1,,,,1,..;min 2211221122112211max)(n q j x q j x m u i b x a x a x a u p i b x a x a x a p i b x a x a x a t s x c x c x c z j j i n in i i i n in i i i n in i i n n +==≥+=≤++++=≥+++==++++++=任意或 (2.3)这里,约束),,1(2211p i b x a x a x a i n in i i ==+++、in in i i b x a x a x a ≥+++ 2211),,1(u p i +=和),,1(2211m u i b x a x a x a i n in i i +=≤+++是主约束,而约束),,1(0q j x j =≥和j x 任意),,1(n q j +=是符号约束,其中j x ),,1(n q j +=称为自由变量.一般形式可以(通过如下办法)转化为标准形式. (i)将不等式约束转化为等式约束引入剩余变量0≥i s ,将不等式约束i n in i i b x a x a x a ≥+++ 2211改写为i i n in i i b s x a x a x a =-+++ 2211,u p i ,,1 +=. (2.4)引入松弛变量0≥i e ,将不等式约束i n in i i b x a x a x a ≤+++ 2211改写为i i n in i i b e x a x a x a =++++ 2211,m u i ,,1 +=. (2.5)(ii)去除自由变量去掉自由变量),,1(n q j x j +=有两种办法: ①用非负变量的差表示自由变量 设j j j x x x +-=-, (2.6)其中0≥+j x ,0≥-j x ,代入到目标函数和其它约束中便可去掉j x .②取一个包含j x 的等式约束(如果有的话),比如:11i ij j in n i a x a x a x b ++++= ,由此解出11i i in j n ij ij ijb a ax x x a a a =--- , (2.7) 代入到目标函数和其它约束函数中便可去掉j x .第一种方法将增加变量的数目,导致问题的维数增大.第二种方法正好相反.用(2.4)、(2.5)两式替换(2.3)式中相应的不等式约束,将(2.7)式代入目标函数和其它约束函数中,去掉目标函数与主约束中的所有自由变量,最后将),,1(0u p i s i +=≥、),,1(0m u i e i +=≥和),,1(0,0n q j x x j j +=≥≥-+加入(2.3)式的符号约束中,(2.3)式就此转化为标准形式的线性规划.,,1,0;,,1,0;,,1,0,0;,,1,0,,,1,,,,1,,,,1,..;min 11111111111111111111max)(m u i e u p i s n q j x x q j x m u i b e x x a x x a x a x a u p i b s x x a x x a x a x a p i b x x a x x a x a x a t s x x c x x c x c x c z i i j j j i i nn in q q iq q iq i i i n n in q q iq q iq i i n n in q q iq q iq i n n n q q q q q +=≥+=≥+=≥≥=≥+=≤+-++-++++=≥--++-+++==-++-+++-++-+++=-+++++++++++++++++++++++++++++)()()()()()()()(或,一般形式与其标准形式问题的求解等价,因为这两个问题的可行解一一对应,目标函数值对应相等.所以如果这两个问题之一有最优解,那么另一个也必有最优解,且最优值相等. 2. 线性规划的特点(1)线性规划的可行域是凸集:凸多边形、凸多面体或空集.凸集非凸集凸多边形凸多面体(2)目标函数的等值面(或等值线)是平行的(超)平面(或直线).(3)如果线性规划有最优解,那么可行域的某个顶点必是最优解.(4)求解线性规划将出现下列4种情况之一.情况1:有唯一(最优)解.情况2:有无穷多(最优)解.情况3:解无界.情况4:无解.有唯一解有无穷多解有无界解无解3. 线性规划的解法线性规划的解法有Dantzig单纯形法,大M法,对偶单纯形法,Karmarkar法,列生成法,目标规划,分解算法等.软件中多为Dantzig单纯形法.参考书目:薛嘉庆.线性规划.北京:高等教育出版社,1989刁在筠郑汉鼑等. 运筹学.北京:高等教育出版社,20014. 特殊的线性规划当所有决策变量都取整数时,称为整数规划(IP).当所有决策变量只取0或1时,称为0-1规划.当只有部分决策变量取整数时,称为混合整数规划(混合IP).解整数规划的方法主要有穷举法(对决策变量过多的问题不适用)、分枝定界法和割平面法.分枝定界法比较常用.解小规模0-1规划的常用方法——隐枚举法.分枝定界法也适用于求解混合整数规划.参考书目:刁在筠郑汉鼑等. 运筹学.北京:高等教育出版社,2001胡运权.运筹学基础及应用.北京:高等教育出版社,20045. 特殊的线性规划问题及其解法(1)运输问题运输问题用“运输”单纯形法求解.(2)转运问题转运问题可以化为运输问题,所以也用“运输”单纯形法求解.(3)指派问题指派问题是特殊的0-1规划,常用匈牙利法求解.线性规划的算法可在Matlab “优化”工具箱中寻找. 6. 线性规划建模实例在一个线性规划模型中,(1)决策变量应当完全描述要做出的决策.(2)决策者都希望由决策变量表示的目标函数最大化(通常为收入或利润)或最小化(通常为成本).