青岛版七年级数学上 第八章 一元一次方程 山东省单县单元质量检测题(含答案)
青岛版七年级数学上册一元一次方程单元测试卷8 (1)
青岛版七年级数学上册一元一次方程单元测试卷8一、选择题(共10小题;共50分)1. 下列等式变形不正确的是A. 若,则B. 若,则C. 若,则D. 若,则2. 若关于的方程的解是,则的值为C. D.3. 若是关于的一元一次方程,则的值为A. C. 或 D. 或4. 若,则在①;②;③;④中,正确的有A. 个B. 个C. 个D. 个5. 如图,表中给出的是某月的月历,任意选取“”型框中的个数(如阴影部分所示).请你运用所学的数学知识来研究,则这个数的和不可能是A. B. C. D.6. 已知方程组与有相同的解,则、的值为A. B. C. D.7. 若是方程的一个根,设,,则与的大小关系正确的为A. B. C. D. 不确定8. 观察:①;②;③;④;⑤,其中一元一次方程有A. 个B. 个C. 个D. 个9. 元旦那天,位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为,每人离圆桌的距离均为,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使人都坐下,并且人之间的距离与原来人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为,根据题意,可列方程A.B.C.D.10. 点,在边长为的正方形边上运动,按方向,点从以的速度,点从以的速度运动,如图所示,当点第次追上点时,是在正方形的上.A. 边B. 边C. 点D. 点二、填空题(共6小题;共30分)11. 若,则,根据;12. 已知方程是关于的一元一次方程,则.13. 方程的解也是方程的解时, .14. 二元一次方程组的解是.15. 用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”个.16. 年月日全国人大通过《关于修改〈中华人民共和国个人所得税〉的决定》,征收个人所得税的起点从元提高到元,也就是说,原来月收入超过元的部分为全月应纳税所得额,从年月日起,月收入超过元的部分为全月应纳税所得额.税法修改前后全月应纳税所得额的划分及相应的税率相同,见下表:某人年月依法交纳本月个人所得税元,假如本月按新税法计算,此人应少纳税元.三、解答题(共8小题;共104分)17. 在下列问题中引入未知数,列出方程:(1)某数的倍与的和等于,求这个数;(2)长方形的宽是长的,长方形的周长是厘米,求长方形的长;(3)小明用元钱买了本练习本,找回了元钱,求每本练习本的价格.18. 列等式表示:(1)的倍等于;(2)比的倍大的数等于;(3)的一半与的和等于的倍.19. 已知是方程的解,求关于的方程的解.20. 你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答会告诉你方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.解:设.方程两边都乘以,可得.由和,可得,即.(请你体会将方程两边都乘以起到的作用)解得,即.填空:将写成分数形式为.(2)请你仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.21. 根据如图所示的程序计算,若输入的值为,求输出的的值.22. (1)(223. 某书城开展对学生优惠售书活动,凡一次性购书不超过元的一律九折优惠,超过元的,其中元按九折算,超过元的部分按八折算,某学生第一次去购书付款元,第二次又去购书享受了八折优惠,他查看了新买书的定价,发现两次共节省了元钱,则该学生第二次购书实际付款多少元?24. 某市场的公平秤如图,把千克的菜放到秤上,指示盘上的指针转了.(1)如果把千克的菜放在秤上,指针转过多少度?(2)如果称好千克的菜没有拿走,再把一捆菜放在秤上,指针共转了,那么,后放上的这捆菜有多少千克?答案第一部分1. D 【解析】若,则,选项A不符合题意;若,则,,选项B不符合题意;若,则,选项C不符合题意;,时,可以不等于,选项D符合题意.故选:D.2. B3. B 【解析】是关于的一元一次方程,,,解得:.4. C5. C【解析】设“”型框中的正中间的数为,则其他个数分别为,,,,,,这个数之和为:.由题意得A、,解得:,能求得这个数;B、,解得:,能求得这个数;C、,解得:,不能求得这个数;D、,解得:,能求得这个数.6. D 【解析】由题意可得方程组与也有相同的解.7. B 【解析】因为是方程的一个根,所以,即,则所以.8. D9. A 【解析】设每人向后挪动的距离为,则这个人之间的距离是:,人之间的距离是:.根据等量关系列方程得:.10. A【解析】,.点路程:,,在边上.第二部分11. ,等式的基本性质1【解析】由一元一次方程的特点得.13.【解析】方程的解是,代入方程得关于的方程,所以有 .14.15.16.【解析】设此人2015年12月的工资为元,(元),(元).由此人纳税金额为元,,可得此人2015年12月的工资.由题意可得解得假如按新税法计算本月应纳税(元)(元)所以假如按新税法计算此人应少纳税元.第三部分17. (1)设这个数为,.(2)设长方形的长为厘米,.(3)设每本练习本的价格是元,.18. (1)(2)(3)19. 是方程的解,.,即 .解得 .20. (1)【解析】设方程两边同乘以,可得用②①得,解得,故答案为(2)设方程两边同时乘以,可得用②①的,解得.21. 当时,,.所以输出的的值为.22. (1)去括号得:移项合并得:解得:(2)去分母得:去括号得:移项合并得:解得:23. 由题意可知第一次购书标价总和没有超过元,第二次购书标价总和超过了元.第一次购书标价总和为(元).设第二次购书标价总和为元,则第二次购书实际付款为元.根据题意,得解得所以答:该学生第二次购书实际付款元.24. (1),,千克的菜放在秤上,指针转过.(2)设后放上的这捆菜有千克,可得:解得:答:后放上的这捆菜有千克.。
最新青岛版七年级数学上册《一元一次方程》综合测试题及答案解析(精品试卷).docx
青岛新版七年级(上)近3年中考题单元试卷:第7章一元一次方程一、选择题(共10小题)1.(2015•台湾)已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.322.(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.1003.(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元4.(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台5.(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元6.(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:007.(2014•恩施州)“六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是()A.65元B.80元C.100元D.104元8.(2013•台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200﹣x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200﹣x)=240009.(2013•太原)王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=3382510.(2014•乌鲁木齐)一件服装以120元销售,可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元二、填空题(共12小题)11.(2015•牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.12.(2015•嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.13.(2015•绍兴)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.14.(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.15.(2015•孝感)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.16.(2015•荆门)王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了千克.17.(2015•黑龙江)某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.18.(2015•湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.19.(2014•绥化)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.20.(2014•宁夏)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是元.21.(2014•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为元.22.(2015•鄂尔多斯)如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.三、解答题(共8小题)23.(2015•怀化)小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.24.(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?25.(2015•海南)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?26.(2015•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?27.(2015•柳州)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?28.(2014•抚州)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.29.(2015•宁德)为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?30.(2015•泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?青岛新版七年级(上)近3年中考题单元试卷:第7章一元一次方程参考答案与试题解析一、选择题(共10小题)1.(2015•台湾)已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.32【考点】一元一次方程的应用.【分析】由将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,得出甲尺相邻两刻度之间的距离:乙尺相邻两刻度之间的距离=48:36=4:3,如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据甲尺的刻度21与刻度0之间的距离=乙尺刻度x与刻度4之间的距离列出方程,解方程即可.【解答】解:如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据题意得36(x﹣4)=21×48,解得x=32.答:此时甲尺的刻度21会对准乙尺的刻度32.故选D.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100【考点】一元一次方程的应用.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.3.(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元【考点】一元一次方程的应用.【分析】设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依据“2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同”列出方程并解答.【解答】解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.【点评】本题考查了一元一次方程的应用.根据题意得到“2月份每辆车的售价”和“2月份是销售总量”是解题的突破口.4.(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台【考点】一元一次方程的应用.【分析】设今年购置计算机的数量是x台,根据今年购置计算机数量是去年购置计算机数量的3倍列出方程解得即可.【解答】解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100﹣x)台,根据题意可得:x=3(100﹣x),解得:x=75.故选C.【点评】此题考查一元一次方程的应用,关键是根据今年购置计算机数量是去年购置计算机数量的3倍列出方程.5.(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元【考点】二元一次方程的应用.【专题】压轴题.【分析】设该商品的进价为x元,标价为y元,根据题意可以得到x,y的值;然后计算打九折销售该电器一件所获得的利润.【解答】解:设该商品的进价为x元,标价为y元,由题意得,解得:x=2500,y=3750.则3750×0.9﹣2500=875(元).故选:B.【点评】此题考查一元一次方程的实际运用,掌握销售中的基本数量关系是解决问题的关键.6.(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00【考点】一元一次方程的应用.【分析】设开幕式当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人”列出方程并解答.【解答】解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.(2014•恩施州)“六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是()A.65元B.80元C.100元D.104元【考点】一元一次方程的应用.【分析】设书包每个的进价是x元,等量关系是:售价﹣进价=利润,依此列出方程,解方程即可.【解答】解:设书包每个的进价是x元,根据题意得130×0.8﹣x=30%x,解得x=80.答:书包每个的进价是80元.故选B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.(2013•台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200﹣x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200﹣x)=24000【考点】由实际问题抽象出一元一次方程.【分析】由于外套卖出x件,则衬衫和裤子卖出(200﹣x)件,根据题意可得等量关系:外套的单价×6折×数量+衬衫和裤子的原价×8折×数量=24000元,由等量关系列出方程即可.【解答】解:若外套卖出x件,则衬衫和裤子卖出(200﹣x)件,由题意得:0.6×250x+0.8×125(200﹣x)=24000,故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.9.