高三数学正态分布2
高考数学第一轮复习:《二项分布与正态分布》
![高考数学第一轮复习:《二项分布与正态分布》](https://img.taocdn.com/s3/m/eaf797239ec3d5bbfc0a74d2.png)
高考数学第一轮复习:《二项分布与正态分布》最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.4.能解决一些简单的实际问题.【教材导读】1.条件概率和一般概率的关系是什么?提示:一般概率的性质对条件概率都适用,是特殊与一般的关系.2.事件A,B相互独立的意义是什么?提示:一个事件发生的概率对另一个事件发生的概率没有影响.3.在一次试验中事件A发生的概率为p,在n次独立重复试验中事件A恰好发生k次的概率值为什么是C k n p k(1-p)n-k?提示:n次恰好发生k次,为C k n个互斥事件之和,每个互斥事件发生的概率为p k(1-p)k,故有上述结论.4.正态分布中最为重要的是什么?提示:概念以及正态分布密度曲线的对称性.1.条件概率及其性质条件概率的定义条件概率的性质一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B|A)≤1;(2)若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)2.事件的相互独立性(1)定义设A、B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)与对立事件的关系如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,设在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n).此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).5.正态分布(1)正态曲线的定义函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞)(其中实数μ和σ(σ>0)为参数)的图象(如图)为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图(1)所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图(2)所示.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ <X≤μ+σ)=0.6826;②P(μ-2σ <X≤μ+2σ)=0.9544;③P(μ-3σ <X≤μ+3σ)=0.9974.【重要结论】1.P(A)=a,P(B)=b,P(C)=c,则事件A,B.C至少有一个发生的概率为1-(1-a)(1-b)(1-c).2.X~N(μ,σ),若P(X<a)=P(X>b),则正态密度曲线关于直线x=a+b2对称.1.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()(A)1 (B)5 3(C)5 (D)9B解析:因为μ=2,根据正态分布的性质得a+2+2a-32=2,解得a=53.2.已知随机变量X服从正态分布N(2,32),且P(X≤1)=0.30,则P(2<X<3)等于() (A)0.20 (B)0.50(C)0.70 (D)0.80A 解析:∵该正态密度曲线的对称轴方程为x =2, ∴P(X ≥3)=P(X ≤1)=0.30,∴P (1<X <3)=1-P(X ≥3)-P(X ≤1)=1-2×0.30=0.40,∴P (2<X <3)=12P (1<X <3)=0.20. 3.设随机变量X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫5,12,则函数f(x)=x 2+4x +X 存在零点的概率是( )(A)56 (B)45 (C)3132(D)12C 解析: ∵函数f(x)=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B ⎝ ⎛⎭⎪⎫5,12,∴P(X ≤4)=1-P(X =5)=1-125=3132.4.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长幼苗的概率为________.答案:0.725.在一次高三数学模拟考试中,第22题和23题为选做题,规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12,则其中甲、乙两名学生选做同一道题的概率为________.答案:12考点一 条件概率(1)某射击手射击一次命中的概率是0.7,两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是( )(A)710 (B)67 (C)47(D)25(2)把一枚硬币任意抛掷三次,事件A 为“至少一次出现反面”,事件B 为“恰有一次出现正面”,则P(B|A)=________.解析:(1)设第一次射中为事件A 、随后一次射中为事件B , 则P(A)=0.7,P(AB)=0.4,所以P(B|A)=P (AB )P (A )=0.40.7=47. (2)由题意,知P(AB)=323=38,P(A)=1-123=78,所以P(B|A)=P (AB )P (A )=3878=37.答案:(1)C (2)37【反思归纳】 (1)一般情况下条件概率的计算只能按照条件概率的定义套用公式进行,在计算时要注意搞清楚问题的事件含义,特别注意在事件A 包含事件B 时,AB =B.(2)对于古典概型的条件概率,计算方法有两种:可采用缩减基本事件全体的办法计算P(B|A)=n (AB )n (A );直接利用定义计算P(B|A)=P (AB )P (A ). 【即时训练】 (1)在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.(2)某种家用电器能使用三年的概率为0.8,能使用四年的概率为0.4,已知某一这种家用电器已经使用了三年,则它能够使用到四年的概率是________.解析:(1)解法一 设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则P(AB)=C 55C 2100,所以P(B|A)=P (AB )P (A )=5×4100×995100=499.解法二 第一次取到不合格产品后,也就是在第二次取之前,还有99件产品,其中有4件不合格的,因此第二次取到不合格品的概率为499.(2)记事件A 为这个家用电器使用了三年, 事件B 为这个家用电器使用到四年,显然事件B A ,即事件AB =B ,故P(A)=0.8,P(AB)=0.4, 所以P(B|A)=P (AB )P (A )=0.5. 答案:(1)499 (2)0.5考点二独立事件的概率甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列与期望.解析:设A k,B k分别表示“甲、乙在第k次投篮投中”,则P(A k)=13,P(B k)=12(k=1,2,3).(1)记“甲获胜”为事件C,由互斥事件与相互独立事件的概率计算公式知P(A3)=13+23×12×13+(23)2×(12)2×13=13+19+127=1327.(2)ξ的所有可能取值为1,2,3,且P(ξ=1)=P(A1)+P(A1B1)=13+23×12=23,P(ξ=2)=P(A1B1A2)+P(A1B1A2B2)=23×12×13+(23)2×(12)2=29,P(ξ=3)=P(A1B1A2B2)=(23)2×(12)2=19.综上知,ξ的分布列为ξ 1 2 3P 232919所以E(ξ)=1×23+2×29+3×19=139.【反思归纳】概率计算的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.【即时训练】 某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列. 解:(1)甲、乙所付费用可以为10元、20元、30元. 甲、乙两人所付费用都是10元的概率为 P 1=13×12=16,甲、乙两人所付费用都是20元的概率为 P 1=12×13=16,甲、乙两人所付费用都是30元的概率为 P 1=1-13-12×1-12-13=136故甲、乙两人所付费用相等的概率为 P =P 1+P 2+P 3=1336.(2)随机变量ξ的取值可以为20,30,40,50,60. P(ξ=20)=12×13=16P(ξ=30)=13×13+12×12=1336P(ξ=40)=12×13+1-12-13×13+1-13-12×12=1136P(ξ=50)=12×1-12-13+1-12-13×13=536P(ξ=60)=1-12-13×1-12-13=136 故ξ的分布列为:P16 1336 1136 536 136考点三 二项分布京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄ξ服从正态分布N(μ,σ2),同时随机抽取100位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在[30,80]内),样本数据分布区间为[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如图所示的频率分布直方图.(1)若P(ξ<38)=P(ξ>68),求a ,b 的值;(2)现从样本年龄在[70,80]的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为23,且每个人回答正确与否相互之间没有影响,用η表示票友们赢得老年戏曲演唱机的台数,求η的分布列及数学期望.解:(1)根据正态曲线的对称性,由P(ξ<38)=P(ξ>68),得μ=38+682=53. 再由频率分布直方图得⎩⎪⎨⎪⎧(0.01+0.03+b +0.02+a )×10=1,0.1×35+0.3×45+10b ×55+0.2×65+10a ×75=53, 解得⎩⎪⎨⎪⎧a =0.005,b =0.035.(2)样本年龄在[70,80]的票友共有0.05×100=5(人), 由题意η=0,1,2,3,4,5,所以P(η=0)=C 05⎝ ⎛⎭⎪⎫1-235=1243, P(η=1)=C 15⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫1-234=10243, P(η=2)=C 25⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-233=40243, P(η=3)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫1-232=80243, P(η=4)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫1-231=80243, P(η=5)=C 55⎝ ⎛⎭⎪⎫235=32243, 所以η的分布列为η 012345 P1243 10243 40243 80243 8024332243所以E(η)=0×1243+1×10243+2×40243+3×80243+4×80243+5×32243=103,或根据题设,η~B ⎝ ⎛⎭⎪⎫5,23,P(η=k )=C k 5⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫1-235-k (k =0,1,2,3,4,5), 所以E(η)=5×23=103.【反思归纳】 在实际问题中具体列出服从二项分布的随机变量的概率分布列对解决问题有直观作用,求解服从二项分布的随机变量的概率分布列和数学期望,只要按照公式计算即可.【即时训练】 某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数所进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列、均值与方差.解:(1)由频率分布直方图,知成绩在[9.9,11.4)的频率为1-(0.05+0.22+0.30+0.03)×1.5=0.1.因为成绩在[9.9,11.4)的频数是4,故抽取的总人数为40.1=40.又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.(2)解法一 ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为3740,成绩不合格的概率为1-3740=340,可判断ξ~B ⎝ ⎛⎭⎪⎫2,340. P(ξ=0)=C 02×⎝ ⎛⎭⎪⎫37402=13691600,P(ξ=1)=C 12×340×3740=111800, P(ξ=2)=C 22×⎝ ⎛⎭⎪⎫3402=91600,故所求分布列为X 0 12P13691600111800 91600ξ的均值为E(ξ)=0×13691600+1×111800+2×91600=320,ξ的方差为D(ξ)=⎝ ⎛⎭⎪⎫0-3202×13691600+⎝ ⎛⎭⎪⎫1-3202×111800+⎝ ⎛⎭⎪⎫2-3202×91600=111800.解法二 求ξ的分布列同解法一.ξ的均值为E(ξ)=2×340=320,ξ的方差为D(ξ)=2×340×⎝ ⎛⎭⎪⎫1-340=111800.考点四 正态分布(1)在某项测量中,测量结果ξ服从正态分布N (4,σ2)(σ>0),若ξ在(0,4)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为( )(A)0.2 (B)0.4 (C )0.8(D)0.9(2)已知三个正态分布密度函数f i (x)=12πσi ·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则( )(A)μ1<μ2=μ3,σ1=σ2>σ3(B)μ1>μ2=μ3,σ1=σ2<σ3(C)μ1=μ2<μ3,σ1<σ2=σ3(D)μ1<μ2=μ3,σ1=σ2<σ3(3)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()(A)73(B)53(C)5 (D)3解析:(1)∵ξ服从正态分布N(4,σ2)(σ>0),∴曲线的对称轴是直线x=4,∴ξ在(4,+∞)内取值的概率为0.5.∵ξ在(0,4)内取值的概率为0.4,∴ξ在(0,+∞)内取值的概率为0.5+0.4=0.9.(2)正态分布密度函数f2(x)和f3(x)的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又f2(x)的对称轴的横坐标值比f1(x)的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数f1(x)和f2(x)的图像一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ3.故选D.(3)因为ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以2a-3+a+22=3,解得:a=73.故选A.答案:(1)D(2)D(3)A【反思归纳】(1)在计算服从正态分布的随机变量在特殊区间上的概率时要充分利用正态密度曲线的对称性,将所求的概率转化到我们已知区间上概率.(2)根据正态密度曲线的对称性,当P(ξ>x1)=P(ξ<x2)时必然有x1+x22=μ.【即时训练】为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中体重属于正常情况的人数是()(A)997 (B)954(C)819 (D)683解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ≤X≤μ+σ)=0.6826,从而体重属于正常情况的人数是1000×0.6826≈683.答案:D正态分布与二项分布的综合某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?审题指导满分展示:解:解答:(1)解:20件产品中恰有2件不合格品的概率为f(p)=C220p2·(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)解:由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于EX>400,故应该对余下的产品作检验.命题意图:本题考查二项分布、数学期望等基础知识,考查综合运用概率统计知识分析问题和解决问题的能力.课时作业基础对点练(时间:30分钟)1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)=()(A)12 (B)14 (C)16(D)18A 解析:事件A 的概率为P (A )=12,事件AB 发生的概率为P (AB )=14,由公式可得P (B |A )=P (AB )P (A )=1412=12,选A. 2.已知ξ~N (3,σ2),若P (ξ≤2)=0.2,则P (ξ≤4)等于( ) (A)0.2 (B)0.3 (C)0.7(D)0.8D 解析:由ξ~N (3,σ2),得μ=3,则正态曲线的对称轴是x =3,所以P (ξ≤4)=1-P (ξ≤2)=0.8.故选D.3.若某人每次射击击中目标的概率均为35,此人连续射击三次,至少有两次击中目标的概率为( )(A)81125 (B)54125 (C)36125(D)27125A 解析:本题考查概率的知识.至少有两次击中目标包含仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;若三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,根据互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125,故选A. 4.端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )(A)5960 (B)35 (C)12(D)160B 解析:“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B )=34,P (C →)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A B C )=P (A →)P (B )P (C →)=23×34×45=25,所以至少有一人回老家过节的概率P =1-25=35.5.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )(A)1 (B)12 (C)13(D)14B 解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P (AB )P (A )=12×1212=12.故选B.6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )(A)0 (B)1 (C)2(D)3C 解析:根据题意,本题为独立重复试验,由概率公式得:C k 512k ×125-k =C k +1512k +1×124-k ,解得k =2.故选C.7.某电脑配件公司的技术员对某种配件的某项功能进行检测,已知衡量该功能的随机变量X 服从正态分布N (2,σ2)且P (X ≤4)=0.9,该变量X ∈(0,4)时为合格产品,则该产品是合格产品的概率为( )(A)0.1 (B)0.2 (C)0.9(D)0.8D 解析:∵P (X ≤4)=0.9,∴P (X >4)=1-0.9=0.1,又此正态曲线关于直线x =2对称,故P (X ≤0)=P (X ≥4)=0.1,∴P (0<X <4)=1-P (X ≤0)-P (X ≥4)=0.8,故该产品合格的概率为0.8,故选D. 8.已知随机变量X ~N (2,2),若P (X >t )=0.2,则P (X >4-t )=( ) (A)0.1(B)0.2(C)0.7 (D)0.8D 解析:P (X >4-t )=1-P (X <4-t )=1-P (X >t )=1-0.2=0.8.故选D.9.我国的植树节定于每年的3月12日,是我国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境,通过立法确定的节日.为宣传此活动,某团体向市民免费发放某种花卉种子.假设这种种子每粒发芽的概率都为0.99,若发放了10 000粒,种植后,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:根据题意显然有X 2-B (10 000,0.01),所以E (X2)=10 000×0.01=100,故E (X )=200. 答案:20010.某高三毕业班的8次数学周练中,甲、乙两名同学在连续统计解答题失分的茎叶图如图所示.(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解析:(1)x 甲=18(7+9+11+13+13+16+23+28)=15,x 乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75, s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25. 甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2 .