目标函数中的系数反映的是决策变量对目标函数的单位贡献.(3)主约束条件中决策变量的系数称为“技术”系数,这是因为技术系数经常影响用于“生产”不同“产品”的技术.右端项常表示可用资源的数量.示例1 一家汽车公司生产轿车和卡车.每辆车都必须经过车身装配车间和喷漆车间处理. 车身装配车间如果只装配轿车,每天可装配50辆;如果只装配卡车,每天可装配50辆.喷漆车间如果只喷轿车,每天可喷60辆;如果只喷卡车,每天可喷40辆. 每辆轿车的利润是1600元,每辆卡车的利润是2400元.公司的生产计划部门须制定一天的产量计划以使公司的利润最大化.建模过程:公司追求的目标是其利润的最大化,生产计划部门为此要决定每一种车型的产量,所以定义两个决策变量:=1x 每天生产的轿车数量,=2x 每天生产的卡车数量. 公司每天的利润为2124001600x x +,因此该公司追求利润最大化即为2124001600max x x z +=.按题意,决策变量须满足以下3个条件(如果把每天的时间设为1,那么每天的工作时间应该小于等于1.)(1)1x 辆轿车和2x 辆卡车的时间应满足11121≤+x x . (2)所以处理1x 辆轿车和2x 辆卡车的时间应满足140160121≤+x x . (3)非负限制j x 为负整数,2,1=j .该汽车公司追求利润最大化的数学模型为如下线性规划.2,1,,1401601,1501501..24001600max 212121=≤+≤++=j x x x x x t s x x z j 为非负整数;示例2(饮食问题) 有一个美国人的饮食方案要求他吃的所有食物都来自四个“基本食物组”之一(巧克力蛋糕、冰淇淋、苏打水和干酪蛋糕).目前他可以消费的食物有下列4种:胡桃巧克力糖、巧克力冰淇淋、可口可乐和菠萝干酪蛋糕.一块胡桃巧克力糖的价格为50美分,一勺巧克力冰淇淋的价格为20美分,一瓶可口可乐的价格为30美分,一块菠萝干酪蛋糕的价格为80美分.他每天至少必须摄取500卡路里、6盎司巧克力、10盎司糖和8盎司脂肪.表1列出了每种食物每单位的营养含量.这个美国人想以最小成本满足自己每天的营养要求,那他应该怎样做.建模过程:这个美国人追求的目标是使饮食的费用最少.因此这个美国人必须做出决策:对于每种食物,每天应当吃多少.因此,需要定义下列决策变量:=1x 每天吃的胡桃巧克力糖的数量(单位:块),=2x 每天吃的巧克力冰淇淋的数量(单位:勺), =3x 每天喝的可口可乐的数量(单位:瓶), =4x 每天吃的菠萝干酪蛋糕的数量(单位:块).他追求的目标是使饮食的费用最少,因此目标函数为432180302050x x x x z +++=.决策变量必须满足以下4个条件:(1) 每天摄取的卡路里至少必须达到500卡路里.即5005001502004004321≥+++x x x x .(2)每天摄取的巧克力至少必须达到6盎司.即62321≥+x x .(3)每天摄取的糖至少必须达到10盎司.即1044224321≥+++x x x x .(4)每天摄取的脂肪至少必须达到8盎司.即85424321≥+++x x x x .以及非负限制4,3,2,1,0=≥j x j .该美国人饮食费用最少的数学模型为.4,3,2,1,0,8542,104422,623,500500150200400..80302050max 432143212143214321=≥≥+++≥+++≥+≥++++++=i x x x x x x x x x x x x x x x t s x x x x z i ;这个问题的最优解是90,1,3,03241=====z x x x x ,表示每天最少花90美分便可得到符合饮食要求的750卡路里、6盎司巧克力、10盎司糖和13盎司脂肪.列出更现实的食物和营养需求的饮食问题是计算机解决的最早的LP 之一.整数规划已用于计划每周或每月的公共饮食业菜单.菜单计划模型包含反映可口性和多样性要求的约束条件.示例3 某服务部门一周中每天需要不同数目的雇员:周一到周四每天至少需要50人,周五至少需要80人,周六和周日至少需要90人.规定应聘者需连续工作5天.试确定聘用方案:使在满足需要的条件下聘用的总人数最少.建模过程:该服务部门追求的目标是一周中聘用的总人数最少.该服务部门因此必须做出决策:每天聘用多少人.为此,定义以下决策决量:721,,,x x x 分别表示周一至周日聘用的人数. 因此目标函数为7654321x x x x x x x z ++++++=.决策变量必须满足以下7个条件:周一工作的雇员应是周四到周一聘用的,按照需要至少有50人,即5076541≥++++x x x x x . 类似地,有.90,90,80,50,50,50765436543254321743217632176521≥++++≥++++≥++++≥++++≥++++≥++++x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x人数应该是整数,所以决策变量须是非负的整数变量,即i x 为非负整数,7,,2,1 =i .该服务部门聘用总人数最少的数学模型是如下的整数规划模型:.7,,2,1,,90,90,80,50,50,50,50..min 765436543254321743217632176521765417654321 =≥++++≥++++≥++++≥++++≥++++≥++++≥++++++++++=i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x z i 为非负整数;示例4(工作调度问题) 在每周的不同工作日,一个邮局需要不同数量的专职员工.