(2013•太原)王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=33825【考点】由实际问题抽象出一元一次方程.【专题】增长率问题.【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.【解答】解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.10.(2014•乌鲁木齐)一件服装以120元销售,可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元【考点】一元一次方程的应用.【分析】根据题意,找出相等关系为:进价×(1+20%)=120,设未知数列方程求解.【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=120,解得:x=100,则这件服装的进价是100元.故选A.【点评】此题考查的是一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=120.二、填空题(共12小题)11.(2015•牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为100 元.【考点】一元一次方程的应用.【分析】根据题意可知商店按零售价的8折再降价10元销售即销售价=150×80%﹣100,得出等量关系为150×80%﹣10﹣x=x×10%,求出即可.【解答】解:设该商品每件的进价为x元,则150×80%﹣10﹣x=x×10%,解得x=100.即该商品每件的进价为100元.故答案是:100.【点评】此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.12.(2015•嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.【考点】一元一次方程的应用.【专题】数字问题.【分析】设“它”为x,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x的值,即可确定出“它”的值.【解答】解:设“它”为x,根据题意得:x+x=19,解得:x=,则“它”的值为,故答案为:.【点评】此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.13.(2015•绍兴)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【考点】一元一次方程的应用.【专题】压轴题;分类讨论.【分析】由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向甲容器溢水,∵5÷=分钟,=,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.【考点】一元一次方程的应用.【专题】压轴题.【分析】(1)由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时,②乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:(1)∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴得到注水1分钟,丙的水位上升cm×4=cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时;由题意得,t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,×=,即经过分钟时丙容器的水到达管子底部,乙的水位上升,∴+2×(t﹣)﹣1=0.5,解得:t=;②当乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;+(5﹣)÷÷2=分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入或分钟的水量后,乙的水位比甲高0.5cm.故答案为cm;或.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(2015•孝感)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水28 m3.【考点】一元一次方程的应用.【分析】20立方米时交40元,题中已知五月份交水费64元,即已经超过20立方米,所以在64元水费中有两部分构成,列方程即可解答.【解答】解:设该用户居民五月份实际用水x立方米,故20×2+(x﹣20)×3=64,故x=28.故答案是:28.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.16.(2015•荆门)王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了 5 千克.【考点】一元一次方程的应用.【分析】设买了甲种药材x千克,乙种药材(x﹣2)千克,根据用280元买了甲、乙两种药材,甲种药材比乙种药材多买了2千克,列方程求解.【解答】5解:设买了甲种药材x千克,乙种药材(x﹣2)千克,依题意,得20x+60(x﹣2)=280,解得:x=5.即:甲种药材5千克.故答案是:5.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.17.(2015•黑龙江)某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省18或46.8 元.【考点】一元一次方程的应用.【分析】按照优惠条件第一次付180元时,所购买的物品价值不会超过300元,不享受优惠,因而第一次所购物品的价值就是180元;300元的9折是270元,因而第二次的付款288元所购买的商品价值可能超过300元,也有可能没有超过300元.计算出两次购买物品的价值的和,按优惠条件计算出应付款数.【解答】解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元)故答案是:18或46.8.【点评】本题考查了一元一次方程的应用.能够分析出第二次购物可能有两种情况,进行讨论是解决本题的关键.18.(2015•湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50 张.【考点】一元一次方程的应用.【分析】根据总售出门票100张,共得收入4000元,可以列出方程求解即可.【解答】解:设当日售出成人票x张,儿童票(100﹣x)张,可得:50x+30(100﹣x)=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.【点评】此题考查一元一次方程的应用,本题解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.19.(2014•绥化)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多120 元.【考点】一元一次方程的应用.【专题】销售问题.【分析】设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.【解答】解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.∴标价比进价多300﹣180=120元.故答案为:120.【点评】本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.。
七年级数学(上册)《一元一次方程单元测试卷》和答案
七年级数学上册《一元一次方程单元测试卷》一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5 2.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0 C.4x﹣7=5x+7 D.x=﹣33.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1 C.D.04.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.2 D.85.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2 6.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312 B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=312 8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17 B.18 C.19 D.20 9.(3分)若2x+1=4,则4x+1等于()A.6 B.7 C.8 D.9 10.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是.12.(3分)如果关x的方程及的解相同,那么m的值是.13.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距km.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy= .15.(3分)已知关于x的方程=4的解是x=4,则a= .16.(3分)当x= 时,3x+4及4x+6的值相等.17.(3分)如果单项式3a4x+1b2及可以合并为一项,那么x及y的值应分别为.18.(3分)关于x的两个方程5x﹣3=4x及ax﹣12=0的解相同,则a= .19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x= .20.(3分)三个连续奇数的和是75,这三个数分别是.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?23.(10分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.(10分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a= .(2)若该用户九月份的平均电费为0.36元,则九月份共用电千瓦时,应交电费是元.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?七年级数学上册《一元一次方程》单元测试卷参考答案及试题解析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是0.2.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0 C.4x﹣7=5x+7 D.x=﹣3【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=﹣1分别代入四个选项进行检验即可.【解答】解:A、把x=﹣1代入方程的左边=右边=﹣2,是方程的解;B、把x=﹣1代入方程的左边=﹣14≠右边,所以不是方程的解;C、把x=﹣1代入方程的左边=﹣11≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;故选:A.【点评】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1 C.D.0【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:﹣=1,解得:k=1故选:B.【点评】本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.2 D.8【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得:﹣4+a﹣4=0,解得:a=8.故选:D.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.6.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏【分析】设盈利60%的进价为x元,亏损20%的进价为y元,根据销售问题的数量关系建立方程求出其解即可.【解答】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1﹣20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160﹣150=10元故选:C.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时由销售问题的数量关系建立方程是关键.7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312 B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=312【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x(1+30%)×80%=312,故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,掌握找出等量关系是解题的关键.8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17 B.18 C.19 D.20【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.故选:C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(3分)若2x+1=4,则4x+1等于()A.6 B.7 C.8 D.9【分析】由已知等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,则原式=6+1=7.故选:B.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.10.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁【分析】本题等量关系为:5年前甲的年龄=2×5年前乙的年龄.可设乙现在的年龄为x岁,则甲为(x+15)岁,根据等量关系列方程求解.【解答】解:设乙现在x岁,则5年前甲为(x+15﹣5)岁,乙为(x ﹣5)岁,由题意得:x+15﹣5=2(x﹣5)解得x=20故选:B.【点评】解题关键是读懂题意,找到合适的等量关系,列出方程.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是x=9 .【分析】方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.(3分)如果关x的方程及的解相同,那么m的值是±2 .【分析】本题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程=整理得:15x﹣3=42,解得:x=3,把x=3代入=x+4+2|m|得=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B 港相距504 km.