依题意,X ~B ⎝ ⎛⎭⎪⎫2,316,P (X =k )=C k 2⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭⎪⎫13162-k,k =0,1,2, 则X 的分布列为:X 的均值E (X )=2×316=38.能力提升练(时间:15分钟)11.已知ξ~Bn ,12,η~Bn ,13,且E (ξ)=15,则E (η)等于( ) (A)5 (B)10 (C)15(D)20 B 解析:因为ξ~Bn ,12, 所以E (ξ)=n2, 又E (ξ)=15,则n =30. 所以η~B 30,13,故E (η)=30×13=10.故选B.12.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )(A)1127 (B)1124 (C)827(D)924 C 解析:设“从1号箱取到红球”为事件A ,“从2号箱取到红球”为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49,所以P (AB )=P (B |A |)·P (A )=49×23=827,所以两次都取到红球的概率为827,故选C.13.设随机变量X-N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=________.解析:∵随机变量X~N(3,σ2),∴P(X>3)=P(X<3)=0.5,∵P(X>m)=0.3,∴P(X>6-m)=P(X<m)=1-P(X>m)=1-0.3=0.7.答案:0.714.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,该部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2,那么该部件能正常工作的时间超过9年的概率为________.解析:由P(0<ξ<3)=P(ξ>9)=0.2,可得在9年内每个电子元件能正常工作的概率为0.2,因此在9年内这个部件不能正常工作的概率为0.83=0.512,故该部件能正常工作的概率为1-0.512=0.488.答案:0.48815.某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).解:(1)由题知,P(80≤X<85)=12-P(X<75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=3×0.4×0.62=0.432,P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064, 所以随机变量ξ的分布列是ξ 0 1 2 3 P0.2160.4320.2880.064E (ξ)=3×0.4=1.2.16.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作多少个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个)的数据,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若蛋糕店一天制作17个生日蛋糕,(ⅰ)求当天的利润y (单位:元)关于当天需求量n (单位:个,n ∈N *)的函数解析式; (ⅱ)在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率. (2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决策依据,判断应该制作16个还是17个?解:(1)(ⅰ)当n ≥17时y =17×(100-50)=850; 当n ≤16时,y =50n -50(17-n )=100n -850.所以y =⎩⎪⎨⎪⎧100n -850(n ≤16,n ∈N *),850(n ≥17,n ∈N *).(ⅱ)设当天的利润不低于750元为事件A ,当天需求量不低于18个为事件B , 由(ⅰ)得,日利润不低于750元等价于日需求量不低于16个,则P (A )=710,P(B|A)=P(AB)P(A)=0.15+0.13+0.10.7=1935.(2)蛋糕店一天应制作17个生日蛋糕,理由如下:若蛋糕店一天制作17个生日蛋糕,X表示当天的利润(单位:元),X的分布列为E(X)=550×0.1+650×0.2+750×0.16+850×0.54=764.若蛋糕店一天制作16个生日蛋糕,Y表示当天的利润(单位:元),Y的分布列为:E(Y)=600×0.1+700×0.2+800×0.7=760.由以上的计算结果可以看出,E(X)>E(Y),即一天制作17个生日蛋糕的利润大于一天制作16个生日蛋糕的利润,所以蛋糕店一天应该制作17个生日蛋糕.。
正态分布-讲义(学生版)
![正态分布-讲义(学生版)](https://img.taocdn.com/s3/m/b4742dd86394dd88d0d233d4b14e852458fb398a.png)
正态分布一、课堂目标1.理解正态曲线的概念,掌握正态曲线的性质.2.理解正态分布和标准正态分布的概念.3.熟练掌握利用正态曲线的对称性和原则求随机变量在某一范围内的概率.4.掌握正态分布的实际应用问题.二、知识讲解现实中,除了离散型随机变量外,还有大量问题中的随机变量不是离散型的,它们的取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随机变量为连续型随机变量.1. 正态曲线知识精讲(1)正态曲线的概念如下图,对应的函数解析式为:,(其中实数和为参数).显然,对于任意的称,,它的图象在轴的上方.我们称为正态密度函数,称它的图像为正态密度曲线,简称正态曲线.(2)正态曲线的性质①曲线位于轴上方,与轴不相交;②曲线是单峰的,它关于直线对称;③曲线在处达到峰值(最大值);④曲线与轴之间的面积为;⑤当一定时,曲线的位置由确定,曲线随着的变化而沿轴平移,如图所示;⑥当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散,如图所示.经典例题1.关于正态曲线的性质:①曲线关于直线对称,并且曲线在轴上方;②曲线关于轴对称,且曲线的最高点的坐标是;③曲线最高点的纵坐标是,且曲线无最低点;④越大,曲线越“高瘦”;越小,曲线越“矮胖”.A.①②B.②③C.③④D.①③其中正确的是().巩固练习A.B.C.D.2.如图是当取三个不同值,,时的三种正态曲线,那么,,的大小关系是().2. 正态分布知识精讲(1)正态分布的概念若随机变量的概率分布密度函数为:,(其中实数和为参数),则称随机变量服从正态分布,记为.正态分布完全由参数和确定,其中参数是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.注意:若,则.若,如下图所示,取值不超过的概率为图中区域的面积,而为区域的面积.(2)原则若,则对于任何实数,为下图阴影部分的面积,对于固定的和而言,该面积随着的减小而变大.这说明越小,落在区间的概率越大,即集中在周围概率越大.特别有,①,②,③.由知,正态总体几乎总取值于区间之内.而在此区间以外取值的概率只有.,通常认为这种情况在一次试验中几乎不可能发生.在实际应用中,通常认为服从于正态分布的随机变量只取之间的值,并简称之为原则.经典例题3.已知随机变量服从正态分布,若,则 .4.设随机变量,则服从的总体分布可记为 .巩固练习A.B.C.D.5.随机变量服从正态分布,且,则( ).A.B.C.D.6.设随机变量服从正态分布,若,则与的值分别为( ).,,,,经典例题(1)(2)7.已知随机变量,且正态分布密度函数在上是增函数,在上为减函数,.求参数,的值.求.A.人B.人 C.人D.人8.某校高三年级的名学生在一次模拟考试中,数学考试成绩服从正态分布,则该年级学生数学成绩在分以上的学生人数大约为( ).(附数据:,)巩固复习A. B.C.D.9.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外,据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则果实直径在内的概率为().附:若 ,则,.10.某市高二名学生参加市体能测试,成绩采用百分制,平均分为,标准差为,成绩服从正态分布,则成绩在的人数为.参考数据:,,.经典例题11.新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人类中发现的新型冠状病毒,即新型冠状病毒.年月日,国家卫健委决定将“新型冠状病毒感染的肺炎”暂命名为“新型冠状病毒肺炎”,简称“新冠肺炎”.患者初始症状多为发热、乏力和干咳,并逐渐出现呼吸困难等严重表现.基于目前的流行病学调查,潜伏期为天,潜伏期具有传染性,无症状感染者也可能(1)(2)成为传染源.某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取人,答题成绩统计如图所示.频率组距成绩分由直方图可认为答题者的成绩服从正态分布,其中,分别为答题者的平均成绩和成绩的方差,那么这名答题者成绩超过分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)如果成绩超过分的民众我们认为是“防御知识合格者”,用这名答题者的成绩来估计全市的民众,现从全市中随机抽取人,“防御知识合格者”的人数为,求.(精确到)附:①,;②,则,;③,.12.年春节期间,武汉市爆发了新型冠状病毒肺炎疫情,在党中央的坚强领导下,全国人民团结一心,众志成城,共同抗击疫情.某中学寒假开学后,为了普及传染病知识,增强学生的防范意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分分),竞赛奖励规则如下,得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其他学生不得奖.教务处为了解学生对相关知识的掌握情况,随机抽取了名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图.(1)12(2)频率组距竞赛成绩(分)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率.若该校所有参赛学生的成绩近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:若该校共有名学生参加了竞赛,试估计参赛学生中成绩超过分的学生数(结果四舍五入到整数).若从所有参赛学生中(参赛学生数大于)随机抽取名学生进行座谈,设其中竞赛成绩在分以上的学生数为 ,求随机变量 的分布列和均值.附:若随机变量服从正态分布,则,,.巩固练习(1)(2)13.从某公司生产线生产的某种产品中抽取件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:质量指标值频率组距求这件产品质量指标的样本平均数 和样本方差(同一组中的数据用该组区间的中点值作代表).12由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数 ,近似为样本方差.利用该正态分布,求.已知每件该产品的生产成本为元,每件合格品(质量指标值的定价为元;若为次品(质量指标值,除了全额退款外且每件次品还须赔付客户元.若该公司卖出件这种产品,记表示这件产品的利润,求.附:.若,则,.(1)12(2)14.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取个零件,并测量其尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.假设生产状态正常,记表示一天内抽取的个零件中其尺寸在之外的零件数,求及的数学期望.一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.试说明上述监控生产过程方法的合理性.下面是检验员在一天内抽取的个零件的尺寸:附:若随机变量服从正态分布,则,,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到).经计算得,,其中为抽取的第个零件的尺寸,.3. 标准正态分布知识精讲若随机变量,则当,时,称随机变量服从标准正态分布,简称标准正态分布.标准正态分布的密度函数为,,其相应的密度曲线称为标准正态曲线.如图所示:由于标准正态总体在正态总体的研究中占有非常重要的地位,专门制作了“标准正态分布表”.在这个表中,相应于的值是指总体取值小于的概率,即,如图左边的部分所示.由于标准正态曲线关于轴对称,标准正态分布表中仅给出了对应于非负值的值,因此,如果,那么由下图根据面积相等知.知识点睛一般的正态分布均可以化成标准正态分布来进行研究.事实上,可以证明,对任一正态分布来说,取值小于的概率.所以,可以利用公式可将非标准正态分布问题转化为标准正态分布问题.经典例题15.随机变量服从标准正态分布,如果,则.巩固练习16.设随机变量服从标准正态分布,在某项测量中,已知,则在内取值的概率为.A.B.C.D.17.已知随机变量,记,则下列结论不正确的是().三、思维导图你学会了吗?画出思维导图总结本课所学吧!四、出门测18.已知随机变量服从正态分布,且,则.A.B.C.D.19.设两个正态分布和的密度曲线如图所示,则有( ).,,,,A. B.C.D.20.某小区有户居民,各户每月的用电量(单位:度)近似服从正态分布,则用电量在度以上的居民户数约为( ).(参考数据:若随机变量服从正态分布,则,,)21.11频率组距质量指标值(1)(2)从某企业的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图求这件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.①利用该正态分布,求;②某用户从该企业购买了件这种产品,记表示这件产品中质量指标值位于区间的产品件数,利用(Ⅰ)的结果,求.附:.若~,则,.。
8.13二项分布及正态分布
![8.13二项分布及正态分布](https://img.taocdn.com/s3/m/08445c5cf01dc281e53af0ae.png)
科 目数学 年级 高三 备课人 高三数学组 第 课时8.13二项分布及其应用、正态分布 一、回归教材1、设随机变量(,)B n p ξ,且13,7E p ξ==,则n= ,D ξ= .1821;72、已知(,)B n p ξ,8, 1.6E D ξξ==,则n = ,p = .10;0.83、设随机变量(2,),(3,)B p B p ξη,若5(1)9P ξ≥=,则(1)P η≥= .19274、已知随机变量ξ服从正态分布2(0,6)N ,若(2)0.023P ξ>=,则(22)P ξ-≤≤=( )CA.0.477B.0.628C.0.954D.0.9775、已知随机变量2(2,)N ξσ,且(4)0.84P ξ≤=,则(0)P ξ≤= .0.166、在一次高三模拟考试中,某校1000名学生的语文成绩近似满足正态分布.即分数(108,4)N ξ,若(100)0.2P ξ≤=,则考分在108分至116分之间的学生人数约为 人.300知识小结:1、若ξ服从二项分布,即(,)B n p ξ,则E ξ= ,D ξ= .2、解决正态分布概率问题常用方法和技巧: .二、典例分析例1、(2012 四川)某居民小区有两个相互独立的安全防范系统(简称系统)A 和系统B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p . (1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值.15p = (2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ.变式训练:一袋中装有10个同样大的小球,其中有8个小球上标有“成功”,另2个小球标有“幸福”,今连续抽取3次,每次抽1个小球.(1)不放回地抽取时,求抽到“幸福”的个数ξ的分布列;(2)有放回地抽取时,求抽到“幸福”的个数η的期望.三、高考真题1、(2010 课标)某种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A.100B.200C.300D.4002、(2010 山东)已知随机变量ξ服从正态分布2(0,)N σ,若(2)0.023P ξ>=,则(22)P ξ-≤≤=( )CA.0.477B.0.628C.0.954D.0.9773、(2011 湖北)已知随机变量ξ服从正态分布2(2,)N σ,若(4)0.8P ξ<=,则(02)P ξ<<=( )A.0.6B.0.4C.0.3D.0.24、(2008 湖南)已知随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c =( )A.1B.2C.3D.45、(2010 广东)已知随机变量ξ服从正态分布(3,1)N ,若(24)0.6826P ξ≤≤=则(4)P ξ>=( )A.0.1588B.0.1587C.0.1586D.0.1585【上本作业】某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是13. (1)求小明在投篮过程中直到第三次才投中的概率;(2)求小明在4次投篮后的总得分ξ的分布列及均值.【课后反思】。
高中高三数学《正态分布》教案、教学设计
![高中高三数学《正态分布》教案、教学设计](https://img.taocdn.com/s3/m/de2048e7970590c69ec3d5bbfd0a79563c1ed439.png)
6.预习任务:布置下一节课的相关内容,要求学生进行预习,为课堂学习做好准备。
在布置作业时,要注意以下几点:
1.针对不同层次的学生,适当调整作业难度,确保每个学生都能在完成作业的过程中获得成就感。
1.提问:询问学生关于数据分布的知识,如“你们在生活中见过哪些数据呈现一定的分布规律?”
2.实例展示:利用多媒体展示一些生活中的数据分布图像,如学生身高、考试成绩等,让学生观察并总结这些分布的特点。
3.引入正态分布:通过分析实例,引导学生发现这些数据分布的共同点,即呈现出对称、钟形的形状,从而引出正态分布的概念。
-练习巩固:设计难易程度不同的练习题,让学生在练习中巩固所学知识,提高解题能力。
3.评价与反馈:
-采用多元化的评价方式,如课堂问答、小组讨论、课后作业等,全面了解学生的学习情况。
-针对学生的个体差异,给予有针对性的指导和建议,帮助他们克服学习难点,提高学习效果。
-定期进行教学反思,根据学生的学习情况和反馈,调整教学策略,不断提高教学质量。
因此,在教学过程中,应关注学生的个体差异,因材施教,充分调动他们的学习积极性,提高正态分布这一章节的教学效果。同时,注重培养学生的学习兴趣和实际应用能力,使他们在掌握知识的同时,增强数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正态分布的概念、性质、图像特点及其在实际中的应用。
2.难点:正态分布的概率计算、期望和方差的推导及在实际问题中的运用。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发他们学习数学的兴趣,使他们认识到数学知识在现实生活中的重要作用。
高中数学必修三正态分布知识点
![高中数学必修三正态分布知识点](https://img.taocdn.com/s3/m/2ef6c29225c52cc58ad6be82.png)
高中数学必修三正态分布知识点正态分布的定义:如果随机变量ξ的总体密度曲线是由或近似地由下面的函数给定:x∈R,则称ξ服从正态分布,这时的总体分布叫正态分布,其中μ表示总体平均数,σ叫标准差,正态分布常用来表示。
当μ=0,σ=1时,称ξ服从标准正态分布,这时的总体叫标准正态总体。
叫标准正态曲线。
正态曲线x∈R的有关性质:(1)曲线在x轴上方,与x轴永不相交;(2)曲线关于直线x=μ对称,且在x=μ两旁延伸时无限接近x 轴;(3)曲线在x=μ处达到最高点;(4)当μ一定时,曲线形状由σ的大小来决定,σ越大,曲线越“矮胖”,表示总体分布比较离散,σ越小,曲线越“瘦高”,表示总体分布比较集中。
在标准正态总体N(0,1)中:二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并记独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。
高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布
![高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布](https://img.taocdn.com/s3/m/bc4c1e88b8f3f90f76c66137ee06eff9aef849f8.png)
正态曲线: =
1
2π
−
⋅e
− 2
22
, ∈ ,其中 ∈ , > 0为参数,称
正态密度曲线
为正态密度函数,函数 的图象为_________________,简称正态曲线.
(2)
正态曲线的特点
=
①曲线是单峰的,它关于直线________对称.
②
=
1
曲线在________处达到峰值
3
[思路点拨](1)由题可求出一次试验成功的概率,设试验成功的次数为,可
知服从二项分布,再利用方差的性质即可求解.