表1给出了每天需要的专职员工的数量.工会章程规定:每个专职员工每周必须连续工作五天,然后休息两天.这个邮局希望通过只使用专职员工来满足每天的需要,那么这个邮局至少要聘用多少专职员工.首先来看一个不正确的模型.有许多学生定义决策变量i 为第天上班员工的数量(第1天=星期一,第2天=星期二,依次类推),然后推出邮局专职员工的数量=(星期一上班员工的数量+星期二上班员工的数量+…+星期日上班员工的数量)/5,于是得到如下目标函数7654321x x x x x x x z ++++++=. 添加约束条件≥i x (第i 天需要的员工数量)和符号限制条件)7,,2,1(0 =≥i x i 后,得到如下不正确的线性规划模型:,11,16,14,19,15,13,17..;min 76543217654321≥≥≥≥≥≥≥++++++=x x x x x x x t s x x x x x x x zi x 为非负整数,7,,2,1 =i .这里目标函数是专职员工的数量的5倍,问题是约束条件不能反映员工连续工作五天然后休息两天的事实.建模过程:这个邮局追求的目标是聘用尽可能少的专职员工.正确表述这个问题的关键是,定义的决策变量不应该是每天有多少人上班,而是一周中每天有多少人开始上班.定义决策变量:i x =第i 天开始上班员工的数量. 例如,1x 是星期一开始上班员工的数量(这些人从星期一工作到星期五).那么邮局(专职员工的数量)=(星期一开始上班员工的数量)+(星期二开始上班员工的数量)+…+(星期日开始上班员工的数量).由于每个员工都只在一周的某一天开始上班,所以这个表达式不会重复计算员工.因此,追求聘用尽可能少的专职员工的目标函数为;7654321x x x x x x x z ++++++= 决策变量满足以下约束条件:在星期一上班员工的数量不少于17人:1776541≥++++x x x x x ;在星期二上班员工的数量不少于13人:1376521≥++++x x x x x ; 在星期三上班员工的数量不少于15人:1576321≥++++x x x x x ; 在星期四上班员工的数量不少于19人:1974321≥++++x x x x x ; 在星期五上班员工的数量不少于14人:1454321≥++++x x x x x ; 在星期六上班员工的数量不少于16人:1665432≥++++x x x x x ; 在星期日上班员工的数量不少于11人:1176543≥++++x x x x x . 及符号限制条件:i x 为非负整数,7,,2,1 =i .邮局追求聘用尽可能少的专职员工的调度方案数学模型为;min 7654321x x x x x x x z ++++++=,17 ..76541≥++++x x x x x t s,13 76521≥++++x x x x x 15 76321≥++++x x x x x , 19 74321≥++++x x x x x , 14 54321≥++++x x x x x , 16 65432≥++++x x x x x , 11 76543≥++++x x x x x ,i x 为非负整数,7,,2,1 =i .这个模型的一个最优解为3,4,0,6,2,4,47654321=======x x x x x x x ,最优值23=z .□该模型存在另外一个问题:只有在周一、周二开始上班的员工才能在周末休息,而在其它时间开始上班的员工永远不会有在公休日与家人团聚的机会.显然这不公平合理.从该模型的解出发,我们可以设计出如下公平合理的以23周为一个轮转周期的员工调度方案:·第1-4周:在星期一开始上班 ·第5-8周:在星期二开始上班 ·第9-10周:在星期三开始上班 ·第11-16周:在星期四开始上班 ·第17-20周:在星期六开始上班 ·第21-23周:在星期日开始上班员工1将遵守这个调度方案23周,员工2从第2周开始遵守这个调度方案23周(在星期一开始上班的时间为3周,在星期二开始上班的时间为4周,…,在星期日开始上班的时间为3周,在星期一开始上班的时间为1周).以这样的方式继续下去,就可以为每个员工制定一个23周调度方案.例如,员工13的调度方案如下:·第1-4周:在星期四开始上班 ·第5-8周:在星期六开始上班 ·第9-11周:在星期日开始上班 ·第12-15周:在星期一开始上班 ·第16-19周:在星期二开始上班 ·第20-21周:在星期三开始上班 ·第22-23周:在星期四开始上班 本示例提醒我们,所建立的模型一定要考虑合理性,符合实际.而本示例更符合实际的考虑是员工还有年休假.在邮局这个示例中,如果邮局可以同时使用专职员工和兼职员工来满足每天的需要,且在每一周,专职员工必须连续工作5天,每天工作8小时;兼职员工必须连续工作5天,每天工作4小时. 专职员工的工资是每小时15美元,而兼职员工的工资只有每小时10美元(没有附加福利).工会把每周的兼职劳动限制在25%,表述一个LP ,使这个邮局每周的劳动力成本最少.比示例5的单阶段工作调度模型更复杂的是多阶段工作调度模型. 类似的还有多阶段库存模型、多阶段财务管理(投资)模型等.示例5(指派问题) 某班准备从5名游泳队员中选4人,组队参加学校的1004⨯m 混合泳接力比赛.5名队员4种泳姿的百米平均成绩如表1所示,问应该怎样选拔接力队成员?建模过程:该班追求的目标是接力队的成绩最好.该班因此要做出决策:从5名队员中选出4人,每人一种泳姿,且4人的泳姿各不相同(容易想到的一个办法是穷举法,组成接力队的方案共有5!=120种.).设5,4,3,2,1=i 分别代表甲、乙、丙、丁和戊队员,4,3,2,1=j 分别代表蝶泳、仰泳、蛙泳和自由泳泳姿,ij c 表示队员i 的第j 种泳姿的百米平均成绩.