四川省绵阳南山中学2020届高三“绵阳三诊”模拟考试理综答题卡

合集下载

四川省绵阳市2020年高三第三次诊断性考试理科综合试题及答案 word版

四川省绵阳市2020年高三第三次诊断性考试理科综合试题及答案 word版

秘密★启用前【考试时间: 2020年4月22日9:00-11:30】绵阳市高中2020届高三第三次诊断性考试理科综合能力测试一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列有关细胞结构与功能的叙述,错误的是A.细胞核位于细胞的正中央,所以它是细胞的控制中心B.多种酶附着在生物膜系统上,有利于化学反应的进行C.甲状腺滤泡上皮细胞可从含碘低的血浆中主动摄取碘D.磷脂分子以疏水性尾部相对的方式构成磷脂双分子层2.今年春季新冠肺炎蔓延全世界,全球掀起了抗击新冠肺炎的浪潮,经研究,该病是一种新型冠状病毒引起。

下列关于人体对该病毒免疫的说法,错误的是A.对侵入机体的病毒,机体既会发生体液免疫又会发生细胞免疫B.该病毒侵入肺泡细胞,首先要突破人体的第—道和第二道防线C.保持健康、乐观、积极的心态有利于人体对新冠状病毒的免疫D.医院采集康复患者捐献的血浆,原因是血浆中有大量记忆细胞3.真核细胞增殖的主要方式是有丝分裂,而减数分裂是一种特殊的有丝分裂,其特殊性主要表现在A.核DNA数目加倍的方式B.同源染色体的行为方式C.染色质变成染色体的方式 D.姐妹染色单体分开的方式4.下列实验必须通过观察活细胞才能达到目的的是A.观察DNA和RNA在细胞中的分布.B.观察洋葱根尖分生区细胞的有丝分裂C.观察成熟植物细胞的吸水和失水状况D.验证细胞中的过氧化氢酶的催化作用5.为推进生态文明建设,某镇对不宜耕作的农田和土地实行退耕还草还林,并对其演替进行适当人工干预。

下列相关叙述错误的是A.可用样方法调查退耕农田的种群密度和群落丰富度B.演替过程中前一个群落改变了环境但竞争力将减弱C.演替过程中群落丰富度增加是因为有新物种的迁入D.缺失了人工干预的农田总能演替成结构复杂的树林6.明确了mRNA的遗传密码中三个碱基决定一个氨基酸以后,科学家又设计实验进一步探究遗传密码的对应规则:在每个试管中分别加入一种氨基酸,再加入除去了DNA和mRNA的细胞裂解液以及多聚尿嘧啶核苷酸,观察试管中能否出现多肽链。

绵阳市高中2020级第三次诊断性考试理科综合能力测试政治参考答案及评分标准

绵阳市高中2020级第三次诊断性考试理科综合能力测试政治参考答案及评分标准

绵阳市高中2020级第三次诊断性考试
文科综合(政治)参考答案及评分标准
一、选择题(每小题4分,共48分)
12.A 13.C 14.B 15.C 16.D 17.A 18.B 19.B 20.A 21.C
22.C 23.D
二、问答题
38. (14分)
(1)2022年1—11月,我国中小企业综合经营指数与消费者信心指数总体
呈下降趋势,投资和消费需求有所收缩,经济下行压力加大;(2分)2022年12
月以来,我国经济企稳回升,态势良好。

(2分)
(2)深化供给侧改革,优化供给结构,提升供需匹配性;(3分)理顺分配
关系,缩小收入差距,提升消费能力;(3分)构建现代化流通体系,提高商品要
素流通效率,畅通经济循环;(2分)完善消费政策,优化消费环境,健全消费体
制机制。

(2分)
39.(12分)
积极应对风险和挑战,推动科技自立自强;(3分)贯彻落实党对科技工作的
集中统一领导,发挥总揽全局、协调各方的作用;(3分)理顺和优化科技管理职能,构建系统完备、科学规范、运行高效的党和国家机构职能体系;(3分)聚合
科技创新力量,健全新型举国体制,推进国家科技治理体系和治理能力现代化。