[解析] 由题意得,启动一次出现的数字为 = 1010的概率 =
设试验成功的次数为,则~
所以的方差 = 54 ×
2
27
×
25
27
2
54,
27
=
2
1
3
2
3
× =
2
.
记选出女生的人数为,则服从超几何分布,③满足题意;
盒中有4个白球和3个黑球,每次从中随机摸出1个球且不放回,
记第一次摸出黑球时摸取的次数为,
则不服从超几何分布,④不满足题意.故填③.
5.已知随机变量 ∼
2
2,
0.35
, ≤ 0 = 0.15,则 2 ≤ ≤ 4 =______.
0 < < 1 ,用表示事件发生的次数,则的分布列为( = ) =
−
C 1 −
_________________________,
= 0,1,2,⋯ ,,称随机变量服从二项分布,记作
∼ , .
(2)
1 −
高三数学正态分布知识点
![高三数学正态分布知识点](https://img.taocdn.com/s3/m/f95fa02024c52cc58bd63186bceb19e8b8f6ec3a.png)
高三数学正态分布知识点正文:正态分布是概率论和统计学中经常应用的一种重要分布。
其特点是在均值附近的概率较高,而在离均值较远处的概率较低。
在高中数学的学习中,正态分布也是一个重要的知识点。
本文将介绍高三数学正态分布的相关知识。
一、正态分布的定义正态分布,又称为高斯分布,是一种连续型概率分布。
对于一个服从正态分布的随机变量X,其概率密度函数可以表示为:f(x) = (1 / sqrt(2 * π * σ^2)) * exp(-(x - μ)^2 / (2 * σ^2))其中,μ是均值,σ是标准差。
二、正态分布的性质1. 对称性:正态分布是以均值为对称轴,两侧面积相等的曲线。
2. 峰度:正态分布的峰度是指曲线的陡峭程度,峰度值为3。
3. 切点:正态分布曲线与均值之间会有两个切点,也即均值加减标准差的位置。
三、标准正态分布标准正态分布是指均值为0,标准差为1的正态分布。
它是对正态分布进行标准化后的结果。
对于一个服从正态分布的随机变量X,可以通过以下公式将其转化为标准正态分布的随机变量Z:Z = (X - μ) / σ四、正态分布的应用正态分布在实际生活和科学研究中具有广泛的应用,以下是几个常见的应用场景:1. 质量控制:正态分布可以帮助企业在生产过程中进行质量控制,通过控制产品的均值和标准差,来确保产品的质量稳定。
2. 统计分析:正态分布在统计学中扮演了重要角色,可以用于分析和描述大量数据的分布情况,从而得出结论或进行预测。
3. 考试评分:在考试评分过程中,教师常常采用正态分布来确定分数段及相应的等级,从而更公平地进行评价。
4. 实验设计:科学实验中常常会涉及到测量误差和数据分布的问题,正态分布可以作为参考,帮助科研人员进行实验设计和数据分析。
五、常用的正态分布应用题1. 求解概率:给定正态分布的均值和标准差,可以求解指定区间的概率。
2. 求解分位数:给定正态分布的均值和标准差,可以求解给定概率下的分位数,即求解落在该概率下的随机变量取值。
高三数学正态分布2
![高三数学正态分布2](https://img.taocdn.com/s3/m/9a175a1f4b35eefdc9d33304.png)
服从标准正态分布
例1. 若x~N(0,1),求 (l)P(2.32<x<1.2); (2)P(x2).
解:(1)P(2.32<x<1.2)=(1.2)(2.32) =(1.2)[1(2.32)]=0.8849(10.9898)=0.8747.
(2)P(x2)=1P(x<2)=1(2)=l0.9772=0.0228.
说明:
(1) (x0)=1(x0)
y
(2)标准正态总体在任一区间(x1, x2)内取
值的概率
P(x1<x<x2)= (x2) (x1) (3)对任一正态总体N(,2),取值小于x
x0 O xx01 x2
x
的概率 F ( x) ( x )
即,若服从正态分布N(,2),则
所以,正态总体 N , 2 在区间: , 、
内取值的概率是:
F F 1 1 211
20.84131 0.683;
正 态 分 布2
f(x)=
1
e
(
x )2
2 2 ,x∈(-∞,
+∞)
2
标准正态曲线:当=0、=l时,正态总体称为标准正态总 体,其相应的函数表示式是
f (x)
1
x2
e 2 ( x )
2
其相应的曲线称为标准正态曲线 y
O
x
正态分布表中,相应于x0的值(x0)是指总体取值小于x0的概率 (x0)=P(x<x0),用图形表示为(阴影部分面积)
例2:已知正态总体N(1,4) , 求取值小于3的
概率.
F3 3 1 1 0.8413 .
高中数学必修2-3第二章2.4正态分布
![高中数学必修2-3第二章2.4正态分布](https://img.taocdn.com/s3/m/a2dbab407cd184254a35351e.png)
2.4正态分布1.问题导航(1)什么是正态曲线和正态分布(2)正态曲线有什么特点曲线所表示的意义是什么(3)怎样求随机变量在某一区间范围内的概率2.例题导读请试做教材P74练习1题.1.正态曲线函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,φμ,σ(x)的图象为__________________正态分布密度曲线,简称正态曲线.2.正态分布一般地,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=⎠⎛abφμ,σ(x)d x,则称随机变量X服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X服从正态分布,则记为________X~N(μ,σ2).3.正态曲线的性质正态曲线φμ,σ(x)=12πσe-(x-μ)22σ2,x∈R有以下性质:(1)曲线位于x轴________上方,与x轴________不相交;(2)曲线是单峰的,它关于直线________x=μ对称;(3)曲线在________x=μ处达到峰值________1σ2π;(4)曲线与x轴之间的面积为________1;(5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②.4.正态总体在三个特殊区间内取值的概率值P(μ-σ<X≤μ+σ)=;P(μ-2σ<X≤μ+2σ)=;P(μ-3σ<X≤μ+3σ)=.1.判断(对的打“√”,错的打“×”)(1)函数φμ,σ(x)中参数μ,σ的意义分别是样本的均值与方差.()(2)正态曲线是单峰的,其与x轴围成的面积是随参数μ,σ的变化而变化的.()(3)正态曲线可以关于y轴对称.()答案:(1)×(2)×(3)√2.设随机变量X~N(μ,σ2),且P(X≤C)=P(X>C),则C=()A.0 B.σC.-μD.μ答案:D3.已知随机变量X服从正态分布N(3,σ2),则P(X<3)=()答案:D4.已知正态分布密度函数为f(x)=12πe-x24π,x∈(-∞,+∞),则该正态分布的均值为________,标准差为________.答案:02π正态分布的再认识(1)参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.μ=0,σ=1的正态分布叫做标准正态分布.(2)正态分布定义中的式子实际是指随机变量X的取值区间在(a,b]上的概率等于总体密度函数在[a,b]上的定积分值.(3)从正态曲线可以看出,对于固定的μ而言,随机变量在(μ-σ,μ+σ)上取值的概率随着σ的减小而增大.这说明σ越小,X取值落在区间(μ-σ,μ+σ)的概率越大,即X集中在μ周围的概率越大.对于固定的μ和σ,随机变量X取值区间越大,所对应的概率就越大,即3σ原则.正态分布密度曲线如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的均值和方差.[解]从正态曲线可知,该正态曲线关于直线x=20对称,最大值为12π,所以μ=20,12πσ=12π,∴σ= 2.于是φμ,σ(x)=12π·e-(x-20)24,x∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.利用图象求正态密度函数的解析式,应抓住图象的实质,主要有两点:一是对称轴x=μ,另一是最值1σ2π,这两点确定以后,相应参数μ,σ便确定了,代入便可求出相应的解析式.扫一扫进入91导学网正态分布密度曲线1.若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为142π.求该正态分布的概率密度函数的解析式.解:由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y轴对称,即μ=0.由于12πσ=12π·4,得σ=4,故该正态分布的概率密度函数的解析式是φμ,σ(x)=142πe-x232,x∈(-∞,+∞).求正态分布下的概率设X~N(1,22),试求:(1)P(-1<X≤3);(2)P(3<X≤5).[解]因为X~N(1,22),所以μ=1,σ=2.(1)P (-1<X ≤3)=P (1-2<X ≤1+2) =P (μ-σ<X ≤μ+σ)= 6.(2)因为P (3<X ≤5)=P (-3≤X <-1), 所以P (3<X ≤5)=12[P (-3<X ≤5)-P (-1<X ≤3)] =12[P (1-4<X ≤1+4)-P (1-2<X ≤1+2)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)] =124- 6)= 9. [互动探究] 在本例条件下,试求P (X ≥5). 解:因为P (X ≥5)=P (X ≤-3), 所以P (X ≥5)=12[1-P (-3<X ≤5)]=12[1-P (1-4<X ≤1+4)] =12[1-P (μ-2σ<X ≤μ+2σ)] =12(1- 4)= 8.(1)求解本类问题的解题思路是充分利用正态曲线的对称性,把待求区间的概率转化到已知区间的概率.这一转化过程中体现了数形结合思想及转化化归思想的应用.(2)常用结论有①对任意的a ,有P (X <μ-a )=P (X >μ+a ); ②P (X <x 0)=1-P (X ≥x 0);③P (a <X <b )=P (X <b )-P (X ≤a ).2.(1)(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=%,P (μ-2σ<ξ<μ+2σ)=%.)A .%B .%C .%D .%解析:选B.由正态分布的概率公式知P (-3<ξ<3)= 6,P (-6<ξ<6)= 4,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=错误!= 9=%,故选B.(2)设随机变量X ~N (4,σ2),且P (4<X <8)=,则P (X <0)=________.解析:概率密度曲线关于直线x =4对称,在4右边的概率为,在0左边的概率等于在8右边的概率,即-=.答案:(3)设随机变量X~N(2,9),若P(X>c+1)=P(X<c-1).①求c的值;②求P(-4<X<8).解:①由X~N(2,9)可知,密度函数曲线关于直线x=2对称(如图所示),又P(X>c+1)=P(X<c-1),故有2-(c-1)=(c+1)-2,∴c=2.②P(-4<X<8)=P(2-2×3<X<2+2×3)=4.正态分布的实际应用某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少(2)成绩在80~90之间的学生占多少[解](1)设学生的得分情况为随机变量X,则X~N(70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P(70-10<X≤70+10)=6=%,∴不及格的学生所占的比为12×(1-6)=7=%.(2)成绩在80到90之间的学生所占的比为12×[P(70-2×10<X≤70+2×10)-P(70-10<X≤70+10)]=12×4-6)=%.正态曲线的应用及求解策略:解答此类题目的关键在于将待求的问题向(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)这三个区间进行转化,然后利用上述区间的概率求出相应概率,在此过程中依然会用到化归思想及数形结合思想.3.(2015·杭州质检)某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X(单位:分)近似服从正态分布X~N(50,102),求他在(30,60]分内赶到火车站的概率.解:∵X~N(50,102),∴μ=50,σ=10.∴P(30<X≤60)=P(30<X≤50)+P(50<X≤60)=12P(μ-2σ<X≤μ+2σ)+12P(μ-σ<X≤μ+σ)=12× 4+12× 6= 5. 即他在(30,60]分内赶到火车站的概率是 5.数学思想正态分布中的化归与转化思想已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)= 6,则P (X >4)=( ) A . 8 B . 7 C . 6 D . 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3. 所以P (X >4)=P (X <2),故P (X >4)=1-P (2≤X ≤4)2=1- 62= 7.[答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.1.设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=φμ,σ(x )=18πe -(x -10)28,则这个正态总体的均值与标准差分别是( ) A .10与8 B .10与2 C .8与10 D .2与10解析:选B.由正态密度函数的定义可知,总体的均值μ=10,方差σ2=4,即σ=2. 2.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )A .2 386B .2 718C .3 413D .4 772 附:若X ~N (μ,σ2), 则P (μ-σ<X ≤μ+σ)= 6, P (μ-2σ<X ≤μ+2σ)= 4.解析:选C.由P (-1<X ≤1)= 6,得P (0<X ≤1)= 3,则阴影部分的面积为 3,故估计落入阴影部分的点的个数为10 000×错误!=3 413,故选C.3.在某项测量中,测量结果X 服从正态分布N (1,σ2)(σ>0).若X 在(0,1)内取值的概率为,则X 在(0,2)内取值的概率为________.解析:如图,易得P (0<X <1)=P (1<X <2), 故P (0<X <2)=2P (0<X <1)=2×=.答案:4.设X ~N (5,1),求P (6<X ≤7). 解:由已知得P (4<X ≤6)= 6, P (3<X ≤7)= 4.又∵正态曲线关于直线x =5对称, ∴P (3<X ≤4)+P (6<X ≤7)= 4- 6 = 8.由对称性知P (3<X ≤4)=P (6<X ≤7), 所以P (6<X ≤7)=错误!= 9.[A.基础达标]1.设随机变量ξ~N (2,2),则D (12ξ)=( )A .1B .2 D .4解析:选C.∵ξ~N (2,2),∴D (ξ)=2. ∴D (12ξ)=122D (ξ)=14×2=12.2.下列函数是正态密度函数的是( ) A .f (x )=12σπe(x -μ)22σ2,μ,σ(σ>0)都是实数B .f (x )=2π2πe -x 22C .f (x )=122πe -(x -1)24D .f (x )=12πe x 22解析:选B.对于A :函数的系数部分的二次根式包含σ,而且指数部分的符号是正的,故A 错误;对于B :符合正态密度函数的解析式,其中σ=1,μ=0,故B 正确;对于C :从系数部分看σ=2,可是从指数部分看σ=2,故C 不正确;对于D :指数部分缺少一个负号,故D 不正确.3.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:选D.由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12,P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错;因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错;对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选D.4.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=,则P (0<ξ<2)=( ) A . B . C . D .解析:选C.如图,正态分布的密度函数图象关于直线x =2对称,所以P (ξ<2)=,并且P (0<ξ<2)=P (2<ξ<4),则P (0<ξ<2)=P (ξ<4)-P (ξ<2)=-=.5.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ=( )A .1B .4C .2D .不能确定解析:选B.根据题意,函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态分布密度曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.6.如果ξ~N (μ,σ2),且P (ξ>3)=P (ξ<1)成立,则μ=________.解析:∵ξ~N (μ,σ2),故概率密度函数关于直线x =μ对称,又P (ξ<1)=P (ξ>3),从而μ=1+32=2,即μ的值为2.答案:27.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P (ξ>2)=12×[1-2P (0<ξ<1)]=12×(1-=.答案:8.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示,若体重大于kg小于等于kg属于正常情况,则这1 000名男生中属于正常情况的人数约为________.解析:依题意可知,μ=,σ=2,故P<X≤=P(μ-σ<X≤μ+σ)=6,从而属于正常情况的人数为1 000× 6≈683.答案:6839.(2015·苏州高二检测)某个工厂的工人月收入服从正态分布N(2 500,202),该工厂共有1 200名工人,试估计月收入在2 440元以下和2 560元以上的工人大约有多少人解:设该工厂工人的月收入为ξ,则ξ~N(2 500,202),所以μ=2 500,σ=20,所以月收入在区间(2 500-3×20,2 500+3×20)内取值的概率是4,该区间即(2 440,2 560).因此月收入在2 440元以下和2 560元以上的工人大约有1 200×(1-4)=1 200× 6≈3(人).10.(2015·漳州高二检测)某城市从南郊某地乘公共汽车前往北区火车站有两条路线可走,第一条路线穿过市区,路线较短,但交通拥挤,所需时间(单位为分)服从正态分布N(50,102);第二条路线沿环城公路走,路程较长,但交通阻塞少,所需时间服从正态分布N(60,42).(1)若只有70分钟可用,问应走哪条路线(2)若只有65分钟可用,又应走哪条路线解:由已知X~N(50,102),Y~N(60,42).由正态分布的2σ区间性质P(μ-2σ<ξ≤μ+2σ)=4.然后解决问题的关键是:根据上述性质得到如下结果:对X:μ=50;σ=10,2σ区间为(30,70),对Y:μ=60;σ=4,2σ区间为(52,68),要尽量保证用时在X?(30,70),Y?(52,68)才能保证有95%以上的概率准时到达.(1)时间只有70分钟可用,应该走第二条路线.(2)时间只有65分钟可用,两种方案都能保证有95%以上的概率准时到达,但是走市区平均用时比路线二少了10分钟,应该走第一条路线.[B.能力提升]1.设随机变量X~N(μ,σ2),则随着σ的增大,P(|X-μ|<3σ)将会()A.单调增加 B.单调减少C.保持不变D.增减不定解析:选C.