定义决策决量ij x :若选择队员i 参加泳姿j 的比赛(4,3,2,1,5,4,3,2,1==j i ),则1=ij x ,否则0=ij x .该班追求的目标是接力队的成绩最好(只要对每一方案的成绩作比较,即可找出最优方案,但显然这不是解决问题的好办法.随着问题规模的变大,穷举法的计算量将是无法接受的).当队员i 入选泳姿j 时,ij ij x c 表示他的成绩,否则0=ij ij x c ,因此目标函数为∑∑===4151j i ij ij x c z .决策变量必须满足以下3个条件:(1) 每人最多只能入选4种泳姿之一,即141≤∑=j ijx,5,4,3,2,1=i .(2)每种泳姿必须有1人而且只能有1人入选,即151=∑=i ijx,4,3,2,1=j .(3)取值受限0=ij x 或1,4,3,2,1,5,4,3,2,1==j i .该班追求接力队成绩最好的数学模型为0-1规划:.4,3,2,1,5,4,3,2,1,10,4,3,2,1,1,5,4,3,2,1,1..;min 51414151======≤=∑∑∑∑====j i or x j xi xt s x c z ij i ijj ijj i ij ij三、非线性规划(NLP)非线性规划广泛存在于科学与工程领域. 1.非线性规划模型目标函数、约束函数中至少有一个非线性函数的最优化模型既是所谓的非线性规划模型..,,1,0)(,,,1,0)(..);(min max)(m p i x g p i x g t s x f z i i+=≥===或 其中函数),,1(),,,1(,m p i g p i g f i i +==中至少有一个为非线性函数.非线性规划有无约束问题与有约束问题之分. 2.非线性规划的特点非线性规划的可行域及最优解的情况远比线性规划的可行域及最优解复杂的多:可能有最优解,也可能没有最优解;约束问题的最优解可能在可行域的内部,也可能在可行域的边界上.一些常用概念:等值面(线)——函数值相等的决策变量曲面(曲线)C x f =)(.上升/下降方向——至少在局部范围内,函数值升的方向/函数值降的方向),0(),()(/),0(),()(δδ∈>+∈>+t x f p t x f t x f p t x f.梯度——多元函数的“一阶导数”,由函数的偏导数组成的向量()()()()12,,,∂∂∂⎛⎫∇= ⎪∂∂∂⎝⎭ Tn f x f x f x f x x x x .当梯度()f x ∇ 连续时,若()0f x ∇≠ ,则()f x ∇ 必垂直于()f x过点x 的等值面;梯度()f x ∇ 的方向是函数()f x在点x 具有最大变化率的方向.方向导数——函数在某方向上的变化率(下式中e 是p方向上的单位向量)tx f e t x f p x f t )()(lim )(0 -+=∂∂+→. e x f px f T )()(∇=∂∂. 若0)(>∂∂p x f,即()00T f x p ∇> ,则p 方向是()f x在点0x 处的上升方向;若0)(<∂∂px f,即()00T f x p ∇< ,则p 方向是()f x 在点0x 处的下降方向.海赛矩阵——多元函数的“二阶导数”,由函数的二阶偏导数组成的矩阵()22⎛⎫∂∇=⎪ ⎪∂∂⎝⎭ i jnff x x x . 空间中由点0x 和方向p所确定的直线方程为10,x x tp t R =+∈.图2 直线的几何图示3.非线性规划的解法(1)非线性规划基本解法基本解法的迭代格式一般为1k k k k x x t p +=+, k = 0,1,….称0x 为初始点,k p 为k x 处的搜索方向,k t 为步长因子,满足()()k k k k f x t p f x +<,且+k k k x t p 仍在可行域内.判断1k x + 是否为最优解.若是,则输出1k x + 和1()k f x +;否则,继续迭代.由基本解法解出的一般是局部最优解.k t 的确定方法——直线搜索(一维优化问题的数值迭代方法)()()k k t f x tp ϕ=+,min ()t ϕ.直线搜索方法有“精确的”对分法、黄金分割法、抛物线插值法……和不精确的直线搜索技术.k p的确定方法——各种优化方法求解无约束问题的基本方法按确定k p方法的不同,有使用导数的最速下降法、Newton 法、阻尼-Newton 法、共轭梯度法、逆Newton 法(DFP 法、BFGS 法)等,有不使用导数的单纯形替换法、步长加速法、Power 法等,以及最小二乘法.最速下降法——1()k k k k x x t f x +=-∇, k = 0,1,…. 特点:简单,存储量小,锯齿现象.线性收敛.Newton 法:211()()k k k k x x f x f x -+=-∇∇, k = 0,1,…. 特点:对目标函数的要求高,计算量、存储量大.二阶收敛.阻尼-Newton 法:211()()k k k k k x x t f x f x -+=-∇∇, k = 0,1,…. 特点:比Newton 法相对有效的方法,计算量、存储量大.F-R 共轭梯度法:1k k k k x x t p +=+, k = 0,1,…,其中211121()(),()k k k k k k k f x p f x p f x αα----∇=-∇+=∇. 特点:存储量小.是二次收敛算法.超线性收敛.DFP 法:1k k k k x x t p +=+, k = 0,1,…, 其中()k k k p H f x =-∇.特点:是二次收敛算法.是拟Newton 法.超线性收敛.∶ ∶ ∶单纯形替换法、步长加速法、Power 法等适用于目标函数的导数不存在或导数过于复杂的情形.最小二乘法是求解最小二乘问题的特定解法. 