(3分)。

2020年四川省绵阳市南山中学高考(理科)数学三诊试卷 含解析

2020年四川省绵阳市南山中学高考(理科)数学三诊试卷 含解析

2020届绵阳南山中学高考(理科)数学三诊模拟试卷一、选择题(共12小题)1.若焦合A={x|x(x﹣2)>0},B={x|x﹣1>0},则A∩B=()A.{x|x>1或x<0} B.{x|1<x<2} C.{x|x>2} D.{x|x>1}2.若复数z满足,复数z的共轭复数是,则z+=()A.1 B.0 C.﹣1 D.3.在△ABC中∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b=4,∠C=120°,则c=()A.37 B.13 C.D.4.直线与圆x2+y2=1的位置关系是()A.相交B.相切C.相离D.相交或相切5.如图在平行四边形ABCD中,对角线AC与BD交于点O,且=2,则=()A.B.C.D.6.若a∈[1,6],则函数在区间[2,+∞)内单调递增的概率是()A.B.C.D.7.函数f(x)=的图象大致为()A.B.C.D.8.一个四面体所有棱长都为4,四个顶点在同一球面上,则球的表面积为()A.24πB.C.D.12π9.(x﹣+1)5展开式中的常数项为()A.1 B.11 C.﹣19 D.5110.△ABC中,如果lg cos A=lg sin C﹣lg sin B=﹣lg2,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形11.如图所示,点A、B、C是圆O上的三点,线段OC与线段AB交于圆内一点M,若=m+n,(m>0,n>0),m+n=2,则∠AOB的最小值为()A.B.C.D.12.直线y=kx+1与抛物线C:x2=4y交于A,B两点,直线l∥AB,且l与C相切,切点为P,记△PAB 的面积为S,则S﹣|AB|的最小值为()A.B.C.D.二、填空题:共4小题,每小题5分,共20分13.已知,则f(1)+f(2)+…+f(2020)=.14.已知x,y满足且目标函数z=2x+y的最大值为7,最小值为1,则=.15.若f(x)=﹣5k+7在(0,2)上单调递减,则k的取值范围是.16.若函数f(x)=2|x﹣2a|﹣4|x+a|在区间(﹣2,+∞)上有且仅有一个零点,则实数a的取值范围是三、解答题:共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在数列{a n}中,a1=1,a1+2a2+3a3+…+na n=.(1)求数列{a n}的通项a n;(2)若存在n∈N*,使得a n≤(n+1)λ成立,求实数λ的最小值.18.为创建文明城市,我市从2017年开始建立红黑榜,激励先进,鞭策后进,全力推进文明城市创建工作.为了更好地促进该项工作,我市“文明办”对全市市民抽样,进行了一次创建文明城市相关知识的问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如表所示.组别[30,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)频数25 150 200 250 225 100 50(1)根据频数分布表可以大致认为,此次问卷调查的得分Z服从正态分布N(μ,210)μ近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求P(36<Z≤79.50);(2)在(1)的条件下,市“文明办”决定按如下的方案对参与调查的市民进行奖励:(ⅰ)得分不低于μ的可以获得2次抽奖机会,得分低于μ的可以获得1次抽奖机会;(ⅱ)每次抽奖所获奖券和对应的概率为:中奖的奖券面值(单元:元)20 40概率0.8 0.2现有市民甲要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查所获得的所有奖券面值和,求X的分布列与数学期望.附:参考数据与公式≈14.5,若X~N(μ,σ2),则①P(μ﹣σ<X≤μ≤σ)=0.6827;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9973.19.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.(I)求证:AB1⊥CC1;(II)若,求平面A1B1C1和平面ACB1所成锐二面角的余弦值.20.已知f(x)=e x﹣mx.(Ⅰ)若曲线y=lnx在点(e2,2)处的切线也与曲线y=f(x)相切,求实数m的值;(Ⅱ)试讨论函数f(x)零点的个数.21.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点P(1,)在椭圆C上,满足=.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l1过点P,且与椭圆只有一个公共点,直线l2与l1的倾斜角互补,且与椭圆交于异于点P的两点M,N,与直线x=1交于点K(K介于M,N两点之间).(i)求证:|PM|•|KN|=|PN|•|KM|;(ii)是否存在直线l2,使得直线l1、l2、PM、PN 的斜率按某种顺序能构成等比数列?若能,求出l2的方程;若不能,请说明理由.请考生在[22]、[23]题中任选一题作答.如果多做,则按所做的第一题计分,[选修4-4:坐标系与参数方22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数).以平面直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线C2的极坐标方程为ρsinθ=.(1)求曲线C1的极坐标方程;(2)设C1和C2交点的交点为A,B,求△AOB的面积.[选修4-5:不等式选讲]23.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)解关于x的不等式g(x)≥f(x)﹣|x﹣1|;(Ⅱ)如果对∀x∈R,不等式g(x)+c≤f(x)﹣|x﹣1|恒成立,求实数c的取值范围.参考答案一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求1.若焦合A={x|x(x﹣2)>0},B={x|x﹣1>0},则A∩B=()A.{x|x>1或x<0} B.{x|1<x<2} C.{x|x>2} D.{x|x>1}【分析】可以求出集合A,B,然后进行交集的运算即可.解:∵A={x|x<0,或x>2},B={x|x>1},∴A∩B={x|x>2}.故选:C.2.若复数z满足,复数z的共轭复数是,则z+=()A.1 B.0 C.﹣1 D.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由,得z==,∴,则z+=﹣1.故选:C.3.在△ABC中∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b=4,∠C=120°,则c=()A.37 B.13 C.D.【分析】由已知结合余弦定理即可求解.解:因为a=3,b=4,∠C=120°,由余弦定理可得,c2=a2+b2﹣2ab cos C=9=37.故c=.故选:D.4.直线与圆x2+y2=1的位置关系是()A.相交B.相切C.相离D.相交或相切【分析】根据点到直线的距离得到d=,结合基本不等式a2+b2≥2ab(ab>0),可得d的取值范围,即可得到与原的位置关系.解:圆心(0,0)到直线的距离d=,因为a2+b2≥2ab(ab>0),代入可得d≤1,故选:D.5.如图在平行四边形ABCD中,对角线AC与BD交于点O,且=2,则=()A.B.C.D.【分析】由平面向量的基本定理得:==﹣=()=,得解解:==﹣=()=,故选:C.6.若a∈[1,6],则函数在区间[2,+∞)内单调递增的概率是()A.B.C.D.【分析】求出函数y=在区间[2,+∞)内单调递增时,a的范围,以长度为测度,即可求出概率.解:∵函数y=在区间[2,+∞)内单调递增,∴y′=1﹣=≥0,在[2,+∞)恒成立,∴a≤x2在[2,+∞)恒成立,∴a≤4∵a∈[1,6],∴a∈[1,4],∴函数y=在区间[2,+∞)内单调递增的概率是=,故选:C.7.函数f(x)=的图象大致为()A.B.C.D.【分析】根据题意,分析可得f(x)为偶函数且在(0,+∞)上为增函数,据此分析选项即可得答案.解:根据题意,函数f(x)=,则f(﹣x)=ln==f(x),即函数f(x)为偶函数,排除A、D;对于f(x)=,设t=,则y=lnt;在(0,+∞)上,t==x(1﹣),易得t在(0,+∞)上为增函数,又由y=lnt在(0,+∞)上为增函数,则f(x)=在(0,+∞)为增函数,排除C;故选:B.8.一个四面体所有棱长都为4,四个顶点在同一球面上,则球的表面积为()A.24πB.C.D.12π【分析】由四面体A﹣BCD所有棱长都为4,求出边长CD=4,CD边上的高BE=2,侧棱AB 在底面上的射影BG=,三棱锥的高AG=,由此求出球O的半径r,由此能求出球的表面积.解:∵四面体A﹣BCD所有棱长都为4,如图,∴边长CD=4,CD边上的高BE=2,侧棱AB在底面上的射影BG=,三棱锥的高AG=,设OA=OB=r,则r2=(﹣r)2+()2,解得r=,∴球的表面积S球=4πr2=24π.故选:A.9.(x﹣+1)5展开式中的常数项为()A.1 B.11 C.﹣19 D.51【分析】类比二项展开式的通项处理即可.解:依题意,(x﹣+1)5展开式中r个因式选择x,s个因式选择﹣,则展开项为:T==,要使该项为常数,则r=1,①当r=s=0时,对应常数为1;②当r=s=1时,对应常数为=﹣20;③当r=s=2时,对应常数为=30;所以展开式的常数项为1﹣20+30=11.故选:B.10.△ABC中,如果lg cos A=lg sin C﹣lg sin B=﹣lg2,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【分析】由lg cos A=lg sin C﹣lg sin B=﹣lg2可得lg cos A=lg=﹣lg2可得结合0<A<π 可求,,代入sin C=sin B==,从而可求C,B,进而可判断解:由lg cos A=lg sin C﹣lg sin B=﹣lg2可得lg cos A=lg=﹣lg2∴∵0<A<π∴,∴sin C=sin B==∴tan C=,C=,B=故选:B.11.如图所示,点A、B、C是圆O上的三点,线段OC与线段AB交于圆内一点M,若=m+n,(m>0,n>0),m+n=2,则∠AOB的最小值为()A.B.C.D.【分析】设圆O的半径为1,对=m+n,两边平方可得1=m2+2mn cos∠AOB+n2,根据已知条件可知m,n∈(0,2),所以将m=2﹣n带入上式并求出cos∠AOB的表达式,进而得到答案.解:由已知条件知,m,n∈(0,2),设圆O的半径为1;2=(m+n)2;∴1=m2+2mn cos∠AOB+n2;将m=2﹣n带入并整理得﹣2n2+4n﹣3=(﹣2n2+4n)cos∠AOB;∴cos∠AOB=1+;∵n∈(0,2)时,2n2﹣4n<0;且n=1时,2n2﹣4n取最小值﹣2,1+取最大值﹣;此时,∠AOB=,即为最小值.故选:A.12.直线y=kx+1与抛物线C:x2=4y交于A,B两点,直线l∥AB,且l与C相切,切点为P,记△PAB 的面积为S,则S﹣|AB|的最小值为()A.B.C.D.【分析】设出A,B的坐标,联立直线方程与抛物线方程,利用弦长公式求得|AB|,再由点到直线的距离公式求得P到AB的距离,得到△PAB的面积为S,作差后利用导数求最值.解:设A(x1,y1),B(x2,y2),联立,得x2﹣4kx﹣4=0,则x1+x2=4k,.则|AB|=.由x2=4y,得,,设P(x0,y0),则,x0=2k,.则点P到直线y=kx+1的距离d=,从而S=.S﹣|AB|=(d≥1).令f(x)=2x3﹣4x2,f′(x)=6x2﹣8x(x≥1).当1≤x<时,f′(x)<0,当x>时,f′(x)>0,故,即S﹣|AB|的最小值为.故选:D.二、填空题:共4小题,每小题5分,共20分13.已知,则f(1)+f(2)+…+f(2020)=.【分析】根据题意,函数的解析式变形可得f(x)=2sin,分析可得其周期,进而可得f(1)+f(2)+…+f(2020)=f(1)+f(2)+f(3)+f(4)=2sin+2sin+2sinπ+2sin,进而计算可得答案.解:根据题意,=2[sin(+)﹣cos (+)]=2sin,其周期T==6,f(1)+f(2)+…+f(2020)=f(1)+f(2)+f(3)+f(4)=2sin+2sin+2sinπ+2sin=;故答案为:.14.已知x,y满足且目标函数z=2x+y的最大值为7,最小值为1,则=﹣2.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大最小值时所在的顶点即可.解:由题意得:目标函数z=2x+y在点B取得最大值为7,在点A处取得最小值为1,∴A(1,﹣1),B(3,1),∴直线AB的方程是:x﹣y﹣2=0,∴则=﹣2.