对于服从正态分布的随机变量X,不论μ,σ怎么变化,P(|X-μ|<3σ)总等于4.2.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为%,则该正态总体对应的正态曲线的最高点的坐标为()A.(1,12π) B.(1,2)C.(12π,1) D.(1,1)解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x=1对称,所以μ=1.又在区间(-2,4)内的概率为%, ∴1-3σ=-2,1+3σ=4,∴σ=1.∴f (x )=12πe -(x -1)22,x ∈R ,∴最高点的坐标为⎝⎛⎭⎪⎫1,12π. 3.设随机变量ξ服从正态分布N (0,1),则下列结论正确的是________. ①P (|ξ|<a )=P (ξ<a )+P (ξ>-a )(a >0); ②P (|ξ|<a )=2P (ξ<a )-1(a >0); ③P (|ξ|<a )=1-2P (ξ<a )(a >0); ④P (|ξ|<a )=1-P (|ξ|>a )(a >0).解析:因为P (|ξ|<a )=P (-a <ξ<a ),所以①不正确;因为P (|ξ|<a )=P (-a <ξ<a )=P (ξ<a )-P (ξ<-a )=P (ξ<a )-P (ξ>a )=P (ξ<a )-(1-P (ξ<a ))=2P (ξ<a )-1,所以②正确,③不正确;因为P (|ξ|<a )+P (|ξ|>a )=1,所以P (|ξ|<a )=1-P (|ξ|>a )(a >0),所以④正确. 答案:②④4.设随机变量X ~N (1,22),则Y =3X -1服从的总体分布可记为________. 解析:因为X ~N (1,22),所以μ=1,σ=2. 又Y =3X -1,所以E (Y )=3E (X )-1=3μ-1=2, D (Y )=9D (X )=62, 所以Y ~N (2,62). 答案:Y ~N (2,62) 5.(2014·高考课标全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P <Z <;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间,的产品件数,利用①的结果,求E (X ).附:150≈.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)= 6,P (μ-2σ<Z <μ+2σ)= 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×+180×+190×+200×+210×+220×+230×=200,s2=(-30)2×+(-20)2×+(-10)2×+0×+102×+202×+302×=150.(2)①由(1)知,Z~N(200,150),从而P<Z<=P(200-<Z<200+=6.②由①知,一件产品的质量指标值位于区间,的概率为6,依题意知X~B(100,6),所以E(X)=100× 6=.6.请仔细阅读下面这段文字,然后解决后面的问题.在实际生活中,常用统计中假设检验的思想检验产品是否合格,方法是:(1)提出统计假设:某种指标服从正态分布N(μ,σ2);(2)确定一次试验中的取值a;(3)作出统计推断:若a∈(μ-3σ,μ+3σ),则接受假设,若a?(μ-3σ,μ+3σ),则拒绝假设.问题:某砖瓦厂生产的砖的“抗断强度”ξ服从正态分布N(30,,质检人员从该厂某一天生产的1 000块砖中随机抽查一块,测得它的抗断强度为kg/cm2,你认为该厂这天生产的这批砖是否合格为什么解:由于在一次试验中ξ落在区间(μ-3σ,μ+3σ)上的概率为,故ξ几乎必然落在上述区间内.把μ=30,σ=代入,得区间(μ-3σ,μ+3σ)=,,而?,,∴据此认为这批砖不合格.。
高考数学一轮复习专题03 正态分布(原卷版)
![高考数学一轮复习专题03 正态分布(原卷版)](https://img.taocdn.com/s3/m/8d57d9266d85ec3a87c24028915f804d2b1687c3.png)
概率与统计 专题三: 正态分布一、知识储备1、若随机变量X 的概率分布密度函数为对任意的x R ∈,()0f x >,它的图象在x 轴的上方.可以证明x 轴和曲线之间的区域的面积为 1.我们称()f x 为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,如上图所示.若随机变量X 的概率分布密度函数为()f x ,则称随机变量X 服从正态分布(normal dis-tribution ),记为2(,)XN μσ.特别地,当0,1μσ==时,称随机变量X 服从标准正态分布,即(0,1)X N .由X 的密度函数及图象可以发现,正态曲线有以下特点: (1)曲线在x 轴的上方,与x 轴不相交。
(2)曲线是单峰的,它关于直线x μ=对称. (3)曲线在x μ=处达到峰值(最高点)(4)当||X 无限增大时,曲线无限接近x 轴. (5)X 轴与正态曲线所夹面积恒等于1 . 2、正态分布的3σ原则22()2(),,x f x x R μσ--=∈()0.6827P X μσμσ-≤≤+≈(22)0.9545P X μσμσ-≤≤+≈ (33)0.9973P X μσμσ-≤≤+≈二、例题讲解1.(2022·湖南高三其他模拟)数学建模是高中数学核心素养的一个组成部分数学建模能力是应用意识和创新意识的重要表现.为全面推动数学建模活动的开展,某学校举行了一次数学建模竞赛活动已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如下.(1)为了对数据进行分析,将60分以下的成绩定为不合格,60分以上(含60分)的成绩定为合格.为科学评估该校学生数学建模水平决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会.记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列和数学期望;(2)已知这60名学生的数学建模竞赛成绩X 服从正态分布()2,N μσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(用一组数据的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,试估计此次竞赛受到奖励的人数.(结果根据四舍五入保留到整数位)解题中可参考使用下列数据:()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.2.(2022·全国高三其他模拟)中国人民解放军装甲兵学院(前身蚌埠坦克学院),建校至今为我国培养了一大批优秀的军事人才.在今年新入学的学生中,为了加强爱校教育,现在从全体新入学的学生中随机的抽取了100人,对他们进行校史问卷测试,得分在45~95之间,分为[)45,55,[)55,65,[)65,75,[)75,85,[]85,95五组,得到如图所示的频率分布直方图,其中第三组的频数为40.(1)请根据频率分布直方图估计样本的平均数X 和方差2s (同一组中的数据用该组区间的中点值代表);(2)根据样本数据,可认为新人学的学生校史问卷测试分数X 近似服从正态分布()2,N μσ,其中μ近似为样本平均数X ,2σ近似为样本方差2s . (i )求()47.279.9P X <<;(ii )在某间寝室有6人,求这6个人中至少有1人校史问卷测试分数在90.8分以上的概率.参考数据:若()2,XN μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=10.9≈,60.95440.76≈,50.97720.89≈,60.97720.87≈.三、实战练习1.(2022·全国高三专题练习(理))在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.(1)由频数分布表可以大致认为,此次问卷调查的得分z 服从正态分布(,210)N μ,μ近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求(3679.5)P Z <≤; (2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: (ⅰ)得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; (ⅰ)每次获赠送的随机话费和对应的概率为:现有市民甲要参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14.5,若2~(,)X N μσ, 则①()0.6827P X μσμσ-<≤≤=;②(22)0.9545P X μσμσ-<≤+=;③3309().973P X μσμσ-<≤+=.2.(2022·沙坪坝·重庆八中高三月考)消费扶贫是社会各界通过消费来自贫困地区和贫困人口的产品与服务,帮助贫困人口增收脱贫的一种扶贫方式,是社会力量参与脱贫攻坚的重要途径.某地为了解消费扶贫对贫困户帮扶情况,该地民政部门从本地的贫困户中随机抽取2000户时2021年的收入进行了一个抽样调查,得到如表所示的频数表:(1)将调查的2000户贫困户按照收入从低到高依次编号为1,2,3,……,2000,从这些贫困户中用系统抽样方法等距抽取50户贫困户进行深度帮扶,已知8号被抽到;(i )收入在[)12,14和[]16,18的贫困户卬被抽到进行深度帮扶的户数分别为多少?(ii )收入在[)12,14和[]16,18的贫困户中被抽到进行深度帮扶的凡中随机选取2户,记选取的2户中来自[)12,14的户数为X ,求X 的分布列和数学期望;(2)由频率分布表可认为该地贫困户的收入X 近似服从正态分布()211,2.6N .现从该地的所有贫困户中随机抽取10户,记收入在(]8.4,16.2之外的户数为Y ,求()2P Y ≥(精确到0.001).参考数据1:当()2~,t N μσ时,()0.6827P t μσμσ-<≤+=,()220.9545P t μσμσ-<≤+=,()330.9973P t μσμσ-<≤+=.参考数据2:100.81860.135≈,90.81860.165≈.3.(2022·湖北高三开学考试)从某企业生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布表和频率分布直方图.(1)求m ,n ,a 的值;(2)求出这1000件产品质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表);(3)由直方图可以认为,这种产品的质量指标值Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s ,其中已计算得252.6σ=.如果产品的质量指标值位于区间()10.50,39.50,企业每件产品可以获利10元,如果产品的质量指标值位于区间()10.50,39.50之外,企业每件产品要损失100元,从该企业一天生产的产品中随机抽取20件产品,记X 为抽取的20件产品所获得的总利润,求()E X .7.25,()0.6826P x μσμσ-<<+=,()220.9544P x μσμσ-<<+=.4.(2022·四川高三其他模拟(理))在创建“全国文明城市”过程中,我市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次)通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分(),198Z N μ,μ近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值作代表), ①求μ的值;②利用该正态分布,求()74.588.5P Z <≤;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14≈.若2~(,)X N μσ,则()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<+=≤.5.(2022·辽宁)《中国制造2025》提出,坚持“创新驱动、质量为先、绿色发展、结构优化、人オ为本”的基本方针,通过“三步走”实现制造强国的战略目标:第一步,到2025年迈入制造强国行列;第二步,到2035年中国制造业整体达到世界制造强国阵营中等水平;第三步,到新中国成立一百年时,综合实力进入世界制造强国前列.质检部门对设计出口的甲、乙两种“无人机”分别随机抽取100架检测某项质量指标,由检测结果得到如下的频率分布直方图:(1)写出频率分布直方图(甲)中a 的值;记甲、乙两种“无人机”100架样本的质量指标的方差分别为2212,S S ,试比较2212,S S 的大小(只需给出答案);(2)若质检部门规定质量指标高于20的无人机为优质产品,根据上面抽取的200架无人机的质量指标进行判断,是否有95%的把握认为甲、乙两种“无人机”的优质率有差异?22()().()()()()n ad bc K n a b c d a b c d a c b d -==+++++++)20k(3)由频率分布直方图可以认为,乙种“无人机”的质量指标值Z 服从正态分布()2,N μσ.其中μ近似为样本平均数2,x σ近似为样本方差22S ,设X 表示从乙种无人机中随机抽取10架,其质量指标值位于(11.6,35.4)的架数,求X 的数学期望.注:①同一组数据用该区间的中点值作代表,计算得211.9S ;②若()2,Z N μσ~,则(P Z μσ-<<0.6826,(22)0.9544P Z μσμσμσ+=-<<+=.6.(2022·山西高三三模(理))2022年是中国共产党百年华诞.中国站在“两个一百年”的历史交汇点,全面建设社会主义现代化国家新征程即将开启.2022年3月23日,中宣部介绍中国共产党成立100周年庆祝活动八项主要内容,其中第一项是结合巩固深化“不忘初心、牢记使命”主题教育成果,在全体党员中开展党史学习教育.这次学习教育贯穿2022年全年,总的要求是学史明理、学史增信、学史崇德、学史力行,教育引导党员干部学党史、悟思想、办实事,开新局.为了配合这次学党史活动,某地组织全体党员干部参加党史知识竞赛,现从参加人员中随机抽取100人,并对他们的分数进行统计,得到如图所示的频率分布直方图.(1)现从这100人中随机抽取2人,记其中得分不低于80分的人数为ξ,试求随机变量ξ的分布列及期望;(2)由频率分布直方图,可以认为该地参加党史知识竞赛人员的分数X 服从正态分布()2,N μσ,其中μ近似为样本平均数,2σ近似为样本方差2s ,经计算2192.44s =.现从所有参加党史知识竞赛的人员中随机抽取500人,且参加党史知识竞赛的人员的分数相互独立,试问这500名参赛者的分数不低于82.3的人数最有可能是多少?13.9≈,()0.6827P X μσμσ-<+=,()220.9545P X μσμσ-<+=,()330.9974P X μσμσ-<+=.7.(2022·全国高三其他模拟)从2021年开始,部分高校实行强基计划,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,越来越多的学生通过参加数学竞赛来证明自己的数学实力.某省举行的数学联赛初赛有10000名学生参加,成绩数据服从正态分布N (80,100),现随机抽取了某市50名参赛学生的初赛成绩进行分析,发现他们的成绩全部位于区间[50,110]内.将成绩分成6组:[50,60),[60,70),[70,80),[80,90),[90,100),[100,110],得到如图所示的频率分布直方图,该50名学生成绩的平均分是77分.(1)求a,b的值(同一组数据用该组区间的中点值为代表).(2)(i)若要在全省选拔15.865%的同学通过初赛进入决赛,则分数线应定为多少?(ii)若给成绩位于全省前228名的同学颁发初赛一等奖的证书,现从本市这50名同学里面能成功进入决赛的同学中任意抽取3人,记这3人中得到初赛一等奖的数为X,求X的分布列和数学期望.附:若X~N(μ,σ²),则P(μ﹣σ≤X≤μ+σ)≈0.6827,P(μ﹣2σ≤X<μ+2σ)≈0.9545,P(μ﹣3σ≤X≤μ+3σ)≈0.9973.8.(2022·河南郑州·(理))已知某生产线的生产设备在正常运行的情况下,生产的零件尺寸X(单位:mm)N.服从正态分布(280,25)(1)从该生产线生产的零件中随机抽取10个,求至少有一个尺寸小于265mm的概率;(2)为了保证生产线正常运行,需要对生产设备进行维护,包括日常维护和故障维修,假设该生产设备使用期限为四年,每一年为一个维护周期,每个周期内日常维护费为5000元,若生产设备能连续运行,则不会产生故障维修费;若生产设备不能连续运行,则除了日常维护费外,还会产生一次故障维修费.已知故障维修费第一次为2000元,此后每增加一次则故障维修费增加2000元.假设每个维护周期互相独立,每个周期内设备不能连续运行的概率为14.求该生产设备运行的四年内生产维护费用总和Y 的分布列与数学期望.参考数据:若~(,2)Z N μσ,则()0.6827P p Z σμσ-<<+=,(22)0.9545P Z μσμσ-<<+=,(33)0.9974Z μσμσ-<<+=,100.99870.9871≈.9.(2022·通辽新城第一中学高三其他模拟(理))近年来,学生职业生涯规划课程逐渐进入课堂,考生选择大学就读专业时不再盲目扎堆热门专业,报考专业分布更加广泛,之前较冷门的数学、物理、化学等专业报考的人数也逐年上升.下表是某高校数学专业近五年的录取平均分与当年该学校的最低提档线对照表:(1)根据上表数据可知,y 与t 之间存在线性相关关系,用最小二乘法求y 关于t 的线性回归方程; (2)据以往数据可知,该大学每年数学专业的录取分数X 服从正态分布(,16)N μ,其中μ为当年该大学的数学录取平均分,假设2022年该校最低提档分数线为540分.(i )若该大学2022年数学专业录取的学生成绩在584分以上的有3人,本专业2022年录取学生共多少人?进入本专业高考成绩前46名的学生可以获得一等奖学金.一等奖学金分数线应该设定为多少分?请说明理由.(ii )若A 同学2022年高考考了562分,他很想报考这所大学的数学专业,想第一志愿填报,请利用概率与统计知识,给该同学一个合理的建议.(第一志愿录取可能性低于60%,则建议谨慎报考)参考公式:()()()1122211ˆnnii i i i i nniii i tty y t y ntybtttnt ====---==--∑∑∑∑,x ˆˆay bt =-. 参考数据:()0.683P X μσμσ-<≤+≈,(22)0.954P X μσμσ-<≤+≈,(33)0.997P X μσμσ-<≤+≈10.(2022·合肥一六八中学高三其他模拟(理))2021年是全面建成小康社会之年,是脱贫攻坚收官之年.莲花村是乡扶贫办的科学养鱼示范村,为了调查该村科技扶贫成果,乡扶贫办调查组从该村的养鱼塘内随机捕捞两次,上午进行第一次捕捞,捕捞到60条鱼,共105kg ,称重后计算得出这60条鱼质量(单位kg )的平方和为200.41,下午进行第二次捕捞,捕捞到40条鱼,共66kg .称重后计算得出这40条鱼质量(单位kg )的平方和为117.(1)请根据以上信息,求所捕捞100条鱼质量的平均数z 和方差2s ; (2)根据以往经验,可以认为该鱼塘鱼质量X 服从正态分布()2,N μδ,用z 作为μ的估计值,用2s作为2δ的估计值.随机从该鱼糖捕捞一条鱼,其质量在[]1.21,3.21的概率是多少?(3)某批发商从该村鱼塘购买了1000条鱼,若从该鱼塘随机捕捞,记ξ为捕捞的鱼的质量在[]1,21,3.21的条数,利用(2)的结果,求ξ的数学期望.附:(1)数据1t ,2t ,…n t 的方差()22221111nn i i i i s t tt nt n n ==⎛⎫=-=- ⎪⎝⎭∑∑, (2)若随机变量X 服从正态分布()2,N μδ,则()0.6827P X μδμδ-≤≤+=;()22P X μδμδ-≤≤+0.9545=;()330.9973P X μδμδ-≤≤+=.13.(2022·湖南师大附中高三其他模拟)某工厂引进新的生产设备M ,为对其进行评估,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值65μ=,标准差 2.2σ=,以频率值作为概率的估计值.(1)为评估设备M 对原材料的利用情况,需要研究零件中某材料含量y 和原料中的该材料含量x 之间的相关关系,现取了8对观测值,求y 与x 的线性回归方程. 附:①对于一组数据()()()()112233,,,,,,,,n n x y x y x y x y ,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为1221ˆni ii nii x y nx ybxnx ==-=-∑∑,ˆˆˆay bx =-;②参考数据:8152i i x ==∑,81228i i y ==∑,821478i i x ==∑,811849i ii x y==∑.(2)为评判设备M 生产零件的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①()0.6826P X μσμσ-<+;②(22)0,9544P X μσμσ-<+; ③(33)0.9974P X μσμσ-<+.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(3)将直径小于等于2μσ-或直径大于2μσ+的零件认为是次品.从样本中随意抽取2件零件,再从设备M 的生产流水线上随意抽取2件零件,计算其中次品总数Y 的数学期望E (Y ).。