求解约束问题的基本方法有Z-容许方向法、梯度投影法、外点法(外部罚函数法)、内点法(内部罚函数法)、乘子法、线性化法、简约梯度法等.Z-容许方向法:利用线性规划得到搜索方向k p,然后再通过受限的直线搜索确定步长因子k t .梯度投影法:利用对梯度投影的方式得到搜索方向k p,然后再通过受限的直线搜索确定步长因子k t .外点法、内点法、乘子法:通过求解一系列的无约束问题解约束问题.而这一系列无约束问题的目标函数则是根据目标函数及约束函数,通过“惩罚”方式产生.∶ ∶ ∶ (2)非线性规划智能算法遗传算法、蚁群算法、粒子群算法、禁忌搜索算法…….参考书目:薛嘉庆.最优化方法.北京:冶金工业出版社邢文训,谢金星.现代优化计算方法.北京:清华大学出版社,1999《现代应用数学手册》编委会.现代应用数学手册—运筹学与最优化理论卷.北京:清华大学出版社,1998 4. 特殊的非线性规划问题及其解法 (1)二次规划(QPP)1min ()2..T T f x x Qx b x cs t Ax p Cx d =++≥=Wolfe 法.参考书目:赵凤治.约束最优化方法.北京:科学出版社,1991 (2)数据拟合问题(最小二乘问题) 最小二乘法 5. 非线性规划建模实例示例1 某公司有6个建筑工地要开工,每个工地的位置(用平面坐标),(b a 表示,距离单位:km)及水泥日用量d (单位:t (吨))由表1给出.目前有两个临时料场位于)1,5(A 和)7,2(B ,日储量各有20t .请回答以下两个问题:(1)假设从料场到工地之间均有直线道路相连,试制定每天从A 、B 两料场分别向各工地运送水泥的供应计划,使总的吨公里数最小.(2)为进一步减少吨公里数,打算舍弃目前的两个临时料场,修建两个新料场,日储量仍各为20t ,问建在何处最佳,可以节省多少吨公里数.表1 工地的位置),(b a 及水泥日用量d 的数据建模过程:公司追求的目标是每天从A 、B 两料场分别向各工地运送水泥总的吨公里数最小.为表述该问题,设工地的位置与水泥日用量分别为),(i i b a 和i d (6,,2,1 =i ),料场位置及其日储量分别为),(j j y x 和j e (2,1=j ).定义决策变量ij w (6,,2,1 =i ,2,1=j ):料场j 向工地i 的运送量(6,,2,1 =i ,2,1=j ),在问题(2)中,新建料场位置),(j j y x 也是决策变量.公司追求总的吨公里数最小的目标函数为∑∑==-+-=216122)()(j i i j i j ij b y a x w f .决策变量ij w (6,,2,1 =i ,2,1=j )必须满足以下约束条件:(i)满足各工地的水泥日用量6,,2,1,21==∑=i d wi j ij.(ii)各料场的运送量不能超过日储量2,1,61=≤∑=j e wj i ij.(iii)符号限制条件0≥ij w , 6,,2,1 =i ,2,1=j .(1)公司追求总的吨公里数最小的数学模型是如下线性规划模型∑∑==-+-+-+-=6122261221)7()2()1()5(min i i i i i i i i b a w b a w f ;6,,2,1,..21 ==∑=i d wt s i j ij,2,1,61=≤∑=j e wj i ij,0≥ij w , 6,,2,1 =i ,2,1=j .总的吨公里数为136.2275.(2)这时公司追求总的吨公里数最小的数学模型是如下有约束的非线性规划模型∑∑==-+-=216122)()(min j i i j i j ij b y a x c f ;6,,2,1,..21==∑=i d wt s i j ij,2,1,61=≤∑=j e wj i ij,0≥ij w , 6,,2,1 =i ,2,1=j .以(1)的解及临时料场的坐标为初始迭代值,利用Matlab 优化工具箱求得这个模型的一个数值解,两个新料场的位置为)3943.4,3875.6(A 和)1867.7,7511.5(B 和它们向6个工地运送总的吨公里数为105.4626,比用临时料场节省约31吨公里.若初始迭代值取为上面的计算结果,那么得到的数值解为)9194.4,5369.5(A 和)2852.7,8291.5(B 和它们向6个工地运送水泥的计划为总的吨公里数为103.4760,又节省约2吨公里.若初始迭代值取为上面的计算结果,却计算不出解.若初始迭代值取为ij w (6,,2,1 =i ,2,1=j )=[3,5,4,7,1,0,0,0,0,0,],),(j j y x (2,1=j )=[5.6348,4.8687;7.2479,7.7499],那么得到的数值解为6.5(A 和和它们向6个工地运送水泥的计划为总的吨公里数为89.8835,又节省约13.5吨公里.通过此例可以看出初始迭代值的选取对非线性规划方法的重要性.总结:以建线性规划模型为第一选择,单纯形法能求到全局最优解.非线性规划模型往往求不到全局最优解,而且数值解受初始迭代值的影响很大.6. 建模说明对于大规模实际问题,清晰地表述问题,以正确的方式和方法采集(或收集)数据,准确地分析数据是非常重要的.应该多角度建立既合理又尽可能简单的数学模型.这需要建模者有较高的数学素养,要有灵性、有想象力、判断力、洞察力.选择最适合模型的最优化解法,这要求建模者有较多的数学知识储备.掌握检验、评价模型的基本原理与方法.灵敏度分析常被用在检验与评价模型中. 如果模型的解明显不正确或与实际情况吻合的不好,建模者应该具有发现问题所在的能力:是第1步的问题、第2步的问题,还是第3步的问题.小建议:想要参加建模竞赛的同学最好了解目标规划,目标规划处理问题的思想很值得学习.。