故填:﹣2.15.若f(x)=﹣5k+7在(0,2)上单调递减,则k的取值范围是(﹣∞,1].【分析】f(x)=﹣5k+7在(0,2)上单调递减⇔f′(x)=kx2+2(k﹣2)x≤0在x∈(0,2)恒成立,分①当k<0,②当k=0,③当k>0时,三类讨论,利用对应的函数的性质分析解决即可.解:∵f(x)=﹣5k+7在(0,2)上单调递减,∴f′(x)=kx2+2(k﹣2)x≤0在x∈(0,2)恒成立,①当k<0,f′(x)=kx2+2(k﹣2)x的图象开口向下,对称轴方程为x=﹣=﹣1+<0,当x∈(0,2)时,f′(x)<0恒成立,故f(x)=﹣5k+7在(0,2)上单调递减,满足题意;②当k=0时,f(x)=﹣2x2+7的图象开口向下,在(0,2)上单调递减,满足题意;③当k>0时,由f′(x)≤0对∀x∈(0,2)恒成立得:,解得0<k≤1;综上所述,k∈(﹣∞,1]故答案为:(﹣∞,1].16.若函数f(x)=2|x﹣2a|﹣4|x+a|在区间(﹣2,+∞)上有且仅有一个零点,则实数a的取值范围是a =0或a≥【分析】利用转化思想,将函数的零点转化为y=2|x﹣2a,y=22|x+a|图象的交点.解:若函数f(x)=2|x﹣2a|﹣4|x+a|在区间(﹣2,+∞)上有且仅有一个零点,令g(x)=2|x﹣2a|,h(x)=4|x+a|=22|x+a|,即g(x)与h(x)图象在(﹣2,+∞)有且只有一个交点.∵g(x),h(x)在(﹣∞,+∞)单调递增,所以①2(x+a)=x﹣2a在(﹣2,+∞)恒成立,即a≥;②2(x+a)=﹣(x﹣2a)在(﹣2,+∞)恒成立,即a=0.故a的取值范围是a=0或a≥.故答案为:a=0或a≥.三、解答题:共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在数列{a n}中,a1=1,a1+2a2+3a3+…+na n=.(1)求数列{a n}的通项a n;(2)若存在n∈N*,使得a n≤(n+1)λ成立,求实数λ的最小值.【分析】(1)把已知等式中的n换成n﹣1,再得到一个式子,两式相减可得=,求得a2=1,累乘化简可得数列{a n}的通项a n.(2),由(1)可知当n≥2时,,,可证{}是递增数列,又及,可得λ≥,由此求得实数λ的最小值.解:(1)当n≥2时,由a1=1 及①可得②.两式相减可得na n=﹣,化简可得=,∴a2=1.∴••…==×××…×==.综上可得,.…(2),由(1)可知当n≥2时,,设,…则,∴,故当n≥2时,{}是递增数列.又及,可得λ≥,所以所求实数λ的最小值为.…18.为创建文明城市,我市从2017年开始建立红黑榜,激励先进,鞭策后进,全力推进文明城市创建工作.为了更好地促进该项工作,我市“文明办”对全市市民抽样,进行了一次创建文明城市相关知识的问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如表所示.组别[30,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)频数25 150 200 250 225 100 50(1)根据频数分布表可以大致认为,此次问卷调查的得分Z服从正态分布N(μ,210)μ近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求P (36<Z≤79.50);(2)在(1)的条件下,市“文明办”决定按如下的方案对参与调查的市民进行奖励:(ⅰ)得分不低于μ的可以获得2次抽奖机会,得分低于μ的可以获得1次抽奖机会;(ⅱ)每次抽奖所获奖券和对应的概率为:中奖的奖券面值(单元:元)20 40概率0.8 0.2现有市民甲要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查所获得的所有奖券面值和,求X的分布列与数学期望.附:参考数据与公式≈14.5,若X~N(μ,σ2),则①P(μ﹣σ<X≤μ≤σ)=0.6827;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9973.【分析】(1)由题意求出Ez=65,从而μ=65,进而P(50.5<z≤79.5)≈0.6287,p(36<Z≤94)≈0.9545.由此能求出p(36<Z≤79.5).(2)由题意知P(z<μ)=P(Z≥μ)=,获奖券面值X的可能取值为20,40,60,80.分别求出相应的概率,由此能求出X的分布列和EX.解:(1)由题意得Ez=35×0.025+45×0.15+55×0.2+65×0.25+75×0.225+85×0.1+95×0.05=65.∴μ=65,∵=14.5,∴P(50.5<z≤79.5)≈0.6287,p(36<Z≤94)≈0.9545.∴p(36<Z≤50.5)≈=0.1359,综上,p(36<Z≤79.5)=p(36<Z≤50.5)+p(50.5<Z≤79.5)≈0.1359+0.6287=0.8186.(2)由题意知P(z<μ)=P(Z≥μ)=,获奖券面值X的可能取值为20,40,60,80.P(X=20)=,P(X=40)==,P(X=60)==,P(X=80)==.∴X的分布列为:X20 40 60 80P∴EX=+=36.19.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.(I)求证:AB1⊥CC1;(II)若,求平面A1B1C1和平面ACB1所成锐二面角的余弦值.【分析】(I)取CC1中点为O,连结AC1,CB1,OA,OB1,推导出CC1⊥OA,CC1⊥OB1,从而CC1⊥平面AOB1,由此能证明AB1⊥CC1.(II)以,,分别为x轴、y轴、z轴建立空间直角坐标系,利用同量法能求出平面A1B1C1和平面ACB1所成锐二面角的余弦值.【解答】证明:(I)取CC1中点为O,连结AC1,CB1,OA,OB1,.解:(II)由(I)及AC=2知,,又∴AO⊥OB1,∴以,,分别为x轴、y轴、z轴建立空间直角坐标系,则,C1(0,1,0),,,C(0,﹣1,0)∴,,,,设平面A1B1C1的法向量为=(a1,b1,c1),平面ACB1的法向量为=(a2,b2,c2),则,取=(1,,﹣1)=(﹣1,,﹣1),设平面A1B1C1与平面ACB1所成锐二面角为θ,则cosθ===.∴平面A1B1C1和平面ACB1所成锐二面角的余弦值为.20.已知f(x)=e x﹣mx.(Ⅰ)若曲线y=lnx在点(e2,2)处的切线也与曲线y=f(x)相切,求实数m的值;(Ⅱ)试讨论函数f(x)零点的个数.【分析】(Ⅰ)求得y=lnx的导数,可得切线的斜率和方程,求y=f(x)的导数,设切点为(s,t),求得切线的斜率,可得m的方程,解方程,结合构造函数,即可得到所求值;(Ⅱ)求得f(x)的导数,讨论m<0,m=0,m=e,0<m<e,m>e,判断f(x)的单调性和函数值的变化,以及最值的符号,可得所求零点个数.解:(Ⅰ)y=lnx的导数为y′=,可得曲线y=lnx在点(e2,2)处的切线斜率为e﹣2,切线方程为y﹣2=e﹣2(x﹣e2),f(x)=e x﹣mx的导数为f′(x)=e x﹣m,设与曲线y=f(x)相切的切点为(s,t),可得切线的斜率为e s﹣m,则e s﹣m=e﹣2,t=e s﹣ms=2+se﹣2﹣1,化为e s﹣se s=1,设y=e x﹣xe x,可得y′=﹣xe x,当x>0时函数y递减,x<0时函数y递增,可得x=0处函数y取得最大值1,解得s=0,m=1﹣e﹣2;(Ⅱ)f(x)=e x﹣mx的导数为f′(x)=e x﹣m,当m≤0时,f′(x)>0,f(x)在R上递增,当m=0时,f(x)=e x无零点;当m<0时,x→﹣∞,f(x)→﹣∞,可得f(x)有一个零点;当m>0时,由x>lnm,f′(x)>0,f(x)递增,由x<lnm,f′(x)<0,f(x)递减,可得f(x)在x=lnm处取得极小值,且为最小值m﹣mlnm,当m﹣mlnm>0,即0<m<e时,f(x)无零点;当m﹣mlnm=0,即m=e时,f(x)有一个零点;当m﹣mlnm<0即m>e时,f(x)有两个零点.综上可得,0≤m<e时,f(x)无零点;m<0或m=e时,f(x)有一个零点;m>e时,f(x)有两个零点.21.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点P(1,)在椭圆C上,满足=.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l1过点P,且与椭圆只有一个公共点,直线l2与l1的倾斜角互补,且与椭圆交于异于点P的两点M,N,与直线x=1交于点K(K介于M,N两点之间).(i)求证:|PM|•|KN|=|PN|•|KM|;(ii)是否存在直线l2,使得直线l1、l2、PM、PN的斜率按某种顺序能构成等比数列?若能,求出l2的方程;若不能,请说明理由.【分析】(Ⅰ)根据题意,设F1(﹣c,0),F2(c,0),则有•=(﹣c﹣1,﹣)•(c ﹣1,﹣),解可得题意可得c的值,进而由椭圆的定义可得a的值,计算可得b的值,将a、b 的值代入椭圆的方程可得答案;(Ⅱ)(ⅰ)设l1方程为y﹣=k(x﹣1),与=1联立,可得关于x的一元二次方程,令△=0解可得k的值,结合题意可以设直线l2方程,联立两直线方程,整理可得x2+tx+t2﹣3=0,由根与系数的关系分析可得PM、PN关于直线x=1对称,即∠MPK=∠NPK,进而由正弦定理分析可得,即可得证明;(ⅱ)由(ⅰ)知,k PM+k PN=0,k l1=﹣,k l2=,假设存在直线l2,满足题意.不妨设k PM=﹣k,k PN=k,(k>0),由等比数列的性质分析可得q=﹣1,进而分析可得结论.解:(Ⅰ)设F1(﹣c,0),F2(c,0),c>0,则•=(﹣c﹣1,﹣)•(c﹣1,﹣)=1﹣c2+,所以c=1,因为2a=|PF1|+|PF2|=4,所以a=2,又由c=1,则b2=a2﹣c2=3,故椭圆C的标准方程为=1;(Ⅱ)(ⅰ)证明:设l1方程为y﹣=k(x﹣1),与=1联立,消y得(4k2+3)x2+(12k﹣8k2)x+(3﹣2k)2﹣12=0由题意知△=0,解得k=﹣,因为直线l2与l1的倾斜角互补,所以l2的斜率是.设直线l2方程:y=x+t,M(x1,y1),N(x2,y2),联立,整理得x2+tx+t2﹣3=0,由△>0,得t2<4,x1+x2=﹣t,x1•x2=t2﹣3;直线PM、PN的斜率之和k PM+k PN====0所以PM、PN关于直线x=1对称,即∠MPK=∠NPK,在△PMK和△PNK中,由正弦定理得,,又因为∠MPK=∠NPK,∠PKM+∠PKN=180°所以故|PM|•|KN|=|PN|•|KM|成立;(ⅱ)由(ⅰ)知,k PM+k PN=0,k l1=﹣,k l2=,假设存在直线l2,满足题意.不妨设k PM=﹣k,k PN=k,(k>0)若﹣,﹣k,k按某种排序构成等比数列,设公比为q,则q=﹣1或q2=﹣1或q3=﹣1.所以q=﹣1,则k=,此时直线PN与l2平行或重合,与题意不符,故不存在直线l2,满足题意.请考生在[22]、[23]题中任选一题作答.如果多做,则按所做的第一题计分,[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数).以平面直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线C2的极坐标方程为ρsinθ=.(1)求曲线C1的极坐标方程;(2)设C1和C2交点的交点为A,B,求△AOB的面积.【分析】(1)直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用方程组求出交点坐标,进一步求出三角形面积.解:(1)曲线C1的参数方程为(α为参数),消去参数的C1的直角坐标方程为:x2﹣4x+y2=0.所以:C1的极坐标方程为ρ=4cosθ(2)解方程组,得到:4sinθcosθ=.所以:,则:(k∈Z).当(k∈Z)时,,当(k∈Z)时,ρ=2.所以:C1和C2的交点极坐标为:A(),B().所以:.故△ABO的面积为.[选修4-5:不等式选讲]23.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)解关于x的不等式g(x)≥f(x)﹣|x﹣1|;(Ⅱ)如果对∀x∈R,不等式g(x)+c≤f(x)﹣|x﹣1|恒成立,求实数c的取值范围.【分析】先将M,N化简,再计算交集或并集,得出正确选项【解答】(本小题满分10分)选修4﹣5:不等式选讲解:(Ⅰ)∵函数f(x)和g(x)的图象关于原点对称,∴g(x)=﹣f(﹣x)=﹣(x2﹣2x),∴g(x)=﹣x2+2x,x∈R.∴原不等式可化为2x2﹣|x﹣1|≤0.上面不等价于下列二个不等式组:…①,或…②,由①得,而②无解.∴原不等式的解集为.(Ⅱ)不等式g(x)+c≤f(x)﹣|x﹣1|可化为:c≤2x2﹣|x﹣1|.作出函数F(x)=2x2﹣|x﹣1|的图象(这里略).由此可得函数F(x)的最小值为,∴实数c的取值范围是.。