【分析】根据逆流速度=静水速度﹣水流速度,顺流速度=静水速度+水流速度,表示出逆流速度及顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港及B港相距xkm,根据题意得:+3=,解得:x=504,则A港及B港相距504km.故答案为:504.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy= 1 .【分析】根据0的绝对值为0,得3y﹣2=0,解方程得x,y的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】本题的关键是正确解一元一次方程以及绝对值的定义.15.(3分)已知关于x的方程=4的解是x=4,则a= 0 .【分析】把x=4代入方程=4得关于a的方程,再求解即得a的值.【解答】解:把x=4代入方程=4,得:=4,解方程得:a=0.故填0.【点评】本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(3分)当x= ﹣2 时,3x+4及4x+6的值相等.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,解方程得:x=﹣2.故填﹣2.【点评】解决此类问题的关键是列方程并求解,属于基础题.17.(3分)如果单项式3a4x+1b2及可以合并为一项,那么x及y的值应分别为1和2 .【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】本题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.(3分)关于x的两个方程5x﹣3=4x及ax﹣12=0的解相同,则a= 4 .【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题主要考查了一元一次方程解的定义.解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x= .【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p=±2,将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,可得:3x﹣4=0,解得:x=.【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.(3分)三个连续奇数的和是75,这三个数分别是23,25,27 .【分析】利用“三个连续奇数的和是75”作为等量关系列方程求解.就要先设出一个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,则其他的为x+2,x+4∴x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题中要熟悉连续奇数的表示方法.相邻的两个连续奇数相差2.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+5=3x﹣3,解得:x=8;(2)去分母得:15x﹣3=18x+6﹣8+4x,移项合并得:7x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?【分析】设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,通过理解题意可知本题的等量关系,即做瓶底所用的铝片=制瓶身所用的铝片的两倍.根据这个等量关系,可列出方程,再求解.【解答】解:设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,则用64张铝片做瓶底.【点评】解题关键是要读懂题目的意思,正确理解:一个瓶身配两个瓶底是解题的关键.23.(10分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?【分析】安排整理的人员有x人,则随后又(x+6)人,根据题意可得等量关系:开始x人1小时的工作量+后来(x+6)人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设首先安排整理的人员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?【分析】设该照相机的原售价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,及实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k﹣1=2,k ﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】本题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.(10分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【分析】本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a= 60 .(2)若该用户九月份的平均电费为0.36元,则九月份共用电90 千瓦时,应交电费是32.40 元.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×90=32.40(元).答:九月份共用电90千瓦时,应交电费32.40元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税224 元,若王老师获得的稿费为4000元,则应纳税440 元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?【分析】本题列出了不同的判断条件,要将本题中的稿费金额按照三种不同的条件进行分类讨论,然后再根据等量关系列方程求解.【解答】解:(1)若王老师获得的稿费为2400元,则应纳税224元,若王老师获得的稿费为4000元,则应纳税440元;(2)因为王老师纳税420元,所以由(1)可知王老师的这笔稿费高于800元,而低于4000元,设王老师的这笔稿费为x元,根据题意得:14%(x﹣800)=420x=3800元.答:王老师的这笔稿费为3800元.【点评】解题关键是要读懂题目的意思,依据题目给出的不同条件进行判断,然后分类讨论,再根据题目给出的条件,找出合适的等量关系,列出方程,求解.29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.【点评】本题主要考查学生的分类讨论思想和对于实际问题中方程组解的取舍情况.弄清题意,合适的等量关系,列出方程组仍是解决问题的关键.本题还需注意可供选择的将有三种情况:甲乙组合,甲丙组合,乙丙组合.欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。
2022-2023学年七年级上册学 一元一次方程 单元测试卷 (解析版)
七年级(上)数学一元一次方程单元测试卷一.选择题(共10小题)1.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个2.下面四个等式的变形中正确的是()A.由x+7=5﹣3x,得4x=2 B.由4x+8=0,得x+2=0 C.由x=4,得x=D.由4(x﹣1)=﹣2,得4x =﹣63.下列方程中,它的解是x=﹣1的方程是()A.3﹣x=2 B.2x=﹣1+x C.﹣2﹣2x=4 D.4x=x+3 4.方程2x﹣4=﹣2x+4的解是()A.x=2 B.x=﹣2 C.x=1 D.x=0 5.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+66.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=﹣,然后小明很快补好了这个常数,这个常数应是()A.﹣B.C.D.27.某车间30名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母4500个,一个螺钉要配两个螺母,已知每天生产的产品刚好配套,若设安排x名工人生产螺钉,则可列方程为()A.4500(30﹣x)=2×1500x B.2×4500(30﹣x)=1500xC.4500 x=2×1500(30﹣x) D.4500 x+2×1500x=30 8.把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间9.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利40%,另一个亏损30%,则在这次买卖中,商店的盈亏情况是()A.盈利4.2元 B.盈利6元C.不盈不亏D.亏损6元10.小刚从家跑步到学校,每小时跑12km,会迟到5分钟;若骑自行车,每小时骑15km,则可早到10分钟.设他家到学校的路程是xkm,则根据题意列出方程是()A.﹣=+B.﹣=﹣C.+10=﹣5 D.+=﹣二.填空题(共6小题)11.已知x=3是关于x方程mx﹣8=10的解,则m=.12.若3x2m﹣1+6=0是关于x的一元一次方程,则m的值为.13.比a的2倍大5的数等于a的8倍,列等式表示为.14.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.15.小乐在解方程﹣1=0(x为未知数)时,误将﹣x看作+x,得方程的解为x=1,则原方程的解为.16.对有理数a,b,规定一种新运算※,意义是a※b=ab+a+b,则方程x※3=4的解是x=.三.解答题(共9小题)17.解方程:2(x+3)=﹣3(x﹣1)+218.解方程:﹣=0.7519.解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)20.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?21.妇人洗碗在河滨,路人问他客几人?答曰:“不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”本题的大意是:有一名妇人在河边洗碗,一个过路的人问她有多少个客人吃饭,妇人说“人数不知道,一共65个碗,其中两个人共用一碗饭,三个人共喝一碗汤,四个人共吃一碗肉,请你算算一共有多少个客人?”(请列一元一次方程解答)22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?23.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.24.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买千克的行李票;(2)该旅客购买的飞机票是多少元?25.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?参考答案一.选择题(共10小题)1.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个解:根据一元一次方程定义可知:下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有②⑤.故选:A.2.下面四个等式的变形中正确的是()A.由x+7=5﹣3x,得4x=2 B.由4x+8=0,得x+2=0 C.由x=4,得x=D.由4(x﹣1)=﹣2,得4x =﹣6解:A、由x+7=5﹣3x方程两边都加3x﹣7即可得出4x=﹣2,故本选项错误;B、由4x+8=0方程两边都除以4即可得出x+2=0,故本选项正确;C、由x=4,得x=,故本选项错误;D、由4(x﹣1)=﹣2可得4x=2,故本选项错误;故选:B.3.下列方程中,它的解是x=﹣1的方程是()A.3﹣x=2 B.2x=﹣1+x C.﹣2﹣2x=4 D.4x=x+3 解:A、解方程3﹣x=2得:x=1,故A选项错误;B、解方程2x=﹣1+x得:x=﹣1,故B选项正确;C、解方程﹣2﹣2x=4得:x=﹣3,故C选项错误;D、解方程4x=x+3得:x=1,故D选项错误.故选:B.4.方程2x﹣4=﹣2x+4的解是()A.x=2 B.x=﹣2 C.x=1 D.x=0 解:2x﹣4=﹣2x+4移项得,2x+2x=4+4,合并同类项得,4x=8,系数化为1,得x=2.故选:A.5.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+6解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.6.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=﹣,然后小明很快补好了这个常数,这个常数应是()A.﹣B.C.D.2解:设□表示的数是a,把y=﹣代入方程2y+1=y﹣a得:﹣+1=﹣﹣a,解得:a=,即这个常数是,故选:B.7.某车间30名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母4500个,一个螺钉要配两个螺母,已知每天生产的产品刚好配套,若设安排x名工人生产螺钉,则可列方程为()A.4500(30﹣x)=2×1500x B.2×4500(30﹣x)=1500xC.4500 x=2×1500(30﹣x) D.4500 x+2×1500x=30 解:设安排x名工人生产螺钉,则安排(30﹣x)名工人生产螺母,依题意,得:2×1500x=4500(30﹣x).故选:A.8.把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间解:方程4x﹣x=4,解得:x=,则把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的点P,点Q之间,故选:D.9.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利40%,另一个亏损30%,则在这次买卖中,商店的盈亏情况是()A.盈利4.2元 B.盈利6元C.不盈不亏D.亏损6元解:设盈利的书包的进价为x元/个,亏损的书包的进价为y元/个,根据题意得:42﹣x=40%x,42﹣y=﹣30%y,解得:x=30,y=60,∴42×2﹣30﹣60=﹣6(元).答:商店亏损6元.故选:D.10.小刚从家跑步到学校,每小时跑12km,会迟到5分钟;若骑自行车,每小时骑15km,则可早到10分钟.设他家到学校的路程是xkm,则根据题意列出方程是()A.﹣=+B.﹣=﹣C.+10=﹣5 D.+=﹣解:设他家到学校的路程是xkm,依题意,得:+=﹣.故选:D.二.填空题(共6小题)11.已知x=3是关于x方程mx﹣8=10的解,则m= 6 .解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:612.若3x2m﹣1+6=0是关于x的一元一次方程,则m的值为 1 .解:根据题意可知:2m﹣1=1解得m=1故答案为1.13.比a的2倍大5的数等于a的8倍,列等式表示为2a+5=8a .解:由题意,得2a+5=8a.故答案是:2a+5=8a.14.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为300元.解:设这种服装每件的成本价是x元,由题意得:(1+40%)x×80%=x+36,解得:x=300,故答案为:300元.15.小乐在解方程﹣1=0(x为未知数)时,误将﹣x看作+x,得方程的解为x=1,则原方程的解为﹣1 .解:把把x=1代入方程﹣1=0中得:﹣1=0,解得:a=1,则原方程为﹣1=0,解得:x=﹣1,故答案是:﹣1.16.