线性与非线性

线性与非线性

线性规划与非线性规划线性linear,指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。

如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是6-10倍!这就是非线性。

激光也是非线性的!天体运动存在混沌;电、光与声波的振荡,会突陷混沌;地磁场在400万年间,方向突变16次,也是由于混沌。

甚至人类自己,原来都是非线性的:与传统的想法相反,健康人的脑电图和心脏跳动并不是规则的,而是混沌的,混沌正是生命力的表现,混沌系统对外界的刺激反应,比非混沌系统快。

非线性规划nonlinear programming具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

简史非线性规划是20世纪50年代才开始形成的一门新兴学科。

1951年H.W.库恩和A.W.塔克发表的关于最优性条件(后来称为库恩-塔克条件)的论文是非线性规划正式诞生的一个重要标志。

在50年代还得出了可分离规划和二次规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规划的单纯形法为基础的。

50年代末到60年代末出现了许多解非线性规划问题的有效的算法,70年代又得到进一步的发展。

非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。

实例下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。

例1 (投资决策问题)某企业有n个项目可供选择投资,并且至少要对其中一个项目投资。

已知该企业拥有总资金A元,投资于第i个项目需花资金ai元,并预计可收益bi元。

试选择最佳投资方案。

解设投资决策变量为则投资总额为∑aixi,投资总收益为∑bixi。

第三讲 线性规划与非线性规划

第三讲 线性规划与非线性规划
1 2
1
2 x 2
6 x 2
s.t.
1 1 0 0
1 x1 2 x 2 x1 x 2
2 2
2、 输入命令:
H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
1.先建立M-文件fun.m定义目标函数: function f=fun(x); f=-2*x(1)-x(2);
2.再建立M文件mycon2.m定义非线性约束: function [g,ceq]=mycon2(x) g=[x(1)^2+x(2)^2-25;x(1)^2-x(2)^2-7];
3. 主程序fxx.m为: x0=[3;2.5]; VLB=[0 0];VUB=[5 10]; [x,fval,exitflag,output] =fmincon('fun',x0,[],[],[],[],VLB,VUB,'mycon2')
例 2
min z 6 x1 3 x 2 4 x 3 s .t . x 1 x 2 x 3 120 x1 30 0 x 2 50 x 3 20
min z ( 6
3
x1 4) x 2 x3

s .t .
(0
1
x1 0) x2 50 x 3 x1 1) x 2 120 x 3

1 2
2 x2
s.t.

数学模型之数学规划模型

数学模型之数学规划模型

多目标规划模型的应用案例
资源分配问题
投资组合优化
在有限的资源条件下,如何分配资源 以达到多个目标的优化,如成本、质 量、时间等。
在风险和收益的权衡下,如何选择投 资组合以达到多个目标的优化,如回 报率、风险分散等。
生产计划问题
在满足市场需求和生产能力限制的条件 下,如何制定生产计划以达到多个目标 的优化,如利润、成本、交货期等。
整数规划模型的应用案例
总结词
整数规划模型在生产计划、资源分配、物流优化等领域有广泛应用。
详细描述
在生产计划领域,整数规划模型可以用于安排生产计划、优化资源配置和提高生产效率。在资源分配 领域,整数规划模型可以用于解决资源分配问题,例如人员分配、物资调度等。在物流优化领域,整 数规划模型可以用于车辆路径规划、货物配载等问题,提高物流效率和降低运输成本。
数学规划模型可以分为线性规划、非线性规划、整数规划、动态 规划等类型,根据问题的特性选择合适的数学规划模型进行建模 。
数学规划模型的应用领域
01
02
03
04
生产计划
数学规划模型可以用于制定生 产计划,优化资源配置,提高 生产效率。
物流运输
通过建立数学规划模型,可以 优化物流运输路线和运输方式 ,降低运输成本。
80%
金融投资组合优化
通过建立线性规划模型,可以优 化投资组合,实现风险和收益的 平衡。
03
非线性规划模型
非线性规划模型的定义
非线性规划模型是一种数学优化模型 ,用于解决目标函数和约束条件均为 非线性函数的问题。
它通过寻找一组变量的最优解,使得 目标函数达到最小或最大值,同时满 足一系列约束条件。
• 整数规划与混合整数规划的拓展:整数规划模型解决了离散变量的优化问题,混合整数规划则进一步扩展了整数规划的适 用范围。