四川省绵阳南山中学2020届三诊模拟考试理综化学试题

四川省绵阳南山中学2020届三诊模拟考试理综化学试题

四川省绵阳南山中学2020届三诊模拟考试理综化学试题学校:___________姓名:___________班级:___________考号:___________1.化学是现代生产、生活与科技的中心学科之一,下列与化学有关的说法,正确的是A.2022年冬奥会聚氨酯速滑服,是新型无机非金属材料B.石墨烯是由单层碳原子构成的平面结构新型碳材料,属于烯烃C.顾名思义,苏打水就是苏打的水溶液,也叫弱碱性水,是带有弱碱性的饮料D.人们洗发时使用的护发素,其主要功能是调节头发的pH使之达到适宜的酸碱度2.萝卜硫素(结构如图)是具有抗癌和美容效果的天然产物之一,在一些十字花科植物中含量较丰富。

该物质由五种短周期元素构成,其中W、X、Y、Z的原子序数依次增大,Y、Z原子核外最外层电子数相等。

下列叙述一定正确的是()A.原子半径的大小顺序为Z>W>X>YB.X的简单氢化物与W的氢化物反应生成离子化合物C.萝卜硫素中的各元素原子最外层均满足8电子稳定结构D.Y、Z形成的二元化合物的水化物为强酸3.依据反应2NaIO3+5SO2+4H2O=I2+3H2SO4+2NaHSO4,利用下列装置从含NaIO3的废液中制取单质碘的CCl4溶液并回收NaHSO4。

其中装置正确且能达到相应实验目的是A.①②③④B.①②③C.②③④D.②④4.下列关于有机物a()、b() 、c()的说法正确的是A.a、b 互为同系物B.C 中所有碳原子可能处于同一平面C.b 的同分异构体中含有羧基的结构还有7 种(不含立体异构)D.a 易溶于水,b 、c 均能使酸性高猛酸钾溶液褪色5.国际能源期刊报道了一种正在开发中的绿色环保“全氢电池”,有望减少废旧电池产生污染。

其工作原理如图所示。

下列说法正确的是A.“全氢电池”工作时,将酸碱反应的中和能转化为电能B.吸附层b发生的电极反应:H2 – 2e-+ 2 OH-= 2H2OC.Na+ 在装置中从右侧透过阳离子交换膜向左侧移动D.“全氢电池”的总反应:2H2 + O2 =2H2O6.实验室利用SO2和Cl2在活性炭作用下制取SO2C12,原理为SO2(g)+Cl2(g)⇌SO2Cl2(l) ∆H=-97.3kJ/mol。

2020届四川省绵阳市高三第三次诊断性测试理科数学试题(word版含答案)