两点分布、超几何分布、正态分布
![两点分布、超几何分布、正态分布](https://img.taocdn.com/s3/m/c887f125f242336c1fb95e03.png)
两点分布、超几何分布、正态分布1.两点分布如果随机变量X 的分布列为其中0<p <1,则称离散型随机变量E (X )=p ,D (X )=p (1-p ). 2.超几何分布一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =k )=C k M C n -k N -MC n N(k =0,1,2,…,m ).即其中m =min{M ,n }如果一个随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布. 3.正态分布(1)正态曲线:函数φμ,σ(x )=12πσ,x ∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R ).我们称函数φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π; ④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示bφμ,σ(x)d x,则称随机变量X 如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=⎠⎛a服从正态分布,记作X~N(μ,σ2).正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.682_6;②P(μ-2σ<X≤μ+2σ)=0.954_4;③P(μ-3σ<X≤μ+3σ)=0.997_4.4.判断下列结论的正误(正确的打“√”错误的打“×”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量.服从两点分布.(×)(2)某人射击时命中的概率为0.5,此人射击三次命中的次数X服从两点分布.(×)(3)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.(√)(4)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.(√)(5)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.(√)(6)正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.(√)(7)对于正态分布X~N(μ,σ2),总有P(x<μ-a)=P(x≥μ+a).(√)(8)X~N(μ,σ2),发生在(μ-3σ,μ+3σ),之外的概率为0,称之不可能事件.(×)(9)正态总体(1,9)在区间(0,1)和(-1,0)上的概率相等.(×)(10)随机变量分布列为是两点分布.(×)考点一两点分布、超几何分布[例1](1)设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于()A.0 B.12 C.13 D.23解析:设X的分布列为即“X=0”表示试验失败,“X=1”p,则成功率为2p.由p+2p=1,则p=13,故应选C.答案:C(2)一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是7 9.①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列及期望.解:①记“从袋中任意摸出2个球,至少得到1个白球”为事件A,设袋中白球的个数为x,则P(A)=1-C210-xC210=79,得到x=5.故白球有5个.②X服从超几何分布,P(X=k)=C k5C3-k5C310,k=0,1,2,3.于是可得其分布列为∴E(X)=0×112+1×512+2×512+3×112=1812=32.[方法引航](1)两点分布列的随机变量X取值为1和0,不能取其它整数,X=1表示“成功”.(2)对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.1.若将本例(1)改为,求X 的成功率.解:p +p 2=1,(p >0),∴p =5-12∴X 的成功率P (x =1)=2)215(=3-52.2.将本例(2)改为:随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了了解公众对“延迟退休”的态度,某校课外研究性学习小组从某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:年龄在各随机选取2人,进行跟踪调查.①求从年龄在[25,30)的被调查者中选取的2人都赞成的概率; ②求选中的4人中,至少有3人赞成的概率;③若选中的4人中,不赞成的人数为X ,求随机变量X 的分布列和数学期望. 解:①设“年龄在[25,30)的被调查者中选取的2人都赞成”为事件A ,所以P (A )=C 23C 25=310.②设“选中的4人中,至少有3人赞成”为事件B ,所以P (B )=C 23C 12C 11C 25C 23+C 13C 12C 22C 25C 23+C 23C 22C 25C 23=12.③X 的可能取值为0,1,2,3,所以P (X =0)=C 23C 22C 25C 23=110, P (X =1)=C 13C 12C 22+C 23C 12C 11C 25C 23=25, P (X =2)=C 22C 22+C 13C 12C 12C 11C 25C 23=1330, P (X =3)=C 22C 12C 11C 25C 23=115.所以E(X)=0×110+1×25+2×1330+3×115=2215.考点二正态分布[例2](1)(2017·山西四校联考)设随机变量X~N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=__________.解析:因为P(X>m)=0.3,X~N(3,σ2)所以m>3,P(X<6-m)=P(X<3-(m-3))=P(X>m)=0.3所以P(X>6-m)=1-P(X<6-m)=0.7.答案:0.7(2)云南省2016年全省高中男生身高统计调查数据显示:全省100 000名高中男生的身高服从正态分布N(170.5,16).现从云南省某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5 cm和187.5 cm之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方式得到的频率分布直方图.①试评估该校高三年级男生在全省高中男生中的平均身高状况;②求这50名男生身高在177.5 cm以上(含177.5 cm)的人数;③身高排名(从高到低)在全省130名之内,其身高最低为多少?参考数据:若ξ~N(μ,σ2),则P(μ~σ<ξ≤μ+σ)=0.682 6,P(μ-2σ<ξ≤μ+2σ)=0.954 4,P(μ-3σ<ξ≤μ+3σ)=0.997 4.解:①由频率分布直方图知,该校高三年级男生平均身高为160×0.1+165×0.2+170×0.3+175×0.2+180×0.1+185×0.1=171.5(cm),∵171.5 cm>170.5 cm,故该校高三年级男生的平均身高高于全省高中男生身高的平均值.②由频率分布直方图知,后两组频率和为0.2,∴人数和为0.2×50=10,即这50名男生中身高在177.5 cm以上(含177.5 cm)的人数为10.③∵P(170.5-3×4<ξ<170.5+3×4)=0.997 4,∴P(ξ≥182.5)=1-0.997 42=0.001 3,又0.001 3×100 000=130.∴身高在182.5 cm以上(含182.5 cm)的高中男生可排进全省前130名.[方法引航]在高考中主要考查正态分布的概率计算问题,其解决方法如下:第一步,先弄清正态分布的均值是多少;第二步:若均值为μ,则根据正态曲线的对称性可得P(X≥μ)=0.5,P(X≤μ)=0.5,P(X≤μ+c)=P(X≥μ-c)(c>0)等结论;第三步,根据这些结论、题目中所给条件及对称性,对目标概率进行转化求解即可.,说明:关于正态总体在某个区间内取值的概率问题,要熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值,充分利用正态曲线的对称性和曲线与x轴之间的面积为1来解题.1.(2017·江西八校联考)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为()A.0.05B.0.1 C.0.15 D.0.2解析:选B.由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.2.在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知该班同学中成绩在80~85分的有17人.试计算该班成绩在90分以上的同学有多少人.解:依题意,由80~85分的同学的人数和所占百分比求出该班同学的总数,再求90分以上同学的人数.∵成绩服从正态分布N(80,52),∴μ=80,σ=5,μ-σ=75,μ+σ=85.于是成绩在(75,85]内的同学占全班同学的68.26%.由正态曲线的对称性知,成绩在(80,85]内的同学占全班同学的12×68.26%=34.13%.设该班有x名同学,则x×34.13%=17,解得x≈50.又μ-2σ=80-10=70,μ+2σ=80+10=90,∴成绩在(70,90]内的同学占全班同学的95.44%.∴成绩在(80,90]内的同学占全班同学的47.72%.∴成绩在90分以上的同学占全班同学的50%-47.72%=2.28%.即有50×2.28%≈1(人),即成绩在90分以上的同学仅有1人.[易错警示]不能正确理解正态曲线的对称性[典例]已知随机变量ξ满足正态分布N(μ,σ2),且P(ξ<1)=12,P(ξ>2)=0.4,则P(0<ξ<1)=________.[错解]由P(ξ>2)=0.4,∴P(ξ<2)=1-0.4=0.6,∴P(0<ξ<1)=12P(ξ<2)=0.3.[错因]P(0<ξ<1)是P(ξ<2)的一半.[正解]由P(ξ<1)=12得μ=1,∴随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称.∵P(ξ<2)=0.6,∴P(0<ξ<1)=0.6-0.5=0.1.[答案]0.1[警示]①正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相同.②P(X<a)=1-P(X≥a),P(X≤μ-a)=P(X≥μ+a).[高考真题体验]1.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为()A.2 386B.2 718 C.3 413 D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.解析:选C.由P(-1<X≤1)=0.682 6,得P(0<X≤1)=0.341 3,则阴影部分的面积为0.341 3,故估计落入阴影部分的点的个数为10 000×0.341 31×1=3 413,故选C.2.(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56% B.13.59% C.27.18% D.31.74%解析:选B.由正态分布的概率公式知P(-3<ξ<3)=0.682 6,P(-6<ξ<6)=0.954 4,故P(3<ξ<6)=P(-6<ξ<6)-P(-3<ξ<3)2=0.954 4-0.682 62=0.135 9=13.59%,故选B.3.(2014·高考课标全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.4.(2016·高考天津卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为13.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望E(X)=0×415+1×715+2×415=1.课时规范训练A组基础演练1.设随机变量X服从正态分布N(2,9),若P(X>c+1)=P(X<c-1),则c等于() A.1B.2 C.3 D.4解析:选B.∵μ=2,由正态分布的定义知其图象关于直线x=2对称,于是c+1+c-12=2,∴c=2.2.正态总体N(1,9)在区间(2,3)和(-1,0)上取值的概率分别为m,n,则()A.m>n B.m<n C.m=n D.不确定解析:选C.正态总体N(1,9)的曲线关于x=1对称,区间(2,3)与(-1,0)到对称轴距离相等,故m=n.3.一批产品共50件,次品率为4%,从中任取10件,则抽到1件次品的概率是()A.C12C948C1050 B.C12C950C1050 C.C12C1050 D.C948C1050解析:选A.50件产品中,次品有50×4%=2件,设抽到的次品数为X ,则抽到1件次品的概率是P (X =1)=C 12C 948C 1050.4.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t ) 解析:选D.由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12, P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错; 因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错; 对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选D.5.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a =( )A.37B.73C.78D.87解析:选B.因为ξ服从正态分布N (3,4),且P (ξ<2a -3)=P (ξ>a +2),所以2a -3+a +2=6,∴a =73.6.若随机变量X 的概率分布密度函数是φμ,σ(x )=122π·e -(x +2)28(x ∈R ),则E (2X -1)=________.解析:σ=2,μ=-2,E (2X -1)=2E (X )-1=2×(-2)-1=-5. 答案:-57.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的分布列为解析:P (X =0)=C 22C 25=0.1,P (X =1)=C 3·C 2C 25=610=0.6,P (X =2)=C 23C 25=0.3.答案:0.1 0.6 0.38.已知某次英语考试的成绩X 服从正态分布N (116,64),则10 000名考生中成绩在140分以上的人数为________. 解析:由已知得μ=116,σ=8.∴P (92<X ≤140)=P (μ-3σ<X ≤μ+3σ)=0.997 4,∴P (X >140)=12(1-0.997 4)=0.001 3,∴成绩在140分以上的人数为13. 答案:139.甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是23. (1)求甲、乙至少有一人闯关成功的概率; (2)设甲答对题目的个数为ξ,求ξ的分布列.解:(1)设甲、乙闯关成功分别为事件A ,B ,则P (A )=C 14C 22C 36=420=15,P (B )=3)321(-+C 2312)32()321(-=127+29=727, 则甲、乙至少有一人闯关成功的概率是1-P (A -B -)=1-P (A -)P (B -)=1-15×727=128135.(2)由题意知ξ的可能取值是1,2.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12+C 34C 36=45,则ξ的分布列为10.盒内有大小相同的9个球,其中24个黑色球.规定取出1个红色球得1分,取出一个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球. (1)求取出的3个球中至少有一个红球的概率; (2)求取出的3个球得分之和恰好为1分的概率; (3)设ξ为取出的3个球中白色球的个数,求ξ的分布列.解:(1)P =1-C 37C 39=712.(2)记“取出1个红色球,2个白色球”为事件B ,“取出2个红色球,1个黑色球”为事件C ,则P (B +C )=P (B )+P (C )=C 12C 23C 39+C 22C 14C 39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,P (ξ=k )=C k 3C 3-k 6C 39,k =0,1,2,3.故P (ξ=0)=C 36C 39=521,P (ξ=1)=C 13C 26C 39=1528;P (ξ=2)=C 23C 16C 39=314,P (ξ=3)=C 33C 39=184.ξ的分布列为:1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为φμ,σ(x )=12π·10(x ∈R ),则下列命题中不正确的是( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10解析:选B.由密度函数知,均值(期望)μ=80,标准差σ=10,又正态曲线关于直线x =80对称,故分数在100分以上的人数与分数在60分以下的人数相同,所以B 是错误的. 2.已知X ~N (μ,σ2)时,P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4,则dx x 2)1(432e 21--⎰π=( )A .0.043B .0.021 5C .0.341 3D .0.477 2解析:选B.由题意知,μ=1,σ=1,P (3<X ≤4)=12×[P (-2<X ≤4)-P (-1<X ≤3)]=12×(0.997 4-0.954 4)=0.021 5.故选B.3.已知随机变量ξ服从正态分布N (2,9),若P (ξ>3)=a ,P (1<ξ≤3)=b ,则函数f (a )=a 2+a -1a +1的值域是________.解析:易知正态曲线关于直线x =2对称,所以P (ξ>3)=P (ξ<1)=a ,则有⎩⎨⎧2a +b =1,a >0,b >0⇒0<a <12.f (a )=a -1a +1=(a +1)-1a +1-1,令t =a +1∈)23,1(,函数f (a )=g (t )=t -1t -1在t∈)23,1(上是增函数,所以g (t )∈)61,1())23(),1((--=g g答案:)61,1(--4.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715, P (X =1)=C 12C 28C 310=715, P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E (X )=0×715+1×715+2×115=35.5.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;(2)设这两人中享受折扣优惠的人数为ξ,求ξ的分布列和数学期望. 解:(1)设“两人都享受折扣优惠”为事件A , “两人都不享受折扣优惠”为事件B ,则P(A)=C212C236=11105,P(B)=C224C236=46105.因为事件A,B互斥,则P(A+B)=P(A)+P(B)=11105+46105=57105=1935.故这两人都享受折扣优惠或都不享受折扣优惠的概率是19 35.(2)据题意,得ξ的可能取值0,1,2.其中P(ξ=0)=P(B)=46105,P(ξ=1)=C112C124C236=48105,P(ξ=2)=P(A)=11 105.所以ξ的分布列为所以,E(ξ)=0×46105+1×48105+2×11105=23.。