线性规划及非线性规划

线性规划及非线性规划
分析 首先对长度为7.4米的钢管要确定合适的切割方 案, 并使得每次切割后丢弃的原料尽可能少. 为此建立 所以可能的切割方案:
43
编号
2.9
2.1
1.5
余料
1
2
0
1
0.1
2
1
2
0
0.3
3
1
1
1
0.9
4
1
0
3
0
5
0
3
0
1.1
6
0
2
2
0.2
7
0
1
3
0.8
8
0
0
4
1.4
44
i 以 x i 表示在第 种方案下所使用的原料数, 则一个合适
此时
c
8 10
,
2
A
1
1
2
,
b
11
1
0
.
25
输入语句
结果为
不能省略!!
即原问题的最优解为
x
4 3
,
f
62.
26
例 求解线性规划
m ax f 2 x1 3 x2 5 x3
s
.t
.
2x1Leabharlann x1x2 5xx3 2x
3
7 1
0
xi 0, i 1, 2, 3
同时注意到由于变量代表产品的产量因而总衡量计划的好坏则是以该计划能产生相应的利润来表综上分析得到该问题的数学关系式max4557问题二投资决策问题某部门要制定一个五年期的投资计划
第六章 线性规划及非线性规划
1
本章要点 本章介绍数学模型中的重要分支——线性规划与非线 性规划模型, 并介绍在MatLab及Lingo下相应的解法. 一、线性规划 二、二次规划 三、非线性规划

非线性规划

非线性规划

1.非线性规划我们讨论过线性规划,其目标函数和约束条件都是自变量的线性函数。

如果目标函数是非线性函数或至少有一个约束条件是非线性等式(不等式),则这一类数学规划就称为非线性规划。

在科学管理和其他领域中,很多实际问题可以归结为线性规划,但还有另一些问题属于非线性规划。

由于非线性规划含有深刻的背景和丰富的内容,已发展为运筹学的重要分支,并且在最优设计,管理科学,风险管理,系统控制,求解均衡模型,以及数据拟合等领域得到越来越广泛的应用。

非线性规划的研究始于三十年代末,是由W.卡鲁什首次进行的,40年代后期进入系统研究,1951年•库恩和.塔克提出带约束条件非线性规划最优化的判别条件,从而奠定了非线性规划的理论基础,后来在理论研究和实用算法方面都有很大的发展。

非线性规划求解方法可分为无约束问题和带约束问题来讨论,前者实际上就是多元函数的极值问题,是后一问题的基础。

无约束问题的求解方法有最陡下降法、共轭梯度法、变尺度法和鲍威尔直接法等。

关于带约束非线性规划的情况比较复杂,因为在迭代过程中除了要使目标函数下降外,还要考虑近似解的可行性。

总的原则是设法将约束问题化为无约束问题;把非线性问题化为线性问题从而使复杂问题简单化。

求解方法有可行方向法、约束集法、制约函数法、简约梯度法、约束变尺度法、二次规划法等。

虽然这些方法都有较好的效果,但是尚未找到可以用于解决所有非线性规划的统一算法。

非线性规划举例[库存管理问题]考虑首都名酒专卖商店关于啤酒库存的年管理策略。

假设该商店啤酒的年销售量为A箱,每箱啤酒的平均库存成本为H元,每次订货成本都为F元。

如果补货方式是可以在瞬间完成的,那么为了降低年库存管理费用,商店必须决定每年需要定多少次货以及每次订货量。

A A我们以Q表示每次定货数量,那么年定货次数可以为 -,年订货成本为F -。

由于平Q Q均库存量为Q,所以,年持有成本为2H Q ,2,年库存成本可以表示为A HC(Q)F QQ2将它表示为数学规划问题:A Hmin C(Q) F QQ 2s.t. Q 0其中Q为决策变量,因为目标函数是非线性的,约束条件是非负约束,所以这是带约束条件的非线性规划问题。

线性规划和非线性规划的区别有哪些不同

线性规划和非线性规划的区别有哪些不同

线性规划和⾮线性规划的区别有哪些不同
线性规划是⽤直线解决问题,⽽⾮线性规划是曲线甚⾄更复杂的图像解决问题。

线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。

⾮线性规划具有⾮线性约束条件或⽬标函数的数学规划,是运筹学的⼀个重要分⽀。

线性规划的三要素
线性规划问题的形式特征,三个要素组成:
1、变量或决策变量;
2、⽬标函数;
3、约束条件。

求解线性规划问题的基本⽅法是单纯形法,已有单纯形法的标准软件,可在电⼦计算机上求解约束条件和决策变量数达10000个以上的线性规划问题。

线性规划的特点
线性规划建⽴的数学模型具有以下特点:
1、每个模型都有若⼲个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。

决策变量的⼀组值表⽰⼀种⽅案,同时决策变量⼀般是⾮负的。

2、⽬标函数是决策变量的线性函数,根据具体问题可以是最⼤化(max)或最⼩化(min),⼆者统称为最优化(opt)。

3、约束条件也是决策变量的线性函数。

当我们得到的数学模型的⽬标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意:
fmincon函数可能会给出局部最优解,这与初值X0的选取有关。
例2
min f x1 2 x 2
1 2
2 x1