2020届四川省绵阳市高三第三次诊断性测试理科数学试题(word版含答案)
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知 则sinα=____
14.若曲线f(x)=excosx-mx,在点(0, f(0))处的切线的倾斜角为 则实数m=_____.
15.已知 是椭圆C: 的两个焦点,P是椭圆C.上的一点, 且 的面积为 则b=____.
16.在一个半径为2的钢球内放置一个用来盛特殊液体的正四棱柱容器,要使该容器所盛液体尽可能多,则该容器的高应为____.
(2)设点P(x0, 0),若点M恒在以FP为直径的圆外,求 的取值范围.
(二)选考题:共10分。请考生在第22、23题中任选一题做答。如果多做,则按所做的第一题记分。
22.[选修4-4:坐标系与参数方程] (10分)
如图,在极坐标系中,曲线 是以C1(4, 0)为圆心的半圆,曲线 是以 为圆心的圆,曲线C1、 都过极点O.
C. f(2)< f(0)<f(1)D. f(2)<f(1)< f(0)
11.已知x为实数,[x]表示不超过x的最大整数,若函数f(x)=x-[x],则函数 的零点个数为
A.1B.2C.3D.4
12.在△ABC中,∠C=90°, AB=2, D为AC上的一点(不含端点),将△BCD沿直线BD折起,使点C在平面ABD上的射影O在线段AB上,则线段OB的取值范围是
若将频率视为概率,试解答如下问题:
(1).该物流公司负责人决定随机抽出3天的数据来分析配送的蔬菜量的情况,求这3天配送的蔬菜量中至多有2天小于120件的概率;
(2)该物流公司拟一次性租赁一批货车专门运营从甲地到乙地的蔬菜运输.已知一辆货车每天只能运营一趟,每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.为使该物流公司此项业务的营业利润最大,该物流公司应一次性租赁几辆货车?

绵阳南山中学2020年绵阳三诊模拟理综试卷

绵阳南山中学2020年绵阳三诊模拟理综试卷

2020年4月绵阳南山中学2020年绵阳三诊模拟考试理综试题命题人:物理:李明忠化学:刘伟生物:肖茂全审题人:物理:兰建化学:罗珍生物:易翠蓉注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Cl 35.5 As75 Ni59一、选择题:本题共13个小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 下列生理活动能在人体细胞中发生的是A.H2O分解产生CO2和NADPHB.胰岛素促进葡萄糖转变为脂肪和20种氨基酸C.蔗糖在细胞质基质中水解成葡萄糖和果糖D.胆固醇经紫外线照射转化成维生素D2. 盐酸是一种常见的化学试剂,也广泛用于生物学实验,以下涉及盐酸的实验说法正确的是A.促胰液素的发现过程中稀盐酸的作用是刺激胰腺产生促胰液素B.“探究酶活性受PH的影响”的实验中盐酸的作用是用于控制无关变量C.“观察DNA和RNA在细胞中的分布”的实验中8%的盐酸可以起水解的作用D.“低温诱导染色体数目变化”实验中,可尽量延长用盐酸和酒精处理时间使解离更充分3. 如图为生物学中整体与部分的概念关系图。

下列叙述错误的是A.若Ⅰ为人体内环境,并且有的关系,则Ⅲ是血浆B.若Ⅰ为可遗传变异,Ⅳ是获得青霉素高产菌株的原理,则Ⅳ是基因重组C.若Ⅰ为构成免疫的三道防线,Ⅱ和Ⅲ人人生来就有,则Ⅳ是特异性免疫D.若Ⅰ为生态系统的生物成分,由Ⅱ和Ⅲ构成营养结构,则Ⅳ是分解者4. 某二倍体高等动物(2n=6,XY型,X染色体长于Y染色体)的基因型为AaBb,其体内某细胞处于细胞分裂后期的示意图如右图。

下列叙述正确的是A.形成该细胞过程中发生了基因突变和染色体变异B.该细胞正在发生基因重组,即将发生细胞质不均等分裂C.该细胞含有3个四分体,6条染色体,12个核DNA分子D.该细胞分裂形成的生殖细胞基因型为aBX、aBX A、AbY、bY5. 科学家从发绿色荧光的海蜇体内获得一段DNA片段,并将其导入到小鼠的受精卵中,培育出了发绿色荧光的小鼠。

四川省绵阳南山中学2020届高三三诊模拟考试理综试卷(PDF版)

四川省绵阳南山中学2020届高三三诊模拟考试理综试卷(PDF版)

A.a、b 互为同系物
B.C 中所有碳原子可能处于同一平面
C.b 的同分异构体中含有羧基的结构还有 7 种(不含立体异构)
D.a 易溶于水,b 、c 均能使酸性高猛酸钾溶液褪色
11.国际能源期刊报道了一种正在开发中
的绿色环保“全氢电池”,有望减少废
旧电池产生污染。其工作原理如图所
示。下列说法正确的是
电小球能从 AC 边射出,重力加速度为 g,则下列说法正确的是
A.匀强磁场的磁感应强度 B 的最小值应为 Ev ag
B.匀强磁场的磁感应强度 B 的最小值应为 2 Ev ag
C.匀强磁场的磁感应强度 B 的最小值应为 3 Ev ag
D.当磁感应强度取最小值时,小球在磁场内运动的时间最短 19.2017 年 6 月 19 日,我国在西昌卫星发射中心发射“中星 9A”广播电视直播卫星。按预定 计划,“中星 9A”应该首先被送入近地点约为 200 公里、远地点约为 3.6 万公里的转移轨道 H (椭圆),然后通过在远地点变轨,最终进入地球同步轨道田(圆形)。但是由于火箭故障, 卫星实际入轨后初始轨道 I 远地点只有 1.6 万公里。科技人员没有放弃,通过精心操控,利用 卫星自带燃料在近地点点火,尽量抬高远地点高度,经过 10 次轨道调 整,终于在 7 月 5 日成功定点于预定轨道。下列说法正确的是 A.失利原因可能是发射速度没有达到 7.9km/s B.卫星在轨道Ⅱ经过 Q 点时和在轨道Ⅲ经过 Q 点时的速度相同 C.卫星从轨道 I 的 P 点进入轨道Ⅱ后机械能增加 D.卫星在轨道Ⅱ由 P 点向 Q 点运行时处于失重状态
胞处于细胞分裂后期的示意图如右图。下列叙述正确的是
A.形成该细胞过程中发生了基因突变和染色体变异 B.该细胞正在发生基因重组,即将发生细胞质不均等分裂

绵阳南山中学 2020年绵阳三诊模拟考试理综生物试题(word含答案)

绵阳南山中学 2020年绵阳三诊模拟考试理综生物试题(word含答案)

2020年4月绵阳南山中学2020年绵阳三诊模拟考试理综生物试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

1. 下列生理活动能在人体细胞中发生的是A.H2O分解产生CO2和NADPHB.胰岛素促进葡萄糖转变为脂肪和20种氨基酸C.蔗糖在细胞质基质中水解成葡萄糖和果糖D.胆固醇经紫外线照射转化成维生素D2. 盐酸是一种常见的化学试剂,也广泛用于生物学实验,以下涉及盐酸的实验说法正确的是A.促胰液素的发现过程中稀盐酸的作用是刺激胰腺产生促胰液素B.“探究酶活性受PH的影响”的实验中盐酸的作用是用于控制无关变量C.“观察DNA和RNA在细胞中的分布”的实验中8%的盐酸可以起水解的作用D.“低温诱导染色体数目变化”实验中,可尽量延长用盐酸和酒精处理时间使解离更充分3. 如图为生物学中整体与部分的概念关系图。

下列叙述错误的是A.若Ⅰ为人体内环境,并且有的关系,则Ⅲ是血浆B.若Ⅰ为可遗传变异,Ⅳ是获得青霉素高产菌株的原理,则Ⅳ是基因重组C.若Ⅰ为构成免疫的三道防线,Ⅱ和Ⅲ人人生来就有,则Ⅳ是特异性免疫D.若Ⅰ为生态系统的生物成分,由Ⅱ和Ⅲ构成营养结构,则Ⅳ是分解者4. 某二倍体高等动物(2n=6,XY型,X染色体长于Y染色体)的基因型为AaBb,其体内某细胞处于细胞分裂后期的示意图如右图。

下列叙述正确的是A.形成该细胞过程中发生了基因突变和染色体变异B.该细胞正在发生基因重组,即将发生细胞质不均等分裂C.该细胞含有3个四分体,6条染色体,12个核DNA分子D.该细胞分裂形成的生殖细胞基因型为aBX、aBX A、AbY、bY5.科学家从发绿色荧光的海蜇体内获得一段DNA片段,并将其导入到小鼠的受精卵中,培育出了发绿色荧光的小鼠。