备战高考数学复习考点知识与题型讲解81---二项分布与正态分布
![备战高考数学复习考点知识与题型讲解81---二项分布与正态分布](https://img.taocdn.com/s3/m/1135c3bab1717fd5360cba1aa8114431b90d8eb6.png)
备战高考数学复习考点知识与题型讲解第81讲二项分布与正态分布考向预测核心素养二项分布与正态分布是高考的热点,三种题型均有可数据分析、数学建模能出现,中高难度.一、知识梳理1.伯努利试验与二项分布(1)伯努利试验:只包含两个可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.(2)二项分布:一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为p k(1-p)n-k,k=0,1,2,…,n.P(X=k)=C kn如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作X~B(n,p).[提醒] (1)两点分布是二项分布当n=1时的特殊情形.(2)超几何分布与二项分布的关系若将超几何分布的概率模型改成:若有N件产品,其中M件是次品,有放回地任意抽取n件,则其中恰有的次品件数X是服从二项分布的.(3)二项分布的均值、方差若X~B(n,p),则E(X)=np,D(X)=np(1-p).2.正态分布(1)定义:若随机变量X的概率分布密度函数为f(x),x∈R,其中μ∈R,σ>0为参数,则称随机变量X服从正态分布,记为X~N(μ,σ2).(2)正态曲线的特点①曲线是单峰的,它关于直线x =μ对称; ②曲线在x =μ处达到峰值1σ2π;③当|x |无限增大时,曲线无限接近x 轴. (3)正态分布的均值与方差若X ~N (μ,σ2),则E (X )=μ,D (X )=σ2. 二、教材衍化1.(人A 选择性必修第三册P 77练习T 2改编)鸡接种一种疫苗后,有90%不会感染某种病毒,如果有5只鸡接种了疫苗,则恰好有4只鸡没有感染病毒的概率约为( )A .0.33 B.0.66 C.0.5D.0.45解析:选A.设5只接种疫苗的鸡中没有感染病毒的只数为X ,则X ~B (5,0.9),所以P (X =4)=C 45×0.94×0.1≈0.33.2.(人A 选择性必修第三册P 87习题7.5T 1改编)某学校高二年级数学学业质量检测考试成绩X ~N (80,25),如果规定大于85分为A 等,那么在参加考试的学生中随机选择一名,他的成绩为A 等的概率是________.解析:P (X >85)=12[1-P (75≤X ≤85)]=1-0.682 72=0.158 65.答案:0.158 653.(人A 选择性必修第三册P 71习题7.3T 4改编)在一次招聘中,主考官要求应聘者从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.乙能正确完成每道题的概率为23,且每道题完成与否互不影响.记乙能答对的题数为Y ,则Y 的数学期望为________.解析:由题意知Y 的可能取值为0,1,2,3,且Y ~B ⎝ ⎛⎭⎪⎫3,23,则E (Y )=3×23=2.答案:24.(人A 选择性必修第三册P 87练习T 2改编)已知随机变量X 服从正态分布N (3,1),且P (X >2c -1)=P (X <c +3),则c =________.解析:因为X ~N (3,1),所以正态曲线关于x =3对称,且P (X >2c -1)=P (X <c +3),所以2c -1+c +3=3×2,所以c =43.答案:43一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)X 表示n 次重复抛掷1枚骰子出现点数是3的倍数的次数,则X 服从二项分布.( )(2)设随机变量X 服从二项分布B ⎝⎛⎭⎪⎫6,12,则P (X =3)=516.( )(3)已知随机变量X 服从正态分布N (2,σ2)且P (X <4)=0.9,则P (0≤X ≤2)=0.4.( )(4)正态曲线关于y 轴对称.( ) 答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏1.(二项分布建模易错)在100件产品中有5件次品,采用放回的方式从中任意抽取10件,设X 表示这10件产品中的次品数,则( )A .X ~B (100,0.05) B.X ~B (10,0.05)C .X ~B (100,0.95) D.X ~B (10,0.95)解析:选 B.有放回抽取,每次取到次品的概率都是0.05,相当于10重伯努利试验,所以X ~B (10,0.05).2.(正态曲线特征易错)已知三个随机变量的正态密度函数f i (x )=(x ∈R ,i =1,2,3)的图象如图所示,则( )A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3D.μ1<μ2=μ3,σ1=σ2<σ3解析:选D.因为正态密度函数f2(x)和f3(x)的图象关于同一条直线对称,所以μ2=μ3.又f2(x)的图象的对称轴在f1(x)的图象的对称轴的右边,所以μ1<μ2=μ3.因为σ越大,曲线越“矮胖”.σ越小,曲线越“瘦高”,由图象,可知正态密度函数f1(x)和f2(x)的图象一样“瘦高”,f3(x)的图象明显“矮胖”,所以σ1=σ2<σ3.故选D.3.(正态分布的概率易错)设随机变量X~N(2,σ2),P(0<X<4)=0.3,则P(X<0)=________.解析:P(X<0)=P(X<2)-P(0≤X<2)=0.5-0.15=0.35.答案:0.35考点一二项分布(多维探究)复习指导:理解n重伯努利试验模型,会用二项分布解决一些概率问题.角度1 n重伯努利试验(1)(多选)下列事件不是n重伯努利试验的是( )A.运动员甲射击一次,“射中9环”与“射中8环”B.甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C.甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没射中目标”D.在相同的条件下,甲射击10次,5次击中目标(2)某课外兴趣小组制作了一个正十二面体模型(如图),并在十二个面分别雕刻了十二生肖的图案,其中2个成员将模型随机抛出,希望能抛出牛的图案朝上(即牛的图案在最上面),2人各抛一次,则恰好出现一次牛的图案朝上的概率为( )A.112B. 143 144C.1172D.23144【解析】 (1)A ,C 符合互斥事件的概念,是互斥事件,不是独立重复试验;B 是相互独立事件,但是“甲射中10环”与“乙射中9环” 的概率不一定相同,因此不是独立重复试验;D 中在相同的条件下,甲射击10次,是独立重复试验.故选ABC.(2)因为1人抛一次抛出牛的图案朝上的概率是112,所以2人各抛一次,恰好出现一次牛的图案朝上的概率为P =C 12×112×1112=1172,故选C. 【答案】(1)ABC (2)C 角度2 二项分布新高考改革中,明确高考考试科目由语文、数学、英语3科,及考生在政治、历史、地理、物理、化学、生物6个科目中自主选择的3科组成,不分文理科.假设6个自主选择的科目中每科被选择的可能性相等,每位学生选择每个科目互不影响,甲、乙、丙为某中学高一年级的3名学生.(1)求这3名学生都选择物理的概率;(2)设X 为这3名学生中选择物理的人数,求X 的分布列,并求E (X ). 【解】 (1)设“这3名学生都选择物理”为事件A , 依题意得每位学生选择物理的概率都为12,故P (A )=⎝ ⎛⎭⎪⎫123=18,即这3名学生都选择物理的概率为18.(2)X 的所有可能取值为0,1,2,3, 由题意知X ~B ⎝ ⎛⎭⎪⎫3,12,P (X =0)=C 03⎝ ⎛⎭⎪⎫120⎝ ⎛⎭⎪⎫123=18,P (X =1)=C 13⎝ ⎛⎭⎪⎫121⎝ ⎛⎭⎪⎫122=38,P (X =2)=C 23⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫121=38,P (X =3)=C 33⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫120=18.所以X 的分布列为X 0 1 2 3 P18383818E (X )=3×12=32.判断某随机变量是否服从二项分布的关键点(1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.[提醒] 在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为n 重伯努利试验,进而判定是否服从二项分布.|跟踪训练|(2022·四川自贡三诊)在一次产品质量抽查中发现,某箱5件产品中有2件次品. (1)从该箱产品依次不放回地随机抽取2件产品,求抽到次品的概率;(2)若进行3次(1)中的独立重复试验,设抽到的2件产品中含次品的次数为X ,求X 的分布列和期望.解:(1)记“从该箱产品中依次不放回地随机抽取2件产品,抽到次品”为事件A ,则P (A )=A 25-A 23A 25=0.7.(2)由题意得X 服从二项分布,即X ~B (3,0.7).则P (X =k )=C k 30.7k 0.33-k(k =0,1,2,3),则X 的分布列为.X 0 1 2 3P271 0001891 0004411 0003431 000E(X)=3×0.7=2.1.考点二正态分布(多维探究)复习指导:认识正态分布曲线的特点及曲线所表示的意义.角度1 正态密度函数及正态曲线(1)设有一正态总体,它的正态曲线是函数f(x)的图象,且f(x)=18πe-(x-10)28,则这个正态总体的均值与标准差分别是( )A.10与8 B.10与2C.8与10D.2与10(2)(多选)某市教学质量检测中,甲、乙、丙三科考试成绩的正态分布图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),下列说法中正确的是( )A.甲科总体的标准差最小B.丙科总体的平均数最小C.乙科总体的标准差及平均数都居中D.甲、乙、丙总体的平均数相同【解析】(1)由正态密度函数的定义和解析式可知,总体的均值μ=10,方差σ2=4,即σ=2.故选B.(2)不妨设成绩ξ服从正态分布N(μ,σ2),由正态曲线的性质知,曲线的形状由参数σ确定,σ越大,曲线越矮胖;σ越小,曲线越瘦高,且σ是标准差,x=μ为正态曲线的对称轴,且μ为平均数,由题干所给图象可知,甲科总体标准差最小,乙科总体标准差居中,丙科总体标准差最大,甲、乙、丙总体的平均数相同,故AD正确.【答案】(1)B (2)AD角度2 正态分布的概率(1)(2022·福建宁德高三月考)已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.158 7,则P(2<X<4)=( )A.0.682 6 B.0.341 3C.0.460 3 D.0.920 7(2)某高速公路收费站的三个高速收费口每天通过的小汽车数X(单位:辆)均服从正态分布N(600,σ2).若P(500≤X≤700)=0.6,假设三个收费口均能正常工作,则这三个收费口每天通过的小汽车数至少有一个超过700辆的概率为( )A.1125B.12 125C.61125D.64 125【解析】(1)因为随机变量X服从正态分布N(3,1),且P(X≥4)=0.158 7,所以P(X≤2)=0.158 7,所以P(2<X<4)=1-P(X≤2)-P(X≥4)=0.682 6,故选A.(2)根据正态曲线的对称性,每个收费口每天通过的小汽车数超过700辆的概率P(X>700)=12[1-P(500≤X≤700)]=12×(1-0.6)=15,所以这三个收费口每天通过的小汽车数至少有一个超过700辆的概率P=1-(1-15)3=61125,故选C.【答案】(1)A (2)C角度3 3σ原则(1)(2022·南京市人民中学月考)某地用随机抽样的方式检查了10 000名成年男子的红细胞数(1012/L),发现成年男子红细胞数服从正态分布,其中均值为4.78(1012/L),标准差为0.38(1012/L),则样本中红细胞数低于4.02(1012/L)的成年男子人数大约为( )(附:P(μ-σ≤X≤μ+σ)≈0.682 7;P(μ-2σ≤X≤μ+2σ)≈0.954 5;P(μ-3σ≤X≤μ+3σ)≈0.997 3)A.228 B.456C.1 587D.4 772(2)某厂生产的零件外径尺寸为X(单位:cm)且X~N(10,0.04),今从该厂上、下午生产的零件中各随机取一个,测得其外径分别为10.5 cm,9.3 cm,则可认为( ) A.上午生产情况正常,下午生产情况异常B.上午生产情况异常,下午生产情况正常C.上、下午生产情况均正常D.上、下午生产情况均异常【解析】(1)依题意得,μ=4.78,σ=0.38,根据附录数据,P(4.02≤X≤5.54)≈0.954 5,由正态曲线得对称性,P(X<4.02)=1-P(4.02≤X≤5.54)2≈0.045 52,于是样本中红细胞数低于4.02(1012/L)的成年男子人数大约为10 000·0.045 52≈228.故选A.(2)因为零件外径尺寸X~N(10,0.04),μ=10,σ=0.2,所以根据3σ原则,外径在10-3×0.2=9.4(cm)与10+3×0.2=10.6(cm)之外时为异常.从上、下午生产的零件中各随机取一个,测得其外径分别为10.5 cm和9.3 cm,所以可认为上午生产情况正常,下午生产情况异常.故选A.【答案】(1)A (2)A服从N(μ,σ2)的随机变量X在某个区间内取值的概率的求法(1)利用P(μ-σ≤X≤μ+σ),P(μ-2σ≤X≤μ+2σ),P(μ-3σ≤X≤μ+3σ)的值直接求.(2)充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质求解.|跟踪训练|1.(2022·河南省部分名校高三阶段性测试)已知随机变量X,Y,Z满足X~N(3,σ2),Y~N(1,σ2),Z=Y-1,且P(X>4)=0.1,则P(Z2<1)的值为( ) A.0.1 B.0.2C.0.8D.0.9解析:选C.由题意得随机变量X和Y所对的正态密度曲线的形状相同,它们的对称轴分别为x=3和x=1,因此,P(Y>2)=P(X>4)=0.1,而Z=Y-1,则P(Z>1)=P(Y-1>1)=P(Y>2)=0.1,于是得P(Z2<1)=P(-1<Z<1)=1-0.1×2=0.8,所以P(Z2<1)的值为0.8.故选C.2.(2022·河南省高二期末测试)某袋装加碘食盐的质量X(单位:克)服从正态分布N(500,4),某超市在进货前要在厂家随机抽检这种食盐100袋,则质量在[498,504]内的袋数约为( )附:若X ~N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5.A .82 B.80 C.84D.86解析:选A.因为X ~N (500,4),则有μ=500,σ=2,498=μ-σ,504=μ+2σ,于是得质量X 在[498,504]内的概率为P (μ-σ≤X ≤μ+2σ)=12P (μ-σ≤X ≤μ+σ)+12P (μ-2σ≤X ≤μ+2σ)≈0.682 7+0.954 52=0.818 6,则有0.818 6×100=81.86≈82,所以质量在[498,504]内的袋数约为82.故选A.[A 基础达标]1.(2022·昆明诊断)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是()A.25B.35C.18125D.54125解析:选D.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P 1=35,所以3次中恰有2次抽到黄球的概率P =C 23⎝ ⎛⎭⎪⎫352·⎝⎛⎭⎪⎫1-35=54125.2.(2021·新高考卷Ⅱ)某物理量的测量结果服从正态分布N (10,σ2),下列结论中不正确的是()A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .σ越小,该物理量在一次测量中大于10的概率为0.5C .σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D .σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等 解析:选D.对于A ,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在(9.9,10.0)的概率与落在(10.2,10.3)的概率不同,所以一次测量结果落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D 错误.故选D.3.(2022·辽宁葫芦岛兴城高级中学模拟)一个袋中有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为ξ1;当无放回依次取出两个小球时,记取出的红球数为ξ2,则()A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)=E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)=E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2)解析:选B.ξ1的可能取值为0,1,2,ξ1~B ⎝ ⎛⎭⎪⎫2,13,E (ξ1)=2×13=23,D (ξ1)=2×13×23=49; ξ2的可能取值为0,1,P (ξ2=0)=23×12=13,P (ξ2=1)=23×12+13×22=23,所以E (ξ2)=0×13+1×23=23,D (ξ2)=⎝⎛⎭⎪⎫0-232×13+⎝ ⎛⎭⎪⎫1-232×23=29.所以E (ξ1)=E (ξ2),D (ξ1)>D (ξ2).故选B.4.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<4)=()A .0.6 B.0.4 C.0.3D.0.2解析:选A.由P (ξ<4)=0.8,得P (ξ≥4)=0.2.又正态曲线关于x =2对称,则P (ξ≤0)=P (ξ≥4)=0.2,所以P (0<ξ<4)=1-P (ξ≤0)-P (ξ≥4)=0.6.5.(多选)某市组织了一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f (x )=1102π·e -(x -80)2200(x ∈R ),则下列命题中正确的是() A .