对有理数a,b,规定一种新运算※,意义是a※b=ab+a+b,则方程x※3=4的解是x=0.25 .解:根据题意得:3x+x+3=4,解得:x=0.25,故答案为:0.25三.解答题(共9小题)17.解方程:2(x+3)=﹣3(x﹣1)+2解:2(x+3)=﹣3(x﹣1)+22x+6=﹣3x+3+22x+3x=5﹣65x=﹣1x=﹣18.解方程:﹣=0.75解:方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.19.解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)解:(1)去括号得:15﹣7+5x=2x+5﹣3x,移项合并得:6x=﹣3,解得:x=﹣;(2)去分母得:5x﹣15﹣4x+6=10,移项合并得:x=19.20.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?解:设这些学生共有x人,根据题意得,解得x=48.答:这些学生共有48人.21.妇人洗碗在河滨,路人问他客几人?答曰:“不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”本题的大意是:有一名妇人在河边洗碗,一个过路的人问她有多少个客人吃饭,妇人说“人数不知道,一共65个碗,其中两个人共用一碗饭,三个人共喝一碗汤,四个人共吃一碗肉,请你算算一共有多少个客人?”(请列一元一次方程解答)解:设共有客人x人,依题意可得:++=65.解之得:x=60.答:共有客人60人.22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.23.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.24.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买10 千克的行李票;(2)该旅客购买的飞机票是多少元?解:(1)30﹣20=10(千克).故答案为:10.(2)设该旅客购买的飞机票是x元,依题意,得:x+10×1.5%x=920,解得:x=800.答:该旅客购买的飞机票是800元.25.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?解:(1)设这批校服共有x件,依题意,得:﹣=20,解得:x=960.答:这批校服共有960件.(2)设甲工厂加工了y天,则乙工厂加工了(2y+4)天,依题意,得:16y+24y+24×(1+25%)(y+4)=960,解得:y=12,∴2y+4=28.答:乙工厂加工28天.。
《一元一次方程》2020-2021学年青岛版七年级上册单元测试卷2(含答案)
2020-2021学年青岛新版七年级上册数学《第7章一元一次方程》单元测试卷一.选择题1.下列选项中哪个是方程()A.5x2+5B.2x+3y=5C.2x+3≠﹣5D.4x+3>12.方程kx=3的解为自然数,则整数k等于()A.0,1B.1,3C.﹣1,﹣3D.±1,±33.已知关于x的方程mx+1=0是一元一次方程,则m的取值是()A.±1B.﹣1C.1D.以上答案都不对4.解方程2x=3x时,两边都除以x,得2=3,其错误原因是()A.方程本身是错的B.方程无解C.两边都除以了0D.2x小于3x5.方程﹣2x=1的解是()A.﹣2B.﹣C.2D.6.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地.设A、B两地间的路程是xkm,由题意可得方程()A.70x﹣60x=1B.60x﹣70x=1C.﹣=1D.﹣=1 7.一个数的是,这个数是()A.B.C.D.8.x=1是下列哪个方程的解()A.1﹣x=2B.2x﹣1=4﹣3x C.x﹣4=5x﹣2D.9.关于x的一元一次方程mx+3=2(m﹣x)的解满足,则m的值是()A.5B.C.5或D.2或010.关于x的方程x﹣=1与2x﹣3=1的解相等,则a的值为()A.7B.5C.3D.111.下列运用等式的性质对等式进行的变形中,错误的是()A.若a(x2+1)=b(x2+1),则a=bB.若a=b,则ac=bcC.若a=b,则=D.若x=y,则x﹣3=y﹣3二.填空题12.我们知道,无限循环小数都可以转化为分数.例如:将0.转化为分数时,可设0.=x,则x=0.3+x,解得x=,即0.=.仿此方法,将0.化成分数是.13.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x天可以铺好这条管线,则可列方程.14.关于x的一元一次方程10+ax=4x﹣4a的解满足|x+2|=0,则a=.15.如果x=3是关于x的方程2x+m=7的解,那么m的值为.16.如图的框图表示解方程3x+32=7﹣2x的流程,其中第3步的依据是.17.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有(填序号)18.2004年中国足球甲级联赛规定每队胜一场得3分、平一场得1分、负一场得0分,武汉黄鹤楼队前14场保持不败,共得30分,该队共平了场.19.如果关于x的方程=与=3m的解相同,则m的值为.20.如果(a+3)x|a|﹣2=3是一元一次方程,那么a=.三.解答题21.从甲地到乙地,某人骑自行车比乘公共汽车多用2.5h,已知骑自行车的平均速度为每小时15km,公共汽车的平均速度为每小时40km,求甲乙两地之间的路程(只列方程).22.已知(m+1)x|m|+2=0是关于x的一元一次方程,求m的值.23.如果x=3是方程+1=0的解,求k的值.24.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.25.检验下列各数是不是方程的解.(1)x=2;(2)x=﹣1.26.先阅读下列解题过程,然后解答后面两个问题.解方程:|x﹣3|=2.解:当x﹣3≥0时,原方程可化为x﹣3=2,解得x=5;当x﹣3<0时,原方程可化为x﹣3=﹣2,解得x=1.所以原方程的解是x=5或x=1.(1)解方程:|3x﹣2|﹣4=0.(2)解关于x的方程:|x﹣2|=b+127.已知关于x的方程3[x﹣2(x﹣)]=4x和﹣=1有相同的解,求这个解.参考答案与试题解析一.选择题1.解:A、5x2+5不是等式,不能属于方程,错误;B、2x+3y=5符合方程的定义,正确;C、2x+3≠﹣5不是等式,不能属于方程,错误;D、4x+3>1不是等式,不能属于方程,错误;故选:B.2.解:系数化为得,x=.∵关于x的方程kx=3的解为自然数,∴k的值可以为:1、3.故选:B.3.解:由题意得:m2=1,且m≠0,解得:m=±1,故选:A.4.解:错误的地方为:方程两边都除以x,没有考虑x是否为0,正确解法为:移项得:2x﹣3x=0,合并得:﹣x=0,系数化为1得:x=0.故选:C.5.解:﹣2x=1,方程两边同除以﹣2,得x=﹣.故选:B.6.解:设A、B两地间的路程为xkm,根据题意得,故选:C.7.解:设这个数是x,依题意有x=,解得x=.故选:A.8.解:A、把x=1代入方程得:左边=1﹣1=0,右边=2,左边≠右边,即x=1不是此方程的解;B、把x=1代入方程得:左边=2﹣1=1,右边=4﹣3=1,左边=右边,即x=1是此方程的解;C、把x=1代入方程得:左边=1﹣4=﹣3,右边=5﹣2=3,左边≠右边,即x=1不是此方程的解;D、把x=1代入方程得:左边=1,右边=﹣1,左边≠右边,即x=1不是此方程的解.故选:B.9.解:化简可得,x﹣=或x﹣=﹣,解得x=1或x=0,∵x是方程mx+3=2(m﹣x)的解,∴m+3=2(m﹣1)或3=2m,∴m=5或m=,故选:C.10.解:2x﹣3=1,解得:x=2,∴x=2是方程x﹣=1的解,将x=2代入方程x﹣=1得:2﹣=1,解得:a=5.故选:B.11.解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得a﹣3=b﹣3,原变形正确,故这个选项不符合题意.故选:C.二.填空题12.解:设0.=0.7373…①,根据等式性质得:100x=73.7373…②,由②﹣①得:100x﹣x=73,即99x=73,解得x=.故答案为:13.解:设要用x天可以铺好这条管线,则可列方程:(+)x=1.故答案为:(+)x=1.14.解:∵|x+2|=0,∴x=﹣2,∴10+ax=4x﹣4a的解为x=﹣2,∴10﹣2a=﹣8﹣4a,∴a=﹣9,故答案为﹣9.15.解:把x=3代入方程2x+m=7得:6+m=7,解得:m=1,故答案是:1.16.解:根据框图中的解方程流程,得第3步的依据为等式的基本性质2.故答案为:等式的基本性质2.17.解:∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程,故答案为:②、③.18.解:设该队共平了x场,则胜了(14﹣x)场,依题意,得:x+3(14﹣x)=30,解得:x=6.故答案为:6.19.解:化简方程,得5x﹣1=14①,9x﹣1=39m②,①×9﹣②×5得﹣4=126﹣195m解得m=.故答案为:.20.解:∵(a+3)x|a|﹣2=3是一元一次方程,∴|a|﹣2=1,a+3≠0,解得a=3.故答案为:3.三.解答题21.解:设甲乙两地之间的路程为x千米,由题意得+2.5=.22.解:由题意知:m+1≠0,|m|=1则m≠﹣1,m=1或m=﹣1所以m=1.23.解:把x=3代入方程+1=0得:+1=0,解得:k=﹣4.24.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.25.解:(1)当x=2时,左边=,右边=0,∵左边≠右边,∴x=2不是方程的解;(2)当x=﹣1时,左边=﹣3,右边=﹣3,∵左边=右边,∴x=﹣1是方程的解.26.解:(1)当3x﹣2≥0时,原方程可化为3x﹣2﹣4=0,解得x=2;当3x﹣2<0时,原方程可化为﹣(3x﹣2)﹣4=0,解得x=﹣.所以原方程的解是x=2或x=﹣.(2)①当b+1<0,即b<﹣1时,原方程无解,②当b+1=0,即b=﹣1时:原方程可化为:x﹣2=0,解得x=2;③当b+1>0,即b>﹣1时:当x﹣2≥0时,原方程可化为x﹣2=b+1,解得x=b+3;当x﹣2<0时,原方程可化为x﹣2=﹣(b+1),解得x=﹣b+1.27.解:因为关于x的方程3[x﹣2(x﹣)]=4x和﹣=1有相同的解,所以3[x﹣2(x﹣)]=4x的解为:x=,﹣=1的解为:x=,所以=,解得a=,将a=代入第二个方程,2(3x+a)﹣(1﹣5x)=8,11x=9﹣2a,11x=9﹣2×,解得x=.。
完整版)七年级上册数学一元一次方程测试题及答案
完整版)七年级上册数学一元一次方程测试题及答案1.在方程3x-y=2,x+2x=,x=,x2-2x-3=中一元一次方程的个数为(2)。
2.解方程x/(x-1)=2/3时,去分母正确的是(3x-3=2x-2)。
3.方程x-2=2-x的解是(x=2)。
4.下列两个方程的解相同的是(方程5x+3=6与方程2x=4)。
5.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x个月后,两厂库存钢材相等,则x是(3)。
6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为(90元)。
7.下列等式变形正确的是(如果x-3=y-3,那么x-y=0)。
8.已知:1-(3m-5)有最大值,则方程5m-4=3x+2的解是(-7/3)。
9.小山向某商人贷款1万元月利率为6‰,1年后需还给商人多少钱(元)。
10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为(2.4)小时。
11.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是(a+60)米。
12.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了(6)场。
13.方程为:3a + 5 = 9.14.根据题意,应该是-3x^2a-1+6=0,解得a=1/3.15.将x=2代入方程得到2a-3=7,解得a=5.16.将5a^2b^(1/22)(2m+1)^(-3/2)(m+3)^(-1)与-ab合并,得到m=-11.17.设四天的日期分别为a。
b。
c。
d,根据题意有a+b+c+d=42.由于每个月最多31天,最后一天的日期不可能超过31,因此最后一天的日期必须是11.18.设十位数为x,个位数为y,则题意转化为x=y/2且x+y=9,解得x=3,y=6,因此这个两位数是36.19.下游速度为8+2=10km/h,上游速度为8-2=6km/h。
《一元一次方程》单元测试卷(附答案)
七年级数学(上)《一元一次方程》单元测试卷(时间:120分钟 ) 一、选择题(18分) 1、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个2、解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 3、方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x 4、对432=+-x ,下列说法正确的是( )A .不是方程B .是方程,其解为1C .是方程,其解为3D .是方程,其解为1、3 5、方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x xC.1071203110=--+x xD.107102031010=--+x x6、x 增加2倍的值比x 扩大5倍少3,列方程得( )A .352+=x xB .352-=x xC .353+=x xD .353-=x x7、A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =( )A .3B .5C .2D .48、某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( ). A .80元 B .85元 C .90元 D .95元9、某原料供应商对购买其原料的顾客实行如下优惠:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元给九折优惠;(3)一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在供应商购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为( )元. A.1460 B.1540 C.1560 D.2000二、填空题(18分)10、代数式12+a 与a 21+互为相反数,则=a . 11、如果06312=+--a x是一元一次方程,那么=a ,方程的解为=x .12、若4-=x 是方程0862=--x ax 的一个解,则=a .13、如果)12(3125+m b a 与)3(21221+-m b a 是同类项,则=m .14、已知023=+x ,则=-34x .15、一个数x 的51与它的和等于–10的20%,则可列出的方程为 .16、已知梯形的下底为cm 6,高为cm 5,面积为225cm ,则上底的长等于 .17、要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6厘米的的方钢x 厘米,可得方程为 .18、国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:⑴稿费不高于800元的不纳税;⑵稿费高于800元,又不高于4000元,应缴纳超过800元的那一部分稿费14%的税;⑶稿费高于4000元,应缴纳全部稿费的11%的税.某老师获得了2000元稿费,他应纳税 元. 