四川省绵阳南山中学2020届高三三诊模拟理科综合试题

四川省绵阳南山中学2020届高三三诊模拟理科综合试题

2020年4月绵阳南山中学2020年绵阳三诊模拟考试理综试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Cl 35.5 As75 Ni59一、选择题:本题共13个小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 下列生理活动能在人体细胞中发生的是A.H2O分解产生CO2和NADPHB.胰岛素促进葡萄糖转变为脂肪和20种氨基酸C.蔗糖在细胞质基质中水解成葡萄糖和果糖D.胆固醇经紫外线照射转化成维生素D2. 盐酸是一种常见的化学试剂,也广泛用于生物学实验,以下涉及盐酸的实验说法正确的是A.促胰液素的发现过程中稀盐酸的作用是刺激胰腺产生促胰液素B.“探究酶活性受PH的影响”的实验中盐酸的作用是用于控制无关变量C.“观察DNA和RNA在细胞中的分布”的实验中8%的盐酸可以起水解的作用D.“低温诱导染色体数目变化”实验中,可尽量延长用盐酸和酒精处理时间使解离更充分3. 如图为生物学中整体与部分的概念关系图。

下列叙述错误的是A.若Ⅰ为人体内环境,并且有的关系,则Ⅲ是血浆B.若Ⅰ为可遗传变异,Ⅳ是获得青霉素高产菌株的原理,则Ⅳ是基因重组C.若Ⅰ为构成免疫的三道防线,Ⅱ和Ⅲ人人生来就有,则Ⅳ是特异性免疫D.若Ⅰ为生态系统的生物成分,由Ⅱ和Ⅲ构成营养结构,则Ⅳ是分解者4. 某二倍体高等动物(2n=6,XY型,X染色体长于Y染色体)的基因型为AaBb,其体内某细胞处于细胞分裂后期的示意图如右图。

下列叙述正确的是A.形成该细胞过程中发生了基因突变和染色体变异B.该细胞正在发生基因重组,即将发生细胞质不均等分裂C.该细胞含有3个四分体,6条染色体,12个核DNA分子D.该细胞分裂形成的生殖细胞基因型为aBX、aBX A、AbY、bY5. 科学家从发绿色荧光的海蜇体内获得一段DNA片段,并将其导入到小鼠的受精卵中,培育出了发绿色荧光的小鼠。

四川省绵阳2023届高三下学期三诊模拟考试物理试题含答案

四川省绵阳2023届高三下学期三诊模拟考试物理试题含答案

绵阳2020级高三下期三诊模拟考试理科综合试题(答案在最后)可能用到的相对原子质量:H1C12N14O16Na23Si28S32V51Mn55Fe56ln115二、选择题(本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错或不选的得0分)1.用紫外光电管制作的火灾报警器的灵敏度非常高,其能够探测5m 远处香烟头燃烧时火焰发出的紫外线,因此被称为“火焰发现者”,但它对可见光完全没有反应,因此在使用过程中不需要过滤任何可见光。

已知光电管内部金属材料发生光电效应的极限频率为0ν,对应的波长为0λ;可见光的最高频率为1ν,对应的波长为1λ;可见光的最低频率为2ν,对应的波长为2λ。

下列说法正确的是()A.0ν一定大于1νB.0λ一定大于1λC.0ν一定小于2νD.0λ一定大于2λ【答案】A 【解析】【详解】AC .根据题意可知,用可见光照射这种光电管时不能发生光电效应,说明可见光的最高频率1ν小于光电管内部金属的极限频率0ν,选项A 正确、C 错误;BD .根据公式cλν=可知,频率ν越高,波长λ越短,故0λ一定小于1λ和2λ,选项BD 错误。

故选A 。

2.如图所示,水平直杆OP 右端固定于竖直墙上的O 点,长为2m L =的轻绳一端固定于直杆P 点,另一端固定于墙上O 点正下方的Q 点,OP 长为 1.2m d =,重为4.8N 的钩码用质量不计的光滑挂钩挂在轻绳上且处于静止状态,则轻绳的弹力大小为()A.N 5B.3NC.4ND.6N【答案】B 【解析】【详解】钩码用质量不计的光滑挂钩挂在轻绳上且处于静止状态,可知两边轻绳与竖直方向的夹角相等,均为θ;如图由几何关系2 1.222y yx x-=-解得sin 0.6yxθ==由平衡可知2cos T Gθ=解得T =3N故选B 。

绵阳市高中2020级第三次诊断性考试理科综合能力测试语文参考答案及评分标准

绵阳市高中2020级第三次诊断性考试理科综合能力测试语文参考答案及评分标准

绵阳市高2020级第三次诊断考试语文参考答案1.B(A“人们更重视求取‘富’‘贵’”错;C“和‘人之常情’发生冲突时”错;D“‘利’指的是‘能给人带来利益的身份地位’”错。

)2. C(“‘义’和‘利’之间彼此对立错”)3.A4.D(“b处比a处更易发生雪崩”错)5.B(“凝聚力大于它所受到的摩擦力”错)6.①气温升高:持续晴天,温度升高,雪同地表分离;升华改变了雪层内部结构,变得脆弱。

②持续暴雪:持续暴雪增加了山上积雪的重量,使雪层的地心引力大于摩擦力,极易雪崩。

③风力强劲:罕见大风(120公里/小时)将大量的雪吹向背风坡,导致背风坡的积雪增多。

(每点2分,意思接近即可,共6分)7.B(“既为了表现其旅途的狼狈”错;“为了表现战争给民众带来的伤害”错。

)8.①信中有对自己的关心。

儿子虽投身于抗战,但仍未忘记关心自己,这让母亲颇感安慰。

②儿子满怀救国之热忱。

儿子写出音乐作品,以实际行动鼓舞民众,这让母亲由衷欣慰。

③言语中表明形势向好。

中华民族渐渐觉醒,英勇顽强地齐心抗战,这让母亲看到希望。

(每点2分,意思接近即可,共6分)9.①作者内心抵触战争,但为了国家和民族的自由,又积极地投身抗战。

②作者时时感到沮丧,但又充满信心,坚信音乐能在抗战中发挥作用。

③作者思念牵挂母亲,但为了抗战胜利,需加紧创作,只能暂时忘记。

(每点2分,意思接近即可,共6分)10.H L Q (答对1处给1分,共3分;答出4处及以上,给0分)11.B(前者为“只有”,后者为“希望”)12.D(“因惧怕尔朱荣而不肯发言”错)13.(1)何况现在尊奉尚不能说话的小孩,来治理天下,却指望天下太平,难道能够实现吗?(划线处各1分,大意1分,共5分)(2)现今保卫皇宫的文武大臣,足够和他们一战,只需守住河桥,观察对方的意图动向(就行了)。

(划线处各1分,大意1分,共5分)14.D(“两首诗善用细节描写”错;“刘诗突出松树之‘高’”错)15.①元诗写千岁松树也由小松长成,表明如想有所成就,需立志高远且从小积蓄力量。

四川省绵阳市高中2020届高三第三次诊断性考试理综物理试卷(有答案)(加精)

四川省绵阳市高中2020届高三第三次诊断性考试理综物理试卷(有答案)(加精)

绵阳高三第三次诊断理综物 理 试 题14.我国首颗自主研发建造的电磁监测试验卫星将于2019年下半年择机发射。

其设计轨道是高度为500公里的极地圆轨道,该卫星与地球同步卫星相比A .距离地心较远B .运行周期较长C .向心加速度较大D .运行线速度较小15.下列说法正确的是A .X He H H 423121+→+为裂变反应,X 是中子B .3X Kr Ba n U 8936144561023592++→+为裂变反应,X 是中子C .光电效应中,入射光越强,光电子的能量越大D .氢原子发射光谱是氢原子核从较高能级跃迁到较低能级产生的16.如图所示,是一个点电荷的电场中的四条电场线,A 、B 、C 、D 是电场中的四点,B 、C 、D 在一条直线上,AB =BC =CD ,已知A 点电势φA =20V ,C 点电势φC =10V ,则B 、D 两点的电势A .φB <15VB .φB =15VC .φD <5VD .φD =5V17.在两个等高的支架上,静放光滑、实心、质量分布均匀的圆柱体材料,其横截面如图所示,则A.放同一圆柱体,适当减小两支架间距,支架所受压力增大B.放同一圆柱体,适当增大两支架间距,支架所受压力减小C.两支架位置固定,圆柱体质量相同,放半径大的圆柱体,支架所受压力大D.两支架位置固定,圆柱体质量相同,放半径大的圆柱体,支架所受压力小18.如图所示的理想变压器的原副线圈匝数比为5:1,其中R1=40Ω,R2=8Ω,L1、L2是相同的灯泡“36V,18W”。