该市这次考试中数学的平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10解析:选ACD.由密度函数知,均值(期望)μ=80,标准差σ=10,又曲线关于直线x =80对称,故分数为100分以上的人数与分数在60分以下的人数相同,所以B 是错误的.6.(2022·江苏省联考)若随机变量X ~B ⎝ ⎛⎭⎪⎫n ,13,且E (X )∈N *,写出一个符合条件的n =________.解析:因为随机变量X ~B ⎝ ⎛⎭⎪⎫n ,13,所以E (X )=13n ∈N *,所以一个符合条件的n =3(答案不唯一). 答案:3(答案不唯一)7.(2022·广东揭阳摸底)抛出4颗骰子(每颗骰子的六个面分别有1~6共六个不同的点数),恰有3颗向上的点数不小于5的概率为________.解析:每颗骰子向上的点数不小于5的概率为26=13,设抛出的4颗骰子中,向上的点数不小于5的颗数为X ,则X ~B ⎝ ⎛⎭⎪⎫4,13,则恰有3颗向上的点数不小于5的概率为C 34⎝ ⎛⎭⎪⎫133⎝⎛⎭⎪⎫1-13=881.答案:8818.一试验田某种作物一株生长的果实个数X 服从正态分布N (90,σ2),且P (X <70)=0.2,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量Y ,且Y 服从二项分布,则Y 的方差为________.解析:因为X ~N (90,σ2),且P (X <70)=0.2, 所以P (X >110)=0.2,所以P (90≤X ≤110)=0.5-0.2=0.3, 所以Y ~B (10,0.3),Y 的方差为10×0.3×(1-0.3)=2.1. 答案:2.19.(2020·高考北京卷节选)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:(1)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率.解:(1)该校男生支持方案一的概率为200200+400=13,该校女生支持方案一的概率为300300+100=34.(2)3人中恰有2人支持方案一分两种情况,①仅有两个男生支持方案一,②仅有一个男生支持方案一,一个女生支持方案一.所以3人中恰有2人支持方案一概率为C 22⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫1-34+C 12×⎝ ⎛⎭⎪⎫13×⎝⎛⎭⎪⎫1-13×34=1336. 10.(2022·湖北省鄂东南省级示范高中联考)小C 和小D 两个同学进行摸球游戏,甲、乙两个盒子中各装有6个大小和质地相同的球,其中甲盒子中有1个红球,2个黄球,3个蓝球,乙盒子中红球、黄球、蓝球均为2个,小C 同学在甲盒子中取球,小D 同学在乙盒子中取球.(1)若两个同学各取一个球,求取出的两个球颜色不相同的概率;(2)若两个同学第一次各取一个球,对比颜色后分别放入原来的盒子;第二次再各取一个球,对比颜色后再分别放入原来的盒子,这样重复取球三次.记球颜色相同的次数为随机变量X ,求X 的分布列和数学期望.解:(1)16×23+26×23+36×23=23.(2)由题意可知X ~B ⎝ ⎛⎭⎪⎫3,13,X 的所有可能取值为0,1,2,3,P (X =0)=⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫233=827;P (X =1)=C 13⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫232=49;P (X =2)=C 23⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫231=29;P (X =3)=⎝ ⎛⎭⎪⎫133=127,所以X 的分布列为X 0 1 2 3 P8274929127E (X )=3×13=1.[B 综合应用]11.如图,在网格状小地图中,一机器人从A (0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是23,向右的概率是13,则6秒后到达B (4,2)点的概率为()A.16729 B.80243 C.4729D.20243解析:选D.根据题意可知,机器人每秒运动一次,则6秒共运动6次,若其从A (0,0)点出发,6秒后到达B (4,2), 则需要向右走4步,向上走2步,故其6秒后到达B 的概率为C 26·⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫134=60729=20243.12.在某市2020年3月份的高三线上质量检测考试中,学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市学生有9 455人,如果某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第()A .1 500名 B.1 700名 C .4 500名D.8 000名解析:选A.由题意得μ=98,σ=10,则P (X >108)=12[1-P (88≤X ≤108)]=12[1-P (μ-σ≤X ≤μ+σ)]≈12×(1-0.682 7)=0.158 65,而0.158 65×9 455≈1 500,所以该学生的数学成绩大约排在全市第1 500名.故选A.13.(2022·江西模拟)甲、乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球赢球的概率为25,则在比分为10∶10后甲先发球的情况下,甲以13∶11赢下此局的概率为()A.225B.310C.110D.325解析:选C.在比分为10∶10后甲先发球的情况下,甲以13∶11赢下此局分两种情况:①后四球胜方依次为甲乙甲甲,概率为P 1=12×35×12×25=350;②后四球胜方依次为乙甲甲甲,概率为P 2=12×25×12×25=125,所以所求事件的概率为P 1+P 2=110. 14.(2022·广东省湛江市高三测试)某学校有100人参加暑期社会实践,实践结束时的综合能力测试成绩X 近似服从正态分布N (110,σ2),若P (100≤X ≤110)=0.35,则综合能力测试成绩在120分以上的人数大约为________.解析:因为X 近似服从正态分布N (110,σ2),P (100≤X ≤110)=0.35, 所以P (110≤X ≤120)=P (100≤X ≤110)=0.35, 由正态分布的对称性可知:P (X >120)=0.5-P (110≤X ≤120)=0.5-0.35=0.15,所以综合能力测试成绩在120分以上的人数大约为0.15×100=15. 答案:15[C 素养提升]15.某天在一酒吧中,肖恩和尤瑟纳尔两人进行角力比赛,约定胜者可以喝杯酒,当肖恩赢20局且尤瑟纳尔赢得40局时他们发现桌子上还剩最后一杯酒,此时酒吧老板和伙计提议两人中先胜四局的可以喝最后那杯酒,如果四局、五局、六局、七局后可以决出胜负那么分别由肖恩、尤瑟纳尔、酒吧伙计和酒吧老板付费,请利用数学知识做出合理假设,猜测最后付酒资的最有可能是()A .肖恩 B.尤瑟纳尔 C .酒吧伙计D.酒吧老板解析:选 B.由题意,肖恩每局获胜的概率为2020+40=13,尤瑟纳尔每局获胜的概率为4020+40=23,先胜四场比赛结束就是比赛采用七局四胜制,设决出胜负的场数为X ,于是得:P (X =4)=C 44(13)4+C 44(23)4=1781,P (X =5)=C 34(13)4×23+C 34(23)4×13=827, P (X =6)=C 35(13)4×(23)2+C 35(23)4×(13)2=200729,P (X =7)=C 36(13)3×(23)3=160729, 显然有1781<160729<200729<827,即P (X =4)<P (X =7)<P (X =6)<P (X =5),所以最后付酒资的最有可能是尤瑟纳尔.故选B.16.袋中有6个白球、3个黑球,从中随机地连续抽取2次,每次取1个球. (1)若每次抽取后都放回,设取到黑球的次数为X ,求X 的分布列及E (X ); (2)若每次抽取后都不放回,设取到黑球的个数为Y ,求Y 的分布列及E (Y ). 解:(1)由题意,X 的可能取值为0,1,2, 其中每次抽取到黑球的概率均为13,所以2次取球可以看成2次的独立重复试验,则X ~B (2,13),可得P (X =0)=C 02×⎝ ⎛⎭⎪⎫130⎝⎛⎭⎪⎫1-132=49,P (X =1)=C 12×13×⎝ ⎛⎭⎪⎫1-13=49, P (X =2)=C 22×⎝ ⎛⎭⎪⎫132⎝⎛⎭⎪⎫1-130=19,所以随机变量X 的分布列为E (X )=2×13=23(或E (X )=0×9+1×9+2×9=3). (2)由题意知Y 的可能取值为0,1,2, 可得P (Y =0)=C 26C 29=512,P (Y =1)=C 16C 13C 29=12,P (Y =2)=C 23C 29=112,所以随机变量Y 的分布列为3 3+6=23(或E(Y)=0×512+1×12+2×112=23.E(Y)=2×。
高考数学考点突破——随机变量及其分布(理科专用):二项分布与正态分布
![高考数学考点突破——随机变量及其分布(理科专用):二项分布与正态分布](https://img.taocdn.com/s3/m/00aad73d52ea551810a687ed.png)
二项分布与正态分布【考点梳理】1.条件概率2.事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立,P (B |A )=P (B ),P (A |B )=P (A ).3.独立重复试验与二项分布 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ).(2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.4.正态分布 (1)正态分布的定义如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x ,则称随机变量X 服从正态分布,记为X ~N (μ,σ2).其中φμ,σ(x )()222x μσ-- (σ>0).(2)正态曲线的性质①曲线位于x 轴上方,与x 轴不相交,与x 轴之间的面积为1; ②曲线是单峰的,它关于直线x =μ对称;③曲线在x =μ处达到峰值1σ2π;④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.(3)正态总体在三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.6826; ②P (μ-2σ<X ≤μ+2σ)=0.9544; ③P (μ-3σ<X ≤μ+3σ)=0.9974. 【考点突破】考点一、条件概率【例1】(1)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P(B |A )=________.(2)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A .110B .15C .25D .12 [答案] (1) 14(2) C[解析] (1)由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O =2×2π×12=2π.事件AB 表示“豆子落在△EOH 内”,则P (AB )=S △EOH S 圆O =12×12π×12=12π.故P (B |A )=P ABP A =12π2π=14.(2)设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.故选C.【类题通法】1. 利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ),这是求条件概率的通法.2. 借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).【对点训练】1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12 [答案] B[解析] 法一 P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P (AB )P (A )=11025=14.法二 事件A 包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB 发生的结果只有(2,4)一种情形,即n (AB )=1. 故由古典概型概率P (B |A )=n (AB )n (A )=14.2.某盒中装有10只乒乓球,其中6只新球、4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A .35B .59C .110D .25 [答案] B[解析] 第一次摸出新球记为事件A ,则P (A )=35,第二次取到新球记为事件B ,则P (AB )=C 26C 210=13,∴P (B |A )=P (AB )P (A )=1335=59. 考点二、相互独立事件同时发生的概率【例2】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. [解析] (1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为:(2)设Y 率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到1个红灯的概率为1148.【类题通法】求相互独立事件同时发生的概率的主要方法 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.【对点训练】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.[解析] 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (E F )=13 ×25=215, P (X =100)=P (E F )=13×35=315=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=615=25.故所求的分布列为【例3】空气质量指数(AirQuality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.一环保人士记录去年某地六月10天的AQI 的茎叶图如图.(1)利用该样本估计该地六月空气质量为优良(AQI ≤100)的天数;(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.[解析] (1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,∴该样本中空气质量为优良的频率为610=35,从而估计该地六月空气质量为优良的天数为30×35=18.(2)由(1)估计某天空气质量为优良的概率为35,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,35. ∴P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 13⎝ ⎛⎭⎪⎫35⎝ ⎛⎭⎪⎫252=36125, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25=54125,P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125,ξ的分布列为【类题通法】利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P(X=k)=C k n p k(1-p)n-k的三个条件:(1)在一次试验中某事件A发生的概率是一个常数p;(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n次试验中事件A恰好发生了k次的概率.【对点训练】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,求X的分布列.[解析] (1)设这些产品质量指标值落在区间[75,85]内的频率为x,则落在区间[55,65),[65,75)内的频率分别为4x,2x.依题意得(0.004+0.012+0.019+0.030)×10+4x+2x+x=1,解得x=0.05.所以这些产品质量指标值落在区间[75,85]内的频率为0.05.(2)由(1)得,这些产品质量指标值落在区间[45,75)内的频率为0.3+0.2+0.1=0.6,将频率视为概率得p=0.6.从该企业生产的这种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X服从二项分布B(n,p),其中n=3,p=0.6.因为X的所有可能取值为0,1,2,3,且P(X=0)=C03×0.60×0.43=0.064,P(X=1)=C13×0.61×0.42=0.288,P (X =2)=C 23×0.62×0.41=0.432, P (X =3)=C 33×0.63×0.40=0.216,所以X 的分布列为【例4】(1)已知随机变量ξ服从正态分布N(2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)=( ) A .0.6 B .0.4 C .0.3 D .0.2(2)某班有50名学生,一次考试后数学成绩ξ(ξ∈N)近似服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数约为________.[答案] (1) C (2) 10[解析] (1)画出正态曲线如图,结合图象知:P (ξ<0)=P (ξ>4)=1-P (ξ<4)=1-0.8=0.2,P (0<ξ<2)=12P (0<ξ<4)=12[1-P (ξ<0)-P (ξ>4)]=12(1-0.2-0.2)=0.3.(2)由题意,知P (ξ>110)=1-2Pξ2=0.2,所以该班学生数学成绩在110分以上的人数约为0.2×50=10. 【类题通法】对于正态分布N (μ,σ2),由x =μ是正态曲线的对称轴知:(1)对任意的a ,有P (X <μ-a )=P (X >μ+a );(2)P (X <x 0)=1-P (X ≥x 0);(3)P (a <X <b )=P (X <b )-P (X ≤a ).【对点训练】1.设随机变量ξ服从正态分布N(1,σ2),若P (ξ<2)=0.8,则P (0<ξ<1)的值为________. [答案] 0.3[解析] P (0<ξ<1)=P (ξ<2)-P (ξ<1)=0.8-0.5=0.3.2.某地高三理科学生有15 000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80<ξ≤100)=0.35,若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上的试卷中抽取( )A .5份B .10份C .15份D .20份 [答案] C[解析] ∵数学成绩ξ服从正态分布N (100,σ2),P (80<ξ≤100)=0.35,∴P (80<ξ≤120)=2×0.35=0.70,∴P (ξ>120)=12×(1-0.70)=0.15,∴应抽取的份数为100×0.15=15.。
高考数学一轮总复习课件:正态分布
![高考数学一轮总复习课件:正态分布](https://img.taocdn.com/s3/m/c8cb12e7b8f3f90f76c66137ee06eff9aef849ac.png)
解析 ∵X~N(4,σ2),∴P(X≥6)=P(X≤2)=p,∴P(x≤6) =1-P(X>6)=1-p.故选D.