三、解答题(共55分) 19、解下列方程(10分) (1)22)141(34=---a a (2)151423=+--x x (3)25.032.04=--+x x20、(8分)在公式h b a S )(21+=中,已知8,18,120===h b S ,求a 的值21、(8分)不论x 取何值,等式34=--x b ax 永远成立,求ab 21的值.22、(8分)当m 为何值时,关于x 的方程x x m +=+21125的解比关于x 的方程)1()1(x m m x +=+的解大2.23、(8分)设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数?24、(8分)已知3=x 是方程()241133=⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛+x m x 的解,n 满足关系式12=+m n ,求n m +的值.四.列方程解应用题(共41分)25、(10分)在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?26、(10分)一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由甲、乙两人合做,并且施工期间乙休息7天,问几天完成?27、(10分)张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?28. (11分)小明中考时的准考证号码是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为1;(2)把千位上的数字1向右移动,使其成为个位数字,那么所得的新数比原数的5倍少49.请你根据以上特征推出小明的准考证号码.一、选择题1.下列各种变形中,不正确的是( )A .从3+2x =2可得到2x =-3B .从6x =2x -1可得到6x -2x =-1C .从21%+50%(60-x )=60×42%可得到21+50(60-x )=62×42D .从3212-=-x x 可得到3x -1=2(x -2)2.方程673422--=--x x 去分母是( ) A .12-2(2x -4)=-(x -7) B .12-2(2x -4)=-x -7 C .12-2(2x -7)=-(x -7) D .12-4x -4=-x +73.已知x =1是方程21233-=-x k x 的解,则32+k 的值是( )A .-2B .2C .0D .-14.如果3个连续的奇数的和为15,那么它们的积是( ) A .15 B .21 C .105 D .2155.1元和5角的硬币共100枚,值68元,则1元和5角的硬币个数分别为( ) A .36个,64个 B .64个,36个 C .28个,72个 D .50个,50个 6.某项工程由甲队单独做需18天完成,由乙队做只需甲队的一半时间完成,设两队合作需x 天完成,则可得方程( )A .x =+91181 B .1)91181(=+x C .x =+361181 D .1)361181(=+x 7.一个长方形的周长是16cm ,长与宽的差是2 cm ,那么这个长方形的长与宽分别是( )A .9cm ,7cmB .5cm ,3cmC .7cm ,5cmD .10cm ,6cm8.若关于x 的方程x +2=ax 的解是-1,则a 的值是( ) A .1=a B .1-=a C .0=a D .3=a9.采石场工人爆破时,为了确保安全,点燃炸药导火线后要在爆破前转移到400米以外的安全区域,燃烧速度是1厘米/秒,人离开的速度是5米/秒,至少需要导火线的长度是( ) A .70厘米 B .75厘米 C .79厘米 D .80厘米10.一家三口(父亲、母亲、儿子)准备利用寒假外出旅游,甲旅行社告知:父母买全票,儿子可按半价优惠;乙旅行社告知:每人均按定价的8折优惠,若这两家旅行社每人的原票价相同,那么优惠条件是( )A .甲比乙优惠B .乙比甲优惠C .甲与乙相同D .与原票价有关二、填空题11.1、x 52比41大17,则x =_________。
青岛版2023-2024学年七年级上册期中数学质量检测试题(含解析)
青岛版2023-2024学年七年级上册期中数学质量检测试题一.选择题(共8小题,满分24分,每小题3分)1.下列各组数中,互为倒数的是()A.0.75与B.﹣7与7C.0与0D.1与12.用一平面截一圆锥,则截面不一定得到的是()A.椭圆B.三角形C.圆D.正方形3.在x2+2,,,,﹣5x,0,π中,单项式有()A.5个B.4个C.3个D.6个4.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1085.|﹣(﹣2.5)|的相反数是()A.﹣2.5B.2.5C.D.﹣6.下面几何体中为圆柱的是(A.B.C.D.7.下列运算错误的是()A.﹣5x2+3x2=﹣2x2B.5x+(3x﹣1)=8x﹣1C.3x2﹣3(y2+1)=﹣3D.x﹣y﹣(x+y)=﹣2y8.根据如图所示的流程图计算,若x=3,则a2022的值为()A.﹣B.C.D.3二.填空题(共6小题,满分18分,每小题3分)9.比较大小.(填“>”“<”或“=”)(1);(2)|﹣75%|.10.点动成,线动成,面动成.面面相交得到,线线相交得到.11.多项式3a2b﹣b+1的项数和次数的和是.12.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中6胜5负若记为+6,﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为.13.如图是一个正方体的展开图,如果将它折叠成一个正方体后相对的面上的数相等,则x ﹣y的值为.14.计算与合并同类项:(1)+4.7+(﹣4)﹣2.7﹣(﹣3.5)(2)11÷(﹣22)﹣3×(﹣11)(3)16+(﹣2)3+|﹣7|+()×(﹣4)(4)0.25×(﹣2)2﹣[﹣4÷()2+1]÷(﹣1)2020(5)5x4+3x2y﹣10﹣3x2y+x4﹣1(6)(7y﹣3z)﹣(8y﹣5z)(7)2(2a2+9b)+3(﹣5a2﹣6b)(8)﹣3(2x2﹣xy)﹣4(x2﹣xy﹣6)三.解答题(共10小题,满分78分)15.计算题(1)﹣4+(+2)﹣(﹣5)+3(2)(3)(4)16.先简化,再求值:(2a2﹣5a)﹣2(a2+3a﹣5),其中a=﹣.17.画出数轴并表示下列有理数,用“<”把它们连起来.4,,﹣3,﹣1.5,0,﹣2.18.由若干个小立方体所组成的一个几何体,其俯视图如图所示,其中的数字表示在该位置上的小立方体的个数.请画出这个几何体的主视图和左视图.19.计算:(1)﹣6÷(﹣2)×;(2)(﹣5)×(﹣2)÷(﹣2)﹣1.20.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.为了纪念这个著名的发现,人们将这组数命名为斐波那契数列.(1)这个数列的前2014个数中,有多少个奇数?(2)现以这组数中的各个数作为正方形的边长构造如下正方形系列:再分别依次从左到右取2个,3个,4个,5个,…正方形拼成如下长方形并记为①、②、③、④、⑤…(i)通过计算相应长方形的周长填写表(不计拼出的长方形内部的线段):序号①②③④…周长610…(ii)若按此规律继续拼成长方形,求序号为⑩的长方形周长.21.去年的“十•一”黄金周是7天的长假,无锡惠山在7天假期中每天旅游人数变化如表(正号表示人数比前一天多,负号表示比前一天少),若9月30日的游客人数为0.2万人,日期1日2日3日4日5日6日7日+1.8﹣0.6+0.2﹣0.7﹣0.3+0.5﹣0.7人数变化(单位:万人)问:(1)10月4日的旅客人数为万人;(2)七天中旅客人数最多的一天比最少的一天多万人;(3)如果每万人带来的经济收入约为150万元,则黄金周七天的旅游总收入约为多少万元?22.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题,若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为4cm,长方形的长为7cm,宽为4cm,求出修正后所折叠而成的长方体的体积.23.计算图中阴影部分的面积.(1)用含a、b的代数式表示图中阴影部分的面积.(2)当a=3,b=4时,计算阴影部分的面积.24.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:A、0.75×≠1,0.75与不互为倒数,故本选项不符合题意.B、﹣7×7≠1,﹣7与7不互为倒数,故本选项不符合题意.C、0没有倒数,故本选项不符合题意.D、1×1=1,1与1互为倒数,故本选项符合题意.故选:D.2.解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个三角形;如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆;如果不与底面平行得到的就是一个椭圆.故截面不一定得到的是正方形.故选:D.3.解:单项式有:,﹣5x,0,π共4个,x2+2是多项式,+4和不是整式,故选:B.4.解:14420000=1.442×107.故选:A.5.解:|﹣(﹣2.5)|=2.5,∴|﹣(﹣2.5)|的相反数是﹣2.5,故选:A.6.解:A、为三棱锥,不符合题意;B、为圆柱削掉一部分,不符合题意;C、为圆台,不符合题意;D、为圆柱,符合题意,故选:D.7.解:A、﹣5x2+3x2=﹣2x2,正确,不合题意;B、5x+(3x﹣1)=8x﹣1,正确,不合题意;C、3x2﹣3(y2+1)=3x2﹣3y2﹣3,原式计算错误,符合题意;D、x﹣y﹣(x+y)=﹣2y,正确,不合题意;故选:C.8.解:∵x=3,∴a1=1﹣,a2=1﹣,a3=1﹣,a4=1﹣,…∴这列数以,,3这三个不断循环,∵2022÷3=674,∴a2022=a3=3.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:|﹣|=,|﹣|=,∵<,∴>;(2)|﹣75%|=0.75,=0.25,∵0.75>0.25,∴|﹣75%|>.故答案为:>,>.10.解:点动成线,线动成面,面动成体.面面相交得到线,线线相交得到点.11.解:因为多项式3a2b﹣b+1的项数和次数分别是:3,3所以多项式3a2b﹣b+1的项数和次数的和是6.故选答案为:6.12.解:∵6胜5负若记为+6,﹣5,∴11战全胜可记为+11,故答案为:11.13.解:由正方体表面展开图的“相间、Z端是对面”可知,“x”与“7”相对,“y”与“4”相对,∵相对的面上的数相等,∴x=7,y=4,∴x﹣y=7﹣4=3,故答案为3.14.解:(1)+4.7+(﹣4)﹣2.7﹣(﹣3.5)=(4.7﹣2.7)+(﹣4+3.5)=2﹣0.5=1.5;(2)11÷(﹣22)﹣3×(﹣11)=﹣+33=32;(3)16+(﹣2)3+|﹣7|+()×(﹣4)=16﹣8+7+=15;(4)0.25×(﹣2)2﹣[﹣4÷()2+1]÷(﹣1)2020=1﹣(﹣9+1)=1﹣(﹣8)=9;(5)5x4+3x2y﹣10﹣3x2y+x4﹣1=(5x4+x4)+(3x2y﹣3x2y)+(﹣10﹣1)=6x4﹣11;(6)(7y﹣3z)﹣(8y﹣5z)=7y﹣3z﹣8y+5z=﹣y+2z;(7)2(2a2+9b)+3(﹣5a2﹣6b)=4a2+18b﹣15a2﹣18b=﹣11a2;(8)﹣3(2x2﹣xy)﹣4(x2﹣xy﹣6)=﹣6x2+3xy﹣4x2+4xy+24=﹣10x2+7xy+24.三.解答题(共10小题,满分78分)15.解:(1)原式=﹣4+2+5+3=6;(2)原式=﹣8××4=﹣16;(3)原式=﹣2﹣3﹣8+10=﹣(4)原式=1﹣[(﹣32)×(﹣)+8]=1﹣(24+8)=1﹣32=﹣31.16.解:原式=2a2﹣5a﹣2a2﹣6a+10=﹣11a+10,当a=﹣时,原式=3+10=13.17.解:﹣3<﹣2<﹣1.5<0<<4.18.解:图形如图所示:19.解:(1)原式=6÷2×=3×=;(2)原式=﹣5×2÷2﹣1=﹣5﹣1=﹣6.20.解:(1)这组数列为:1,1,2,3,5,8…,以3个一组,结合题意可知,每组第三个数为偶数,其它两个均为奇数,∵2014÷3=671…1,∴奇数个数为671×2+1=1342+1=1343个.(2)观察各组合图形可知,其周长为最大的正方形的周长+小一号的正方形的两条边.(i)③中最大正方形边长为32,周长=3×4+2×2=12+4=16;④中最大正方形边长为5,再小一点的正方形边长为3,周长=5×4+3×2=20+6=26.故答案为:16;26.(ii)斐波那契数列1,1,2,3,5,8,13,21,34,55,89,144,…⑩中最大正方形边长为89,再小一点的正方形边长为55,周长=89×4+55×2=356+110=466.21.解:(1)根据题意列得:0.2+(+1.8﹣0.6+0.2﹣0.7)=0.9;故答案为:0.9;(2)根据表格得:7天中旅客最多的是1日,为:0.2+1.8=2(万人),最少的是7日,为:2﹣0.6+0.2﹣0.7﹣0.3+0.5﹣0.7=0.4(万人),则七天中旅客人数最多的一天比最少的一天多:2﹣0.4=1.6(万人);故答案为:1.6;(3)10月1日有游客:0.2+1.8=2(万);10月2日有游客:2﹣0.6=1.4(万),10月3日有游客:1.4+0.2=1.6(万);10月4日有游客:1.6﹣0.7=0.9(万),10月5日有游客:0.9﹣0.3=0.6(万);10月6日有游客:0.6+0.5=1.1(万),10月7日有游客:1.1﹣0.7=0.4(万);黄金周七天游客:2+1.4+1.6+0.9+0.6+1.1+0.4=8(万),8×150=1200(万元),答:黄金周七天的旅游总收入约为1200万元.22.解:(1)根据题意可得,如图,;(2)根据题意可得,长方体的体积为:7×4×4=112(cm3).23.解:(1)如图所示:S阴影=S长方形ABCD﹣S长方形EGHF=(2a+3b)(2a+b)﹣3b×2a=4a2+6ab+2ab+3b2﹣6ab=4a2+2ab+3b2(2)当a=3,b=4时,原式=4×32+2×3×4+3×42=108.24.解:原式=5x+2y﹣3xy﹣2x+y﹣2xy =3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.。
七年级数学一元一次方程练习题(含答案)
七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
青岛版初中数学七年级上册《一元一次方程》同步测试练习题卷练习题2
青岛版初中数学 重点知识精选
掌握知识点,多做练习题,基础知识很重要! 青岛版初中数学 和你一起共同进步学业有成!
TB:小初高题库
青岛版初中数学
7.2 一元一次方程
一、选择题
1.下列各式中方程的个数是( )
① x 3y 0 ;② 1 1 1 ;③x2 2x ;④ 1 3
23 6
2
2
4x 1, x 1 4
(2)错在第 2 步到第三步的变化,左边除以的是-4,而右边除以的是
4,改过来是 4x 1, x 1 . 4
2.
3.(1) x2 2x (2) x 9 1 (3) 0.9x 0.8x 2 (4)设甲的速 x
度是 x 千米/小时,则乙的速度是 (x 1) 千米/小时,则有 4(x 1) 5x
3
4
班捐了 169 元,求四个班捐款的总和,设四个班捐款的总和为 x 元,可列出方
TB:小初高题库
程是什么?
青岛版初中数学
TB:小初高题库
青岛版初中数学
参考答案
一、1.A 2.B 3.B 4.A 二、1. 2x 1, 5(x 1) 1 ; 2.略。
2 三、1.× 2 .×
5.D .
四、
1.(1)错在方程左边加上 1 ,但方程右边没有加 1 ,改过来是
是( )
A.29 B.-13 C.-27 D. 41.