在a、b端输入正弦交流电e,闭合S1,断开S2,灯泡L1正常发光。

则A.交流e的电压有效值是200VB.通过R1的电流最大值是225AC.再闭合S2,灯泡L1和L2都正常发光D.再闭合S2,交流电压表V的示数变小19.斜面放置在水平地面上,一物块以一定的初速度沿斜面向上运动,A是斜面上一点,物块过A点后通过的路程为x时速度为v,v2与x的关系图线如图所示,图中b1、b2、x0和重力加速度g已知。

【4月名校三模理数】四川省绵阳南山中学2020年高三三诊模拟考试理科数学试卷、答题卡、答案解析

【4月名校三模理数】四川省绵阳南山中学2020年高三三诊模拟考试理科数学试卷、答题卡、答案解析

的图象大致为(

A
B
C
D
8、一个四面体所有棱长都为 4 ,四个顶点在同一球面上,则球的表面积为( )
A. 24
B. 8 6
C. 4 3 3
D. 12
9、 (x 1 1)5 展开项中的常数项为( ) x
A. 1
B. 11
C. 19
D. 51
10、 ABC 中, lg cos A lgsin C lgsin B lg 2,则 ABC 的形状是 (
(ⅰ)得分不低于 的可以获得 2 次抽奖机会,得分低于 的可以获得1次抽奖机会;
(ⅱ)每次抽奖所获奖券和对应的概率为:
中奖的奖券面值(单元:元) 20
40
概率
4
1
5
5
现有市民甲要参加此次问卷调查,记 X (单位:元)为该市民参加问卷调查所获得的所有
奖券面值和,求 X 的分布列与数学期望.
附:参考数据与公式, 210 14.5
A. {x | x 2}
B. {x |1 x 2}
C. {x | x 0,或x 1} D. {x | x 1}
2、若复数 z 满足 z 3(1 z)i 1,复数 z 的共轭复数是 z ,则 z z ( )
A. 1
B. 0
C. 1
D. 1 3 i
22
3、在 ABC 中 A,B,C 所对的边分别为 a,b, c .若 a 3,b 4,C 120 ,则 c ( )
)
A. 等边三角形
B. 直角三角形
C. 等腰三角形
D. 等腰直角三角形
题卷共 4 页,第 1 页
11、 点 A,B,C 是单位圆 O 上的不同三点,线段 OC 与线段 AB 交于圆内一点 M ,若 OC mOA nOB (m 0, n 0) , m n 2,则 AOB 的最小值为( )

绵阳南山中学2020年绵阳三诊模拟理综答案

绵阳南山中学2020年绵阳三诊模拟理综答案
(1 分) (3)C6H5NH3++OH- C6H5NH2+H2O (2 分) (4) 蒸出物为混合物,
无需控制温度 (2 分) (5) 防止 B 中液体倒吸(2 分) (6) 60.0% (2 分) (7) 加入稀盐酸,分液除去硝基苯;再加入氢氧化钠溶液,分液去水层后;加入 NaOH 固体干燥、 过滤 (3 分) 35.【15 分】(1)3d84s2 (1 分) Fe (1 分) (2) N(1 分)1:1 (2 分);(3)① 三 角锥形(1 分) PCl3、PBr3、NF3、NCl3 等(答一种即可)(1 分)②电子从较高能级的激 发态跃迁到较低能级的激发态乃至基态时,会以光的形式释放能量(2 分) (4) Ni 的
绵阳南山中学 2020 年绵阳三诊模拟考试
物理答案
14.B 15.B 16.C 17.D 18.C 19.CD 20.BD 21.AC
22.(5 分) (1) 4.80
(2) 0.576
0.588
23.(10 分)(1) 黑
(2) b (3) 150
450
24.答案 (1)30N,方向竖直向下 (2)0.8 m
解析(1)设物块质量为 m,A 首次到达 N 点的速度为 v0 由机械能守恒定律得 mgR
1 2
mv
2 0

(2 分)由牛顿第二定律得 FN
mg
m
v
2 0
R
② (2 分)联立解得 FN 30 N ③
根据牛顿第三定律可知支持力与压力大小相等,方向相反,所以物体对轨道压力大小为 30N,
方向竖直向下 (1 分)
原子半径较小,价电子数目较多,金属键较强(2 分)
(2 分) 36.【15 分】(1)取代反应 (1 分) 18 (1 分)

2020年四川省绵阳市南山中学高考物理三诊试卷 (含答案解析)

2020年四川省绵阳市南山中学高考物理三诊试卷 (含答案解析)