5.某市期末教学质量检测,甲、乙、丙三科考试成绩近似 服从正态分布,曲线图象如下,可得下列说法中正确的是( A )
A.甲学科总体的方差最小 B.丙学科总体的均值最小 C.乙学科总体的方差最小 D.甲、乙、丙学科总体的均值不相同
【解析】 因为ξ服从正态分布N(1,σ2)(σ>0),所以曲线
的对称轴是直线x=1,又ξ在(0,2)内取值的概率为0.6,根据正
态曲线的性质,则在(2,+∞)内取值的概率为P(ξ>2)=
1-0.6 2
=
0.2.故选D.
【讲评】 本题考查正态分布曲线的特点及曲线所表示的
意义,主要考查正态曲线的对称性;一般地,X是服从正态分
A.0.997 4
B.0.963 8
C.0.881 9
D.0.993 6
【解析】 由于σ=9,μ=47,那么P(|X-47|<27)=P(|X- μ|<3σ)=P(μ-3σ<X<μ+3σ)≈0.997 4.
(3)(2021·深圳一模)已知三个正态分布密度函数φi(x)=
1 2πσi
e-
(x-μi)2 2σi2
【解析】 本题考查正态分布.因为数学成绩x服从正态分
布N(100,17.52),则P(100-17.5<x<100+17.5)=
P(82.5<x<117.5)≈0.68,所以此次参加考试的学生成绩不超过
82.5分的概率为P(x≤82.5)=
1-P(82.5<x<117.5) 2
≈
1-0.68 2
2.4正态分布2
![2.4正态分布2](https://img.taocdn.com/s3/m/c0918dd3b90d6c85ed3ac666.png)
取值的概率只有0.3 %。 际( m运 用3由当通中于, am常就这称只33些考这)时概之虑些正率内这情态值,个况其总区很他发体间小区生的,(称 间为取一为 取值小值般3几概几不乎原率乎超总则事不过取.件可值5能 。%于.区 在)实间,
二、正态曲线的特点
(x)
1
e
(
xm ) 2 2
2
,
x
R
( 0)
2
1、曲线位于x轴 _上___方,与x轴 _不__相__交__.
2、曲线是单峰的,它关于直线 _x___m_ 对称.
3、曲线在
_x___m__
处达到最大值
1
____2____.
4、曲线与x轴之间的面积为 __1_____.
正态总体的密度函数表达式
【解】 因为 ξ~N(90,100),所以 μ=90,σ=10. (1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是 0.954 5, 而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10 =110,于是考试成绩 ξ 位于区间(70,110)内的概率为 0.954 5. (2)由 μ=90,σ=10,得 μ-σ=80,μ+σ=100.由于正态变量在 区间(μ-σ,μ+σ)内取值的概率是 0.682 7,所以考试成绩 ξ 位于 区间(80,100)内的概率就是 0.682 7.一共有 2 000 名考生,所以考 试成绩在(80,100)间的考生大约有 2 000×0.682 7 ≈1 365(人).
经试验表明,一个随 机变量如果是众多的、互 不相干的、不分主次的偶 然因素作用结果之和,它 就服从或近似服从正态分
高三数学知识点:正态分布
![高三数学知识点:正态分布](https://img.taocdn.com/s3/m/ecbc2026b6360b4c2e3f5727a5e9856a561226d2.png)
高三数学知识点:正态分布
已知某次数学考试的成绩服从正态分布N(116,64),则成绩在140分以上的考生所占的百分比是多少?
解析过程:
要求成绩在140分以上的考生所占的百分比,可以利用正态分布的性质,即在均值左侧的面积为50%。
因此,首先需要求出成绩为140分的标准差,即(140-116)/8=3.然后,利用标准正态分布表可以得出,成绩在140分以上的考生所占的百分比为0.13%。
正态分布是一种非常重要的概率分布,其密度函数呈钟形曲线,均值、标准差是其两个重要参数。
在实际应用中,正态分布广泛用于描述各种自然现象和社会现象,如人口分布、气温变化等。
掌握正态分布的性质和应用方法,对于解决实际问题具有重要意义。
常见考法包括选择题和填空题,容易掌握。
但在考试中,也需要注意正态分布曲线的性质,避免出现低级错误。
总之,掌握正态分布的知识点和应用方法对于高中数学的研究和考试都非常重要。
更多相关知识点可登陆德智知识点网站和答疑平台进行研究和交流。
正态分布
![正态分布](https://img.taocdn.com/s3/m/885e430ca6c30c2259019e4a.png)
(1)当x = μ 时,函数值为最大. 1 (0, ] (2)f ( x) 的值域为 2 s (3) f ( x) 的图象关于
μ=0 σ=1 -3 -2 -1 0 1 2 3 x
x
=μ 对称.
(-∞,μ] 时f ( x)为增函数. (4)当 x∈ (μ,+∞) 时f ( x)为减函数. 当 x∈
S(-,-X)
S(X,)=S(-,-X)
X=m
3.特殊区间的概率:
若X~N
(m,s 2 ),则对于任何实数a>0,概率
m a m a
P(m a x ≤ m a)
x=μ
m ,s ( x )dx
m-a
m+a
特别地有(熟记)
P( m s X m s ) 0.6826, P( m 2s X m 2s ) 0.9544, P( m 3s X m 3s ) 0.9974.
【1】 (07 湖南)设随机变量 x 服从标准正态分
1) , 已 知 p ( x < - 1.96 ) =0.025 , 则 布 N (0, P(| x | 1.96) =( C )
A.0.025 C.0.950 B.0.050 D.0.975
y
o
x
【2】 (07 浙江)已知随机变量 x 服从正态分布
σ=1
σ=2
-3 -2 -1 0 1 2 3 x
(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变 化而沿x轴平移; (6)当μ一定时,曲线的形状由σ确定 . σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
练习:
1、若一个正态分布的概率函数是一个偶函数且该函
正态分布-高考数学复习课件
![正态分布-高考数学复习课件](https://img.taocdn.com/s3/m/a6ef1fb46394dd88d0d233d4b14e852458fb39cd.png)
∴该班学生数学成绩在120分以上(包含120分)的人数约为0.16×50=8.
4
3
4. 在含有3件次品的10件产品中,任取4件, X 表示取到的次品的个数,
则 P ( X =2)=
3
10
.
C23 C27
3
由题意得 P ( X =2)= 4 = .
C10
10
关键能力 重点探究
考点一
例1
正态分布的性质
份测量其纤维长度的均值 Yi ( i =1,2,…,20),得到的数据如下.
Y1
24.1
Y2
31.8
Y3
32.7
Y4
28.2
Y5
28.4
Y6
34.3
Y7
29.1
Y8
34.8
Y9
37.2
Y 10
30.8
Y 11
30.6
Y 12
25.2
Y 13
32.9
Y 14
27.1
Y 15
35.9
Y 16
28.9
Y 17
;
;
.
[小题诊断]
1. (易错题)已知某批零件的长度误差(单位:毫米)服从正态分布 N (0,
32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(
A. 4.56%
B. 13.59%
C. 27.18%
D. 31.74%
B )
2. 某班有50名同学,一次数学考试的成绩 X 服从正态分布 N (110,102).
越集中,30小于40,B正确,C不正确;对于选项D: P (280< X <320)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]甲从某车行购买了一部宝马车,在行驶过程中,发现该车刹车系统存在安全隐患,为此引起纠纷。甲的如下请求应予支持的有:()A.如果车行明知该车刹车系统存在隐患,甲可要求惩罚性赔偿金B.不管车行是否知道刹车系统存在隐患,甲可要求惩罚性赔偿金C.不管甲是否受到严重健康损 [单选]船用发电柴油机必须装设的调速器是()。A.液压调速器B.机械式调速器C.定速调速器D.极限调速器 [判断题]记帐方法有单式记帐法和复式记帐法两类,银行会计核算使用复式记帐法。A.正确B.错误 [单选,A2型题,A1/A2型题]与郁证发病关系最为密切的脏腑是()A.心B.肝C.脾D.肺E.肾 [单选]为防止脑疝的发生,下列哪项检查最为重要()A.脑电图B.眼底检查C.TCD检查D.头CT检查E.头MRI检查 [判断题]浮选加药顺序一般为:先加抑制剂或调整剂,再加捕收剂,最后加起泡剂。如煤泥中有相当部分自然疏水性颗粒粘附气泡而优先浮起时,可先加起泡剂,再加捕收剂。A.正确B.错误 [单选,B1型题]体现了新公共健康精神的项目是()A.预防为主B.三级预防C.强化社区行动D.人人享有卫生保健E.群众性自我保健 [单选]胎盘小叶的个数约为().A.8个B.10个C.18~20个D.22个E.24个 [单选]定量分析应当与定性分析相结合,两者关系中()。A.定量分析是最重要的B.定性分析是最重要的C.定量分析是基础D.定性分析是基础 [填空题]四乙基铅主要通过()侵入人体使其中毒。 [填空题]由于采用近似的()或近似的()而产生的误差,称为原理误差。 [单选]早期保健不包括()。A.全身体检检查B.询问病史C.指导孕期营养D.骨盆内外测量E.孕期保健指导 [单选]绘制零件图,要立足于(),使人容易看懂和易于理解,不应给人误解和错觉。A、实际B、简单C、方便看图D、美观 [填空题]已知电容式差压变送器负载电阻RL=650Ω,则电源供电电压应满足()。 [单选]杀虫剂、杀菌剂和除草剂是按照()来分类的。A.原料的来源B.成分C.用途D.机理 [单选]左室后壁在M型超声上的表现是()。A.左室后壁与室间隔呈同向运动B.左室后壁运动幅度大于室间隔C.舒张期左室后壁向前运动,室间隔向后运动D.左室后壁因受膈肌影响,运动幅度小于室间隔E.左室后壁舒张期与二尖瓣前叶呈同向运动 [单选,A1型题]有关血栓闭塞性脉管炎的说法,下列不恰当的是()A.患者多数为男性,好发于青壮年B.主要侵袭四肢,尤其是下肢的中、小动静脉,以动脉为主C.是一种累及血管的炎症和慢性闭塞性疾病D.又称Buerger病E.以上都对 [问答题,简答题]简述酒精生产过程对淀粉原料进行糖化时的主要设备及作用。 [多选]传统的施工组织设计与施工项目管理规划的本质性区别在于()。A.文件的性质不同B.文件的范围不同C.文件产生的基础不同D.文件的实施方案不同 [单选]下列哪一项是腹水影响肝脏声像图的情况:()A.没有影响B.肝脏回声显示增强C.腹水使声波衰减导致肝回声减弱D.肝内管状结构不清 [填空题]人的心理活动包括___________与个性心理。 [单选]肿块位于宫旁,大小、形状不一,有明显触痛,一般为()A.卵巢赘生性肿物B.盆腔炎C.输卵管妊娠D.卵巢非赘生性肿瘤E.全不是 [单选]目前,生产部门大量采用地球化学分析的方法,来()认识生油气层。A.估计B.定性C.定量D.线性 [单选]现浇钢筋混凝土板最小厚度不正确的有()。A.民用建筑单向楼板60mmB.工业建筑单向楼板60mmC.双向板80mmD.无梁楼板150mm [单选,A1型题]构成传染病流行过程的三个基本条件是()A.微生物,宿主,媒介B.传染源,传播途径,易感人群C.病原体,环境,宿主D.病原体数量,致病力,定位E.病原体,人体,他们所处的环境 [多选]按照作用原理,泵可分为动力式泵类、容积式泵类及其他类型泵。下列属于动力式泵的有()。A.齿轮泵B.螺杆泵C.轴流泵D.旋涡泵 [单选]下列属于小流量、高扬程泵的是()。A.轴流泵B.混流泵C.旋涡泵D.离心式杂质泵 [单选]下列说法正确()。A.正常组织MR信号80%来源于细胞内B.水对MR信号形成贡献最大C.自由水的T1明显延长D.结合水的T1较自由水的有缩短E.以上均对 [单选]切割装置正常开车前,应试切20条编织袋,检查切割()是否在要求范围内。A.长度B.宽度C.厚度D.废品 [单选]雾中航行,每一船舶必须()。A.缓速行驶B.减速行驶C.以安全航速航行D.以能维持舵效的最小航速航行 [单选,A2型题,A1/A2型题]下列哪种胃炎最常见()A.急性单纯性胃炎B.糜烂性胃炎C.化脓性胃炎D.腐蚀性胃炎E.慢性胃体炎 [单选]()以上乘车日期、车次、到站、座别相同的旅客可作为团体旅客,承运人应优先安排。A.10人B.20人C.15人D.12人 [单选,A1型题]一般饮片在煎煮前应先用冷水浸泡约()A.5minB.10minC.30minD.60minE.90min [单选]邮寄物入境后,邮政部门应向检验检疫机构提供进境邮寄物清单,由检验检疫人员实施现场检疫。现场检疫时,对需拆验的邮寄物,由检验检疫人员和()双方共同拆包。A.海关人员B.公安人员C.邮政人员D.收件人 [填空题]单相桥式整流电路中,负载两端直流电压为变压器二次绕组电压的()倍。 [单选]某钢筋混凝土工程的施工合同中规定,工程所需用的所有商品混凝土由建设单位负责供应,其余材料由施工单位负责采购,则()。A.商品混凝土由建设单位负责检验,其他材料由施工单位负责检验B.商品混凝土由监理单位负责检验,其他材料由施工单位负责检验C.商品混凝土和其他材料均 [单选]男性,50岁。反复咳嗽、咳痰4年,近半年来发作时常伴呼吸困难。体检:双肺散在哮鸣音,肺底部有湿啰音。肺功能测定:一秒钟用力呼气容积/用力肺活量为55%,残气容积/肺总量为35%。诊断应考虑为()A.慢性单纯型支气管炎B.慢性喘息型支气管炎C.支气管哮喘D.慢性支气管炎合 [单选]期末资产负债表"应付债券"项目应根据()填列。A."应付债券"科目的总账余额B."应付债券"科目所属明细账借贷方余额相抵后的金额C."应付债券"科目的总账期末余额扣除一年内到期偿还部分后的金额D."应付债券--债券面值"科目余额 [单选]对于层数较多的建筑物,当室外给水管网水压不能满足室内用水时,可将其()。A.竖向分区B.横向分区C.并联分区D.串联分区 [单选,A型题]支原体与病毒的共同点是()A.只有一种核酸B.能在人工培养基上生长C.能通过滤菌器D.无核糖体E.对抗