二、填空题 1.在 2x,2x 1,2 1 3,5(x 1) 1 中,一元一次方程有:
2 _________________;
2.解方程由 2x 8 5 到 2x 13 ,根据是__________________.
三、判断题
1.由 1 x 1 1 ,可得 1 x 1 .( )
七年级上册数学一元一次方程测试题(含答案)
一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是( )A.x+2y=5B. =2C.x2=8x-3D.y=12.下列方程中,解是x=2的是( )A.2x-2=0B. x=4C.4x=2D. -1=3.将方程5x-1=4x变形为5x-4x=1,这个过程利用的性质是( )A.等式性质1B.等式性质2C.移项D.以上说法都不对4.方程3- =1变形如下,正确的是( )A.6-x+1=2B.3-x+1=2C.6-x+1=1D.6-x-1=25.如果x=-8是方程3x+8= -a的解,则a的值为( )A.-14B.14C.30D.-306.某工作,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙共同完成余下的工作,甲一共做了( )A.2天B.3天C.4天D.5天7.小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款( )A.106元B.102元C.111.6元D.101.6元8.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为( )A.105元B.100元C.108元D.118元9.某工地调来72人挖土和运土,已知3人挖的±1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工,解决此问题可设x人挖土,其他人运土,列方程(1) =3;(2)72-x= ;(3) =3;(4)x+3x=72,上述所列方程正确的是( )A.1个B.2个C.3个D.4个10.某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm,得到方程( )A. =B. -2= +2C. - =2D. = -2二、填空题(每小题4分,共24分)11.若2的2倍与3的差等于2的一半,则可列方程为 .12.写出一个以x=- 为解的一元一次方程13.已知5x+3=8x-3和= 这两个方程的解是互为相反数,则a= .14.小强的速度为5千米/时,小刚的速度为4千米/时.两人同时出发,相向而行.经过x小时相遇,则两地相距千米.15.某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是元.16.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是元.三、解答题(共66分)17.(6分)解下列方程:(1)4x-2(x-3)=x; (2)x- -1.18.(6分)当x取何值时,代数式和x-2是互为相反数?19.(6分)若代数式3a3b4-5n“与-6a6-(m+1)bm-1是同类项,求m2-5mn的值.20.(8分)如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的`长条面积正好相等,那么每一个长条的面积为多少?21.(8分)一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,则两队合作,几个月可以完工?22.(10分)某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费.如果某居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水?23.(10分)小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长.24.(12分)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台.现在决定给武汉8台,南昌6台.每台机器的运费如下表.设杭州运往南昌的机器为x台.(1)用x的代数式来表示总运费(单位:百元);(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?终点起点南昌武汉温州厂4 8杭州厂3 5(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由.参考答案:1.D2.D3.A4.A5.B6.B7.D8.C9.B 10.B 11.2x-3= x 12.略13.24 14.9x 15.30016.2800 17.(1)x=-6 (2)x=- 18.解:由题意,得+x-2=0 解得x=219.解:由题意解得:m=2,n= . 把m=2,n= 代入m2-5mn得原式=22-5×2×=-2.20.解:设了正方形边长为x厘米,由题意,得4x=5(x-4) 解得x=20所以4×20=80答:每一个长条的面积为80平方厘米.21.解:设两队合作2个月完成,由题意,得x=1解得x=5答:两队合作,5个月可以完工.22.解:(1)∵1.5>1.2 ∴用水量超过20立方米. 设超过了x立方米1.2×20+2x=1.5(20+x) 解得x=12. ∴1.2×10+20=32. 答:这个月他共用了32立方米水.23.解:设火车的长为x米,由题意,得= 解得x=100.答:这列火车长100米.24.解:(1)总运费为4(6-x)+8.(4+x)+3x+5(4-x)=2x+76.(2)2x+76=84. x=4.答:运往南昌的机器应为4台.(3)若2x+76=74,解得x=-1.∵x不能为负数,∴不存在. 答:略.。
七年级数学上册_一元一次方程测试卷及答案
一元一次方程测试卷【1 】一.填空题(每题3分,共30分)1.关于x的方程(k-1)x-3k=0是一元一次方程,则k_______.2.方程6x+5=3x的解是________.3.若x=3是方程2x-10=4a的解,则a=______.4.(1)-3x+2x=_______.(2)5m-m-8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a,则该两位数为_______.6.一个长方形周长为108cm,长比宽2倍多6cm,则长比广大_______cm.7.某服装成本为100元,订价比成本高20%,则利润为________元.8.某加工场出米率为70%的稻谷加工大米,现要加工大米1000t,设须要这种稻谷xt,则列出的方程为______.9.当m值为______时,453m的值为0.10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军.二.选择题(每题3分,共30分)11.下列说法中准确的是()A.含有一个未知数的等式是一元一次方程B.未知数的次数都是1次的方程是一元一次方程C.含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D.2y-3=1是一元一次方程12.下列四组变形中,变形准确的是( )A .由5x+7=0得5x=-7B .由2x-3=0得2x-3+3=0C .由6x =2得x=13 D .由5x=7得x=3513.下列各方程中,是一元一次方程的是( )A .3x+2y=5B .y 2-6y+5=0C .13x-3=1x D .3x-2=4x-714.下列各组方程中,解雷同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=015.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲.乙合做,还需几小时?设剩下部分要x 小时完成,下列方程准确的是( )44.1.120201220201244.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k ---=1的解为x=-1,则k 的值为( )A .27B .1C .-1311 D .017.一条公路甲队独修需24天,乙队需40天,若甲.•乙两队同时分离从两头开端修,( )天后可将全体修完.A .24B .40C .15D .1618.解方程1432x x ---=1去分母准确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1C .2(x-1)-3(4-x )=6D .2x-2-12-3x=619.或人从甲地到乙地,水路比公路近40千米,但乘汽船比汽车要多用3小时,•已知汽船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分离为( )A .280千米,240千米B .240千米,280千米C .200千米,240千米D .160千米,200千米20.一组学生去春游,估计共需用120元,后来又有2人介入进来,总费用降下来,•于是每人可少摊3元,设本来这组学生人数为x 人,则有方程为( )A . 120x=(x+2)xB .1202x x =+120120120120.3.322C D x x x x -==+++三.解方程(共28分)21.(1)53-6x=-72x+1;(5分) (2)y-12(y-1)=23(y-1);(5分)(3)34 [43(12x-14)-8]=32x+1;(5分) (4)0.20.110.30.2x x -+-=.(5分) 22.(8分)若关于x 的方程2x-3=1和2x k-=k-3x 有雷同的解,求k 的值.四.运用题(每题8分,共32分)23.(8分)某校八年级近期实施小班教授教养,若每间教室安插20逻辑学生,则缺乏3•间教室;若每间教室安插24逻辑学生,则空出一间教室.问这所黉舍共有教室若干间?24.(8分)如图,有9个方格,请求每个方格填入不合的数,使得每行.每列.•每条对角线上三个数的和相等,问图中的m是若干?25.(8分)已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数.乙数和丙数的和是130.求这三个数.26.(8分)某音乐厅蒲月初决议在暑假时代举行学生专场音乐会,入场券分为集团票和零售票,个中集团票占总数的23,若提前购票,则赐与不合程度的优惠,在蒲月份内,集团票每张12元,共售出集团票数的35;零售票每张16元,•共售出零售票数的一半,假如在六月份内,集团票按每张16元出售,•并筹划在六月份售出全体余票,那么零售票应按每张若干元订价才干使这两个月的票款收入持平?答案1.≠1 2.x=-53 3.-1 4.(1)-x (2)-4m 5.99-a 6.22 7.20 ••8.•0.7x=1000 9.54 10.6 11.D 12.A 13.D 14.C 15.C 16.B 17.C18.C19.B (点拨:设水路x 千米,有方程402440x x +=+3) 20.C21.(1)x=415 (2)y=7 (3)x=-29114(4)22.4103x k =-=23.设黉舍有x 间教室,依题意得方程20(x+3)=24(x-1),解得x=21(间).24.设响应的方格中数为x 1,x 2,x 3,x 4,如图,由已知得m+x 1+x 2=m+x 3+x 4=x 1+x 3+13=x 2+19+x 4,由此得2m+x 1+x 2+x 3+x 4=13+19+x 1+x 2+x 3+x 4.∴2m=13+19,即m=16.25.设甲数是x,则乙数为3x,丙数为25x.依据题意有 x+3x+25x=130.所以甲数为20,乙数为60,丙数为50.26.设总票数a 张,六月份零售标价为x 元/张,依题意,得12×35×23a+16×12×13a=16×415a+16ax∴x=19.2,故六月份零售票应按每张19.2元订价.。
七年级一元一次方程单元检测题
一元一次方程单元检测题一、选择题(本大题共11小题,共33.0分) 1. 下列方程中是一元一次方程的是( )A. x3−3=4+x4 B. 2x +3x −1 C. x 2−3x +3=0D. x +2y =32. 已知下列方程:①x −2=2x ;②0.3x =1;③x2=5x +1;④x 2−4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A. 2 B. 3C. 4D. 53. 解方程x+14=x −5x−112时,去分母正确的是( )A. 3(x +1)=x −(5x −1)B. 3(x +1)=12x −5x −1C. 3(x +1)=12x −(5x −1)D. 3x +1=12x −5x +14. 已知a ,b ,c ,d 为有理数,现规定一种新的运算∣∣∣ab cd ∣∣∣=ad −bc ,那么当∣∣∣24(1−x)5x ∣∣∣=18时,则x 的值是( )A. x =1B. x =711C. x =117D. x =−15. 若3x+12的值比2x−23的值小1,则x 的值为( ) A. 135 B. −135C. 513D. −5136. 若关于x 的方程x −0.5x =3−1与3x −k =2的解相同,则k 的值为( ) A. 1B. 4C. 10D. −127. 代数式2x −1与4−3x 的值互为相反数,则x 等于( )A. −3B. 3C. −1D. 18. 某工程队需动用15台挖土、运土机械,每台每小时能挖土3 m 2或运土 2 m 3,为了使挖出的土能及时运走,设安排x 台机械挖土,则可列方程为( )A. 3x −2x =15B. 3x =2(15−x)C. 2x =3(15−x)D. 3x +2x =159. 将方程−3( 2x −1 )+2( 1−x )=2去括号,得( )A. −3x+3−1−x=2B. −6x−3+2−x=2C. −6x+3+1−2x=2D. −6x+3+2−2x=210.下列方程变形中,正确的是()A. 2x−1=x+5,移项得2x+x=5+1B. x2+x3=1,去分母得3x+2x=1C. (x+2)−2(x−1)=0,去括号得x+2−2x+2=0D. −4x=2,系数化为1得x=−211.