2020年四川省绵阳市南山中学高考物理三诊试卷一、单选题(本大题共5小题,共30.0分)1.下列说法正确的是()A. 库仑定律既适用于点电荷,也适用于一切带电体B. 根据F=k q1q2,当两个电荷的距离趋近于零时,静电力将趋向于无穷大r2C. 若点电荷q1的电荷量大于q2的电荷量,则q1对q2的静电力大于q2大于q1的静电力D. 电子的电荷量是美国物理学家密立根通过油滴实验测出2.如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F=kt,其中k为已知常数.若物体之间的滑动摩擦力f的大小等于最大静摩擦力,且A、B的质量相等,则下列图中可以定性地描述长木板B运动的V−t图象的是()A. B. C. D.3.某水库用水带动如图甲所示的交流发电机发电,其与一个理想的升压变压器连接,给附近工厂的额定电压为10kV的电动机供电.交流发电机的两磁极间的磁场为匀强磁场,线圈绕垂直匀强磁场的水平轴OO′沿顺时针方向匀速运动,从图示位置开始计时,产生的电动势如图乙所示.连接各用电器的导线电阻忽略不计,交流电压表与交流电流表都是理想电表.下列说法正确的是()A. 0.01s时通过电流表的电流的方向向右B. 变压器原、副线圈的匝数比为1:20C. 进入电动机的电流的频率是100H ZD. 开关K闭合时电压表和电流表的示数均变大4.如图所示,A、B、C、D、E、F为匀强电场中一个边长为10cm的正六边形的六个顶点,A、B、C三点电势分别为1.0V、2.0V、3.0V,则下列说法正确的是()A. 匀强电场的电场强度大小为10V/mB. 匀强电场的电场强度大小为20√3V/m3C. 电荷量为1.6×10−19C的正点电荷从E点移到F点,电荷克服电场力做功为1.6×10−19JD. 电荷量为1.6×10−19C的负点电荷从F点移到D点,电荷的电势能减少4.8×10−19J5.如图所示,地面上空存在竖直向上的匀强电场和与之垂直的水平向里的匀强磁场,一带正电粒子(重力不能忽略)从M点以某一速度水平进入该区域,经过一段时间粒子经过了图中N点,则关于粒子从M运动到N的过程中,下列说法正确的是()A. 粒子可能做匀变速曲线运动B. 粒子的电势能增大C. 粒子的动能可能不变D. 粒子的机械能可能不变二、多选题(本大题共4小题,共23.0分)6.2015年9月30日7时13分,我国在西昌卫星发射中心用长征三号乙运载火箭成功将第4颗新一代北斗导航卫星发射升空.该卫星运行的轨道示意图如图所示,卫星先沿椭圆轨道1运行,近地点为Q,远地点为P.当卫星经过点P时点火加速,使卫星由椭圆轨道1转移到圆轨道2(地球同步轨道)上正常运行.关于卫星的运行过程,下列说法中正确的是()A. 卫星在轨道1和轨道2上运动时的机械能相等B. 卫星在轨道1上运行经过P点时的速度小于经过Q点时的速度C. 轨道2的半径大于运行周期约为90分钟的卫星的轨道半径D. 卫星在轨道1上运行经过P点时的加速度小于在轨道2上运行经过P点时的加速度7.如图所示,在匀强磁场的上方有一质量为m、半径为R的细导线做成的圆环,圆环的圆心与匀强磁场的上边界的距离为ℎ.将圆环由静止释放,圆环刚进入磁场的瞬间和完全进入磁场的瞬间,速度均为υ.已知匀强磁场的磁感应强度为B,导体圆环的电阻为r,重力加速度为g,不计空气阻力,则下列说法正确的是()A. 圆环刚进入磁场的瞬间,速度v=√2g(ℎ−R)B. 圆环进入磁场的过程中,圆环产生的热量大于2mgRC. 圆环进入磁场的过程,做匀速直线运动D. 圆环进入磁场的过程中,通过导体横截面的电荷量为πBR2r8.如图所示,物体以一定初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0m,选择斜面底端为参考平面,上升过程中,物体的机械能E随高度h的变化如图乙所示,g=10m/s2,sin37°=0.6,cos37°=0.8,下列说法正确的是A. 物体的质量m=1.0kgB. 物体可能静止在斜面顶端C. 物体回到斜面底端时的动能E k=10JD. 物体上升过程的加速度大小a=15m/s29.一列简谐横波在t0=0.01s时刻的波形图如图甲所示,平衡位置在x=1m处的质点P的振动图象如图乙所示,已知质点Q的平衡位置在x=1.5m处,质点M的平衡位置在x=1.75m处,下列说法正确的是()A. 该波中每个质点的振动频率都为100HzB. t0时刻后质点M比质点Q先到达平衡位置C. 从t0时刻起经过0.045s,质点Q的速度大于质点M的速度D. 从t0时刻起经过0.025s,质点M通过得了路程为1mE. t=0.07s时,质点Q的加速度大于质点M的加速度三、实验题(本大题共2小题,共15.0分)10.为研究系统机械能守恒某同学设计了如图甲所示的实验装置.绕过滑轮的轻绳两端连接m1、m2两物体.m2在高处由静止开始下落,m1拖着的纸带通过打点计时器打出一系列的点,测量纸带上的点迹,即可验证机械能守恒定律.实验中获取了如图乙所示的一条纸带:每5个点取为一个计数点(图中未标出),依次得到0、1、2、3、4、5、6七个点,0是打下的第一个点,所用电源的频率为50Hz.测得0到4的距离为48.80cm,4到5的距离为27.10cm,5到6的距离为32.90cm.已知m1=50g、m2=200g,请计算:(当地重力加速度取10m/s2,计算结果均保留三位有效数字)(1)计数点5的瞬时速度v5=_________m/s;(2)在计数点0到5的过程中,系统动能的增量ΔE k=_________J;系统重力势能的减少量ΔE p=_________J.11.如图所示为某同学组装完成的简易多用电表的内部结构示意图.(1)图中的B端与________(填“红表笔”或“黑表笔”)相连接.(2)某小组同学们发现欧姆表的表盘刻线不均匀,分析在同一个挡位下通过待测电阻的电流I和它的阻值R x关系,他们分别画出了如图所示的几种图象,其中可能正确的是________.(填选项下面的字母)A.B.C.D.(3)现有部分电路装在一个小盒子里,它与盒外的接线柱A、B、C、D相连.若该部分电路仅由两个阻值均为R的电阻连接而成,且两个接线柱之间最多只能接一个元件.现将多用电表选择开关旋至欧姆挡,测得A、B间电阻为R,B、C间的电阻为2R;用导线将C、D连接后,测得A、B间的电阻为0.5R.请在方框中画出盒子内这两个电阻的连接图.(4)若该欧姆表使用一段时间后,内部电源电动势变小,内阻变大,但此表仍能调零,按正确使用方法测量某电阻阻值,则测得的阻值将________(填“大于”“小于”或“等于”)电阻的真实值.四、计算题(本大题共3小题,共42.0分)12.细管AB内壁光滑、厚度不计,加工成如图所示形状,长L=0.8m的BD段固定在竖直平面内,其B端与半径R=0.4m的光滑圆弧轨道BP平滑连接,CD段是半径R=0.4m的1圆弧,AC段4在水平面上,管中有两个可视为质点的小球a、b,m a=6m,m b=2m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32. (10 分,除标注外每空 2 分)
(1)
(1 分)
(2)
(3)
(1 分)
(4)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
化学选考题 考生请认真阅读试题作答要求,从所给的第 35,36 两道题中任选一题作 答,注意所做题目的题号必须与所涂题目的题号相同。如果多涂,则按所 做的第一题记分。并必须用 2B 铅笔将选作题目对应题号后面的方框涂 满、涂黑,请勿多涂、漏涂。 我所选择的题号是:
准考证号
00000000000 11111111111 22222222222 33333333333 44444444444 55555555555 66666666666 77777777777 88888888888 99999999999
缺考标记: Q
违纪标记: W
第Ⅰ卷 选择题 (共 126 分)
35.
`
36.
`
(15 分)
`
29.(10 分,除标注外每空 2 分)
(1)
(1 分)
(2)
(3)
(4)
30.(10 分,除标注外每空 2 分)
(1)
(1 分) (2)
(3)
(4)
(5)
31.(9 分,除标注外每空 2 分)
(1)
(1 分)
(1 分)
(2)
(3)
(1 分)
(1 分) (1 分)
物理选考题 考生请认真阅读试题作答要求,从所给的第 33,34 两道题中任选一题 作答,注意所做题目的题号必须与所涂题目的题号相同。如果多涂,则 按所做的第一题记分。并必须用 2B 铅笔将选作题目对应题号后面的方 框涂满、涂黑,请勿多涂、漏涂。 我所选择的题号是:
(2)
(3)①


(4)①
②)
② (4)① (5)



请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
28.【14 分】
(1)

(2) (4) (5) (7)
(3)
(6)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
@ @@@@@@@@@@@@@@@@@ @
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
24.(12 分)
25.(20 分)
第Ⅱ卷 主观题 (共 174 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
22. (6 分)(1)
;(2 分)
(2)
(2 分),
(2 分)
@ @@@@@@@@@@@@@@@@@ @
1 ABCD 4 ABCD 7 ABCD 10 A B C D 13 A B C D 16 A B C D 19 A B C D
2 ABCD 5 ABCD 8 ABCD 11 A B C D 14 A B C D 17 A B C D 20 A B C D
3 ABCD 6 ABCD 9 ABCD 12 A B C D 15 A B C D 18 A B C D 21 A B C D
23. (9 分)(1)
(2 分)(2)
(3)
(2 分),
(2 分) (3 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
续 25.
26.(14 分)
(1)
33.
`
34.
`
(1) (2)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
生物选考题 考生请认真阅读试题作答要求,从所给的第 37,38 两道题中任选一题作 答,注意所做题目的题号必须与所涂题目的题号相同。如果多涂,则按所 做的第一题记分。并必须用 2B 铅笔将选作题目对应题号后面的方框涂 满、涂黑,请勿多涂、漏涂。
我所选择的题号是:
37.
` 38.
`
(15 分,除标注外每空 2 分) 38.
(1)
`
(2)
`
37. (3)
(4)
(3 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
绵阳南山中学 2020 年绵阳三诊模拟考试
理综答题卡
班级:____________ 姓名:____________
注意事项 1. 答题前,考生先将自己的姓名、准考证 号码填写清楚。 2. 选择题必须使用 2B 铅笔填涂;非选择 题必须用黑色字迹的签字笔填写,字体工 整。 3. 请按题号顺序在各题的答题区内作答, 超出范围的答案无效,在草稿纸、试卷上作 答无效。 4. 缺考标记/违纪标记:考生禁填!由监 考老师负责用黑色字迹的签字笔填涂。 5. 涂点填涂样例: 有效填涂:$ 无效填涂:%^&*
相关文档
最新文档