1 2
2 x2
2x1+3x2 6 s.t x1+4x2 5 x1,x2 0
1、写成标准形式:
min f x1 2 x 2
1 2
2 x1

谢!
标准型为: M i n Z = 1 X TH X + c TX
2
s.t. AX<=b
Aeq X beq
V LB≤ X ≤ V UB
用MATLAB软件求解,其输入格式如下: 1. 2. 3. 4. 5. 6. 7. 8. x=quadprog(H,C,A,b); x=quadprog(H,C,A,b,Aeq,beq); x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB); x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0); x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options); [x,fval]=quaprog(...); [x,fval,exitflag]=quaprog(...); [x,fval,exitflag,output]=quaprog(...);
3、再建立主程序youh2.m: x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 4、运算结果为: x = 0.7647 1.0588 fval = -2.0294
2.再建立M文件mycon.m定义非线性约束:
function [g,ceq]=mycon(x) g=[x(1)+x(2);1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10];
3.主程序youh3.m为: x0=[-1;1]; A=[];b=[]; Aeq=[1 1];beq=[0]; vlb=[];vub=[]; [x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')
2. 若 约 束 条 件 中 有 非 线 性 约 束 :G(X) 0 或 Ceq(X)=0, 则 建 立 M文 件 nonlcon.m定 义 函 数 G(X)与 Ceq(X): function [G,Ceq]=nonlcon(X) G=... Ceq=...
3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格 式如下: (1) x=fmincon(‘fun’,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB)
例 2
min z 6 x1 3 x 2 4 x 3 s .t . x 1 x 2 x 3 120 x1 30 0 x 2 50 x 3 20
min z ( 6
3
x1 4) x 2 x3

s .t .
(0
1
x1 0) x2 50 x 3 x1 1) x 2 120 x 3
(1
1
解: 编写M文件xxgh2.m如下: c=[6 3 4]; A=[0 1 0]; b=[50]; Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
x1 30 0 x 2 20 x3
第三讲 线性规划与非线性规划
一、线性规划
1.线性规划的标准形式:
min z = f ( x )
x
s.t . g i ( x ) 0 ( i 1, 2 , , m )
其 中 目 标 函 数 f ( x) 和 约 束 条 件 中g i ( x) 都 是 线 性 函 数
2. 线性规划的基本算法——单纯形法
min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t. x1+x2≤2 -x1+2x2≤2 x1≥0, x2≥0 T 1 - 1 x1 2 x1 1、写成标准形式:min z ( x , x )
例1
1.先建立M-文件fun.m定义目标函数: function f=fun(x); f=-2*x(1)-x(2);
2.再建立M文件mycon2.m定义非线性约束: function [g,ceq]=mycon2(x) g=[x(1)^2+x(2)^2-25;x(1)^2-x(2)^2-7];
3. 主程序fxx.m为: x0=[3;2.5]; VLB=[0 0];VUB=[5 10]; [x,fval,exitflag,output] =fmincon('fun',x0,[],[],[],[],VLB,VUB,'mycon2')
f : E
n
(1) En 上的实值函
1
E ,
1
gi : E
n
E ,
1
hj : E
n
E
其它情况: 求目标函数的最大值或约束条件为小于等于零 的情况,都可通过取其相反数化为上述一般形式.
非线性规划的基本解法
SUTM外点法
1、罚函数法 SUTM内点法(障碍罚函数法)
2、近似规划法
1、二次规划
用MATLAB优化工具箱解线性规划
1、模型: min z=cX
s.t . AX b
命令:x=linprog(c,A,b)
2、模型:min z=cX
s.t . AX b Aeq X beq
命令:x=linprog(c,A,b,Aeq,beq)
AX 注意:若没有不等式: b 存在,则令A=[ ],b=[ ].
3、运算结果为: x =0.6667 1.3333
zห้องสมุดไป่ตู้= -8.2222
标准型为: min F(X) s.t AX<=b Ceq(X)=0
2、一般非线性规划
G ( X ) 0 Aeq X beq X VLB VUB
其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成 的向量,其它变量的含义与线性规划、二次规划中相同.用 Matlab求解上述问题,基本步骤分三步: 1. 首先建立M文件fun.m,定义目标函数F(X): function f=fun(X); f=F(X);
1 2
1
2 x 2
6 x 2
s.t.
1 1 0 0
1 x1 2 x 2 x1 x 2
2 2
2、 输入命令:
H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
4. 运算结果为: x= 4.0000 3.0000 fval =-11.0000 exitflag = 1 output = iterations: 4 funcCount: 17 stepsize: 1 algorithm: [1x44 char] firstorderopt: [] cgiterations: []
3、模型:min z=cX
s.t . AX b
Aeq X beq
VLB≤X≤VUB 命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB) [2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:[1] 若没有等式约束: Aeq X beq , 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
输出极值点
M文件
迭代的初值
变量上下限
参数说明
(6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8)[x,fval,exitflag,output]= fmincon(...)

二、非线性规划
非现性规划的基本概念 定义 如果目标函数或约束条件中至少有一个是非线性函数 时的最优化问题就叫做非线性规划问题.
一般形式:
min f X
其中 数,简记:
i 1,2,..., m; gi X 0 s .t . j 1, 2 ,..., l . h j X 0 T n X x1 , x 2 , , x n E ,f , g i , h j 是定义在

1 2
2 x2
s.t.
2 x1 3 x 2 6 0 x1 4 x 2 5 0 0 x1 0 x2
2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2
相关文档
最新文档