设P=2y−2,Q=2y+3,且3P−Q=1,则y的值是()A. 0.4B. 2.5C. −0.4D. −2.5二、填空题(本大题共5小题,共15.0分)12.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为______元.13.小强的练习册上有一道方程题,其中一个数字被墨水污染了,成了1 3(−x−12+x)=1−x−∗5(“∗”表示被污染的数字),他翻了书后的答案,知道这个方程的解为x=5,于是他把被污染的数字求了出来,这个被墨水污染的数字是.14.一项工程,甲单独做需要10天完成,乙单独做需要15一天完成,两人合作4天后,剩下的部分由乙单独做,则还需要天才能完成.15.某中学为了对校园进行消毒,购买了84消毒液300瓶,75%酒精400瓶,共用了6900元,其中每瓶75%酒精比84消毒液贵5元.若设84消毒液每瓶x元,则根据题意列方程得.16.将方程4x+3y=6变形成用含y的代数式表示x,则x=.三、计算题(本大题共1小题,共6.0分)17.解下列方程:(1)2x−13−10x+16=2x+14−1;(2)x0.7−0.17−0.2x0.03=1.四、解答题(本大题共5小题,共40.0分)18.A,B两地相距60千米,甲、乙两人同时从A,B两地骑自行车出发,相向而行.甲每小时比乙多行2千米,经过2小时相遇,问甲、乙两人的速度分别是多少?19.下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10 m3,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户5月份用水多少立方米?20.已知(|a|−1)x2−(a+1)x+8=0是关于x的一元一次方程.(1)求a的值,并解出上述一元一次方程;(2)若上述方程的解比方程5x−2k=2x的解大2,求k的值.21.一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,所得的两位数比原来的两位数大27,求原来的两位数.22.某工厂出售一种产品,其成本价为每件28元,如果直接由厂家门市部销售,每件产品售价是35元,每月还要支付其他费用2100元;如果委托商店销售,那么出厂价为每件32元.(1)求这两种销售方式下,每月销售多少件时,所得利润相等;(2)若每月销售量为1000件,则采用哪种销售方式获利较多?【解析】解:A、是一元一次方程,故A符合题意;B、是代数式,故B不符合题意;C、是一元二次方程,故C不符合题意;D、是二元一次方程,故D不符合题意;故选:A.根据一元一次方程的定义求解即可.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.【答案】B只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.是分式方程,故①错误;【解答】解:①x−2=2x②0.3x=1,即0.3x−1=0,符合一元一次方程的定义.故②正确;=5x+1,即9x+2=0,符合一元一次方程的定义.故③正确;③x2④x2−4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x−6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B.3.【答案】C【解析】解:方程两边都乘以12,去分母得,3(x+1)=12x−(5x−1).故选:C.4.【答案】C【解答】解:由题意,得2×5x−4(1−x)=18,,解得x=117故选C.5.【答案】B解:由题,3x+12=2x−23−1,去分母得:3(3x+1)=2(2x−2)−6,去括号得,9x+3=4x−4−6,移项、合并得:5x=−13,系数化为1得:x=−135.故选B.6.【答案】C【解答】解:x−0.5x=3−1,解得x=4.则把x=4代入关于x的方程3x−k=2,得3×4−k=2,解得,k=10.故选C.7.【答案】B【解答】解:∵代数式2x−1与4−3x的值互为相反数,∴2x−1+4−3x=0,合并同类项得−x+3=0,解得x=3.故选B.8.【答案】B【解析】若安排x台机械挖土,则安排(15−x)台机械运土,由题意得3x=2(15−x),故选B.9.【答案】D【解析】去括号时,如果括号外面是负号,则去括号后括号内每一项都要变号.故方程−3(2x−1)+2(1−x)=2去括号,得−6x+3+2−2x=2.10.【答案】C【解析】2x−1=x+5,移项得2x−x=5+1;x 2+x3=1,去分母得3x+2x=6;−4x=2,系数化为1得x=−12.故选C.11.【答案】B【解析】∵P=2y−2,Q=2y+3,3P−Q=1,∴3(2y−2)−(2y+3)=1,去括号,得6y−6−2y−3=1,移项、合并同类项,得4y=10,系数化为1,得y=2.5.故选B.12.【答案】4【解析】解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.本题考查一元一次方程的应用,正确理解题意找到等量关系是解题的关键.13.【答案】5【解析】将x=5代入13(−x−12+x)=1−x−∗5,得13(−5−12+5)=1−5−∗5,解得∗=5,即被黑水污染的数字是5.14.【答案】5【解析】设还需要x天完成,根据题意得410+4+x15=1,解得x=5.15.【答案】300x+400(x+5)=6900【解析】若84消毒液每瓶x元,则75%酒精每瓶(x+5)元,由题意,得300x+ 400(x+5)=6900.16.【答案】6−3y4【解析】4x+3y=6,两边同时减去3y,得4x=6−3y,两边同时除以4,得x=6−3y4.17.【答案】解:(1)去分母,得4(2x−1)−2(10x+1)=3(2x+1)−12.去括号,得8x−4−20x−2=6x+3−12.移项,得8x−20x−6x=3−12+4+2.合并同类项,得−18x=−3.系数化为1,得x=16.(2)原方程可化为10x7−17−20x3=1.去分母,得30x−7(17−20x)=21.去括号,得30x−119+140x=21.移项、合并同类项,得170x=140.系数化为1,得x=14.17【解析】略18.【答案】解:设乙的速度是每小时x千米,则甲的速度是每小时(x+2)千米.依题意得:2x+2(x+2)=60.解得x=14,则x+2=16.答:乙的速度是每小时14千米,则甲的速度是每小时16千米.【解析】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设乙的速度是每小时x千米,则甲的速度是每小时(x+2)千米.根据“A,B两地相距60千米,甲每小时比乙多行2千米,经过2小时相遇”,列出方程并解答.19.【答案】解:(1)由题意可得10a=23,解得a=2.3.答:a的值为2.3.(2)设该用户5月份用水x m3,∵用水22 m3时,水费为22×2.3=50.6元<71元,∴x>22,∴22×2.3+(x−22)×(2.3+1.1)=71,解得x=28.答.该用户5月份用水28 m3【解析】略20.【答案】解:(1)因为(|a|−1)x2−(a+1)x+8=0是关于x的一元一次方程,所以|a|−1=0且−(a+1)≠0.由|a|−1=0,得|a|=1,所以a=±1.由−(a+1)≠0,得a+1≠0,所以a≠−1,所以a=1.所以方程可转化为−2x+8=0.移项,得−2x=−8.系数化为1,得x=4.(2)因为方程−2x+8=0的解比方程5x−2k=2x的解大2,所以方程5x−2k=2x的解为x=2.所以5×2−2k=2×2.移项,得−2k=4−10.合并同类项,得−2k=−6.系数化为1,得k=3.【解析】略21.【答案】解:设原来两位数十位上的数字为x,则个位上的数字为2x,由题意得20x+x−27=10x+2x,移项,得20x+x−10x−2x=27,合并同类项,得9x=27,系数化为1,得x=3,所以2×3=6.答:原来的两位数为36.【解析】略22.【答案】解:(1)设每月销售x件时,两种销售方式的销售利润相等.由题意得(35−28)x−2100=(32−28)x,解得x=700,所以每月销售700件时,两种销售方式所得利润相等.(2)当每月销售量为1000件时,直接由厂家门市部销售的利润是(35−28)×1000−2100=4900元;委托商店销售的利润是(32−28)×1000=4000元.因为4900>4000,所以采用直接由厂家门市部销售的方式获利较多.【解析】见答案第11页,共11页。
七年级上册数学一元一次方程测试题(含答案)
一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是( )A.x+2y=5B. =2C.x2=8x-3D.y=12.下列方程中,解是x=2的是( )A.2x-2=0B. x=4C.4x=2D. -1=3.将方程5x-1=4x变形为5x-4x=1,这个过程利用的性质是( )A.等式性质1B.等式性质2C.移项D.以上说法都不对4.方程3- =1变形如下,正确的是( )A.6-x+1=2B.3-x+1=2C.6-x+1=1D.6-x-1=25.如果x=-8是方程3x+8= -a的解,则a的值为( )A.-14B.14C.30D.-306.某工作,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙共同完成余下的工作,甲一共做了( )A.2天B.3天C.4天D.5天7.小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款( )A.106元B.102元C.111.6元D.101.6元8.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为( )A.105元B.100元C.108元D.118元9.某工地调来72人挖土和运土,已知3人挖的±1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工,解决此问题可设x人挖土,其他人运土,列方程(1) =3;(2)72-x= ;(3) =3;(4)x+3x=72,上述所列方程正确的是( )A.1个B.2个C.3个D.4个10.某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm,得到方程( )A. =B. -2= +2C. - =2D. = -2二、填空题(每小题4分,共24分)11.若2的2倍与3的差等于2的一半,则可列方程为 .12.写出一个以x=- 为解的一元一次方程13.已知5x+3=8x-3和= 这两个方程的解是互为相反数,则a= .14.小强的速度为5千米/时,小刚的速度为4千米/时.两人同时出发,相向而行.经过x小时相遇,则两地相距千米.15.某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是元.16.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是元.三、解答题(共66分)17.(6分)解下列方程:(1)4x-2(x-3)=x; (2)x- -1.18.(6分)当x取何值时,代数式和x-2是互为相反数?19.(6分)若代数式3a3b4-5n“与-6a6-(m+1)bm-1是同类项,求m2-5mn的值.20.(8分)如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的`长条面积正好相等,那么每一个长条的面积为多少?21.(8分)一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,则两队合作,几个月可以完工?22.(10分)某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费.如果某居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水?23.(10分)小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长.24.(12分)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台.现在决定给武汉8台,南昌6台.每台机器的运费如下表.设杭州运往南昌的机器为x台.(1)用x的代数式来表示总运费(单位:百元);(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?终点起点南昌武汉温州厂4 8杭州厂3 5(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由.参考答案:1.D2.D3.A4.A5.B6.B7.D8.C9.B 10.B 11.2x-3= x 12.略13.24 14.9x 15.30016.2800 17.(1)x=-6 (2)x=- 18.解:由题意,得+x-2=0 解得x=219.解:由题意解得:m=2,n= . 把m=2,n= 代入m2-5mn得原式=22-5×2×=-2.20.解:设了正方形边长为x厘米,由题意,得4x=5(x-4) 解得x=20所以4×20=80答:每一个长条的面积为80平方厘米.21.解:设两队合作2个月完成,由题意,得x=1解得x=5答:两队合作,5个月可以完工.22.解:(1)∵1.5>1.2 ∴用水量超过20立方米. 设超过了x立方米1.2×20+2x=1.5(20+x) 解得x=12. ∴1.2×10+20=32. 答:这个月他共用了32立方米水.23.解:设火车的长为x米,由题意,得= 解得x=100.答:这列火车长100米.24.解:(1)总运费为4(6-x)+8.(4+x)+3x+5(4-x)=2x+76.(2)2x+76=84. x=4.答:运往南昌的机器应为4台.(3)若2x+76=74,解得x=-1.∵x不能为负数,∴不存在. 答:略.。
七年级数学上册 一元一次方程单元测试卷 (word版,含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.【答案】(1)解:设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2(2)解:[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元【解析】【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.2.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.3.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。
七年级数学上册 第八章《一元一次方程》程练习题2 青岛版
一元一次方程练习题一、选择题1、下列方程中,是一元一次方程的是( )A 、()232x x x x +-=+B 、()40x x +-=C 、1x y +=D 、10x y += 2、与方程12x x -=的解相同的方程是( )A 、212x x -=+B 、21x x =+C 、21x x =-D 、12x x +=3、若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A 、0x =B 、3x =C 、3x =-D 、2x =4、把方程1123x x --=去分母后,正确的是( )。
A 、32(1)1x x --= B 、32(1)6x x --= C 、3226x x --= D 、3226x x +-=5、若27133m m -+与互为相反数,则m =( )。
A 、10 B 、-10 C 、43 D 、43- 二、解方程1、38123x x ---= 2、3(1)2(2)23x x x +-+=+3、12136x x x -+-=- 4、13500.20.01x x ++-=5、43(1)323322x x ⎡⎤---=⎢⎥⎣⎦三、解答题1、小明用天平测量物体的质量(如下图),已知每个小砝码的质量为1克,此时天平处于平衡状态。
若设大砝码的质量为x 克。
(1)想一想:(1) 观察上图你知道大砝码的质量是多少吗?答:.(2) 图中左右两边的天平想象成两个方程,你知道后一个方程是前一个方程经怎样的变化得到的?答:.(2)说一说:你能根据上面的数学事例,写出下图变化前后的方程。
方程:________________ ; 方程:_______________;方程:________________; 方程:_______________;(3).探究结论:.2、 当x 取何值时,代数式31--x x 比-53+x 的值大1? 3、若()23340x y -++=,求xy 的值。
青岛版七年级数学上册一元一次方程单元测试卷32
青岛版七年级数学上册一元一次方程单元测试卷32一、选择题(共10小题;共50分)1. 有两种等式变形:①若,则;②若,则.其中A. 只有①对B. 只有②对C. ①②都对D. ①②都错2. 下列式子是方程的个数有①,②,③,④,⑤,⑥,⑦,⑧A. 个B. 个C. 个D. 个3. 若是一元一次方程,则等于A. B. C. 或 D. 任何数4. 已知等式,则下列变形不一定成立的是A. B. C. D.5. 以为解的二元一次方程组是A. B. C. D.6. 如果是关于的方程的根,则的值是C.7. 若关于的方程的解是,则的值是B. C.8. 下列等式中不是一元一次方程的是A. B.C. D.9. 将连续的奇数,,,,,排成如图所示的数表,平移十字方框,方框内的个数字之和可能是A. B. C. D.10. 如图,甲、乙两动点分别从正方形的顶点,同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在边上,请问它们第2015次相遇在边上.A. B. C. D.二、填空题(共6小题;共30分)11. 把方程变形为,其依据是.12. 若关于的方程为一元一次方程,则的值是.13. 写出一个解为的一元一次方程:.14. 五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为元的商品,共节省元,则用贵宾卡又享受了折优惠.15. 已知方程,用含表示的式子是,用含表示的式子是.16. 元旦来临,各大商场都设计了促进消费增加利润的促销措施,人民商场把某种书包按进价提高进行标价,然后再打出折的优惠价,这样商场每卖出一个书包就可盈利元.这种书包的进价是元.三、解答题(共8小题;共104分)17. 列等式表示:(1)的倍等于;(2)比的倍大的数等于;(3)的一半与的和等于的倍.18. 已知是关于的方程的解,求的值.19. 判断,的解.20. 在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明是根据等式的哪一条性质以及是怎样变形的.(1)如果,那么,根据;(2)如果,那么,根据;(3)如果,那么,根据.21. 已知,,,,求下列各式的值:(1);(2).22. 解方程:(1);(2);23. 如图,将连续的偶数,,,,,排成一数阵,有一个能够在数阵中上下左右平移的字架,它可以框出数阵中的五个数.试判断这五个数的和能否为,若能,请求出这五个数,若不能,请说明理由.24. 开学初,为丰富教师们的业余生活,我校组织所有教师前往重庆大剧院观看演出.重庆大剧院的演出门票价格方案如下:.票价根据座位区域不同定价不同,一区票价为元/张,二区票价为元/张;.离退休教师各区均享受八折优惠.已知本次活动实到教师人,若本次活动每人均购买二区票则需元.(1)求参加本次活动的在职教师、离退休教师分别有多少人;(2)为庆祝重阳节,重庆在大剧院调整了票价方案,将张一区演出票票价每张降低了元,将全部二区演出票票价每张降低了元,离退休教师可在降价后仍享受八折优惠.若学校决定将张一区演出票全部购入并优先发放给离退休教师和部分在职教师,其余教师均购买二区票,且校方希望总门票费用不超过元,求的最小值.答案第一部分1. B2. D3. A 【解析】根据一元一次方程的特点可得解得.4. D5. C【解析】答案:C.6. A7. A8. D 【解析】根据一元一次方程的定义可知A,B,C符合一元一次方程的定义,选项D可变形为,是二次方程.9. C 【解析】设十字方框中间数字为,为奇数,则十字方框上、下两数字和为,十字方框左右两数字和为,十字框中五个数字和为,当时,,故A错误;当时,,故B错误;当时,,故D错误;当时,,但是不是奇数,故C正确.10. C【解析】【分析】设出正方形的边长,甲的速度是乙的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【解析】解:设正方形的边长为,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;②第二次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;③第三次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;④第四次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;⑤第五次相遇甲乙行的路程和为,乙行的路程为,甲行的路程为,在边的中点相遇;四次一个循环,因为,所以它们第2015次相遇在边上.故选:.【点评】本题主要考查行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.第二部分11. 等式的基本性质 212.【解析】方程是一元一次方程.解得.故答案为:.13. (答案不唯一)14. 九【解析】设用贵宾卡又享受了折优惠,则根据题意可得,解得.15. ,16.【解析】设这种书包的进价为元.根据题意得:解得则这种书包的进价为元.17. (1)(2)(3)18. 的值为.19. 将代入方程,,,,的解;将代入方程,,.,是方程的解.20. (1);等式的性质,两边都减去.(2);等式的性质,两边都乘(3),两边都除以21. (1),,,..(2).22. (1)去括号,得移项,合并同类项,得系数化为,得(2)去分母,得解得23. 这五个数的和能为.原因如下:设最小数为,则其余数为,,,.由题意得所以这五个数为,,,,.24. (1)设在职教师人,则离退休教师人,根据题意:解得:.答:在职教师人,则离退休教师人.(2)由题意可得:降价后,一区票价为元/张,二区票价为元/张.所以解得:所以的最小值为.。
青岛版-数学-七年级上册-《一元一次方程的解法》同步检测2
7.3一元一次方程的解法一、选择题(每题3分,共24分)1.解方程时,不需要合并同类项的是()(A)2x=3x (B)2x+1=0 (C)6x-1=5 (D)4x=2+3x2.下列变形中,属于移项的是()(A)由3225x x+-=得3225x x-+=(B)由321x x+=得51x=(C)由2(1)3x-=得223x-=(D)由953x+=-得935x=--3.下列方程变形中移项正确的是()(A)由36x+=,得63x=+(B)由21x x=+,得21x x-=(C)由212y y-=-,得212y y-=(D)由512x x+=-,得215x x-=+ 4. 若式子57x-与49x+的值相等,则x的值等于()(A)2 (B)16 (C)29(D)1695. 小李在解方程513a x-=(x为未知数)时,误将x-看作x+,得方程的解为2x=-,则原方程的解为()(A)3x=-(B)0x=(C)2x=(D)1x=6. 三个连续整数的和为54,则这三个数为()(A)15,16,17 (B)16,17,18 (C)17,18,19 (D)18,19,20 7. 已知甲有图书80本,乙有图书48本,要使甲、乙两人的图书一样多, 应从甲调到乙多少本图书?若设应调x本,则所列方程正确的是()(A)80+x=48-x (B)80-x=48 (C)48+x=80-x (D)48+x=80 8.我国民间流传着许多趣味算题,它们多以顺口溜的形式表述,请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?()(A)3个老头4个梨(B)4个老头3个梨(C)5个老头6个梨(D)7个老头8个梨二、填空题(每题3分,共24分)1.若3-=ba,则ab-的值是.2.若m是3221x x-=+的解,则3010m+的值是.3.对有理数a、b,规定运算※的意义是:a※b=2a b+,则方程3x※4=2的解是_________.4.当=_____时,式子2x-1的值比式子5x+6的值小1.5.母亲26岁时生了女儿,若干年后,母亲的年龄是女儿年龄的3倍,此时女儿的年龄是.6.已知一艘船航行于A、B两码头之间,去时顺水航行的速度为1v,返回时逆水航行的速度为2v,则水流的时速为7. 某商店一套夏装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为元.8.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文x y z,,对应密文23343x y x y z++,,.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为.三、计算题(20分)1.解下列方程:(共6分)(1)76226x x--=-;(2)2341255x x-=+.2.(6分)2x=是方程40ax-=的解,检验3x=是不是方程2534ax x a-=-的解.3.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?四、解答题(32分)1.(10分)为了改善某边防中队的生活质量,我解放军后勤机关调拨一批水果.如果每名官兵3个水果,则剩余29个水果;如果每名官兵4个水果,则还缺25个水果.问有几个官兵?多少个水果?2.(10分)有一些分别标有7,14,21,28,35,…的卡片,后一张卡片上的数总比前一张卡片上的数大7,小明拿到了相邻的3张卡片,且卡片上的数之和为357. (1)猜猜小明拿到的是哪三张卡片?(2)小明能否拿到相邻的三张卡片,使得三张卡片上的数字之和等于85?若能拿到,请求出是哪三张;若不能,请说明理由.3.(12分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手3倍,求彩电、冰机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的2箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?参考答案一、1.B ;2.D ;3.C ;4.B ;5.C ;6.C ;7.C ;8.A ;二、1. 32.1003.2x =-4.-25.13 岁6.221v v - 7.340 8.329,, 三、1.(1)28x =-;(2)80x =-.2.不是.(提示:因为2x =是方程40ax -=的解,所以240a -=,解得2a =.将2a =代入方程2534ax x a -=-,得4538x x -=-,将3x =代入该方程左边,则左边=7,代入右边,则右边=1,左边≠右边,所以3x =不是方程4538x x -=-的解.)3. 小拖拉机每小时耕地12亩.(提示:设小拖拉机每小时耕地x 亩,列方程x+1.5x=30,x=12.)四、1.有25个官兵,95个水果.(提示:设有x 个官兵,根据题意,得3x+20=4x-25)2.(1)小明拿的是112,119,126三张;(2)不能,因为他拿三张卡片数字之和必须是3的倍数,而85不是3的倍数,所以不能是85.3.解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000. 解得x =88.∴ 31322x =,53501302x -=. 所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元),130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元。