2020-2021石家庄市七年级数学下期末试题及答案
2020-2021学年河北省初中七年级下期末数学试卷(有答案)-精品试卷
最新河北省七年级(下)期末数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列各数①﹣3.14 ②π③④⑤﹣中,无理数的个数是()A.2 B.3 C.4 D.52.以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命3.若两条平行线被第三条直线所截,则一组同旁内角的平分线互相()A.垂直B.平行C.重合D.相交4.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.3a>3b D.<5.已知:是方程kx﹣y=3的解,则k的值是()A.2 B.﹣2 C.1 D.﹣16.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为()A.1 B.2 C.3 D.47.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)8.已知M(1,﹣2),N(﹣3,﹣2),则直线MN与x轴,y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交9.将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,则所得图形与原图形的关系是()A.将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B.将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C.将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D.将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位10.已知长江比黄河长836千米,黄河长的6倍比长江长的5倍多1284千米.若设长江长x千米,黄河长y千米,则下列方程组能满足上述关系的是()A.B.C.D.11.不等式组的整数解共有()A.3个B.4个C.5个D.6个12.我校七年级学生总人数为700,其男女生所占比例如图所示,则该校七年级男生人数为()A.48 B.52 C.336 D.36413.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有()A.1个B.2个C.3个D.4个14.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为()A.45°B.60°C.72°D.108°二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!共6题,每小题3分,共18分)15.计算:= .16.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)位于第象限.17.如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.18.已知是二元一次方程组的解,则m+3n的立方根为.19.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在80分以上.20.将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(11,5)表示的实数是.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算:.22.解方程组:.23.解不等式组:,并在数轴上表示出不等式组的解集.24.我们在小学就已经知道,任意一个三角形的内角和等于180°我们是通过度量和剪拼得到这一结论的,我们马上就要升入八年级,在八年级的数学学习中,“三角形的内角和等于180°”是需要通过推理的方法去证明的,接下来我们需要接受挑战,完成下列题目要求:(1)在证法一中的括号内,填上推理的根据.(2)在证法二的提示下写出证明过程.并写清楚推理的根据.三角形内角和定理:三角形三个内角的和等于180°已知:如图1,△ABC求证:∠A+∠B+∠C=180°.证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,∠2=∠B又∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°证法二:提示:如图3,过点C作DE∥AB.25.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?26.某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率50≤x<60 20 0.1060≤x<70 28 b70≤x<80 54 0.2780≤x<90 a 0.2090≤x<100 24 0.12100≤x<110 18 0.09110≤x<120 16 0.08(1)表中a和b所表示的数分别为:a ,b ;(2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?27.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列各数①﹣3.14 ②π③④⑤﹣中,无理数的个数是()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,共2个.故选A.2.以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、旅客上飞机前的安检,意义重大,宜用全面调查,故A选项错误;B、学校招聘教师,对应聘人员面试必须全面调查,故B选项错误;C、了解全校同学课外读书时间,数量不大,宜用全面调查,故C选项错误;D、了解一批灯泡的使用寿,具有破坏性,工作量大,不适合全面调查,故D选项正确.故选:D.3.若两条平行线被第三条直线所截,则一组同旁内角的平分线互相()A.垂直B.平行C.重合D.相交【考点】平行线的性质.【分析】作出图形,然后根据两直线平行,同旁内角互补以及角平分线的定义可得∠1+∠2=90°,再根据三角形的内角和定理求出∠C=90°,从而得解.【解答】解:如图,∵a∥b,∴∠DAB+∠ABE=180°,∵AC、BC分别是角平分线,∴∠1=∠DAB,∠2=∠ABE,∴∠1+∠2=×180°=90°,∴∠C=180°﹣(∠1+∠2)=180°﹣90°=90°,∴AC⊥BC,∴同旁内角的平分线互相垂直,故选A.4.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.3a>3b D.<【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都减5,不等号的方向不变,故A错误;B、不等式的两边都加2,不等号的方向不变,故B错误;C、不等式的两边都乘以2,不等号的方向不变,故C正确;D、不等式的两边都除以3,不等号的方向不变,故D错误;故选:C.5.已知:是方程kx﹣y=3的解,则k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】二元一次方程的解.【分析】将方程的解代入方程得到关于k的一元一次方程,于是可求得k的值.【解答】解:将代入方程kx﹣y=3得:2k﹣1=3,解得k=2.故选:A.6.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为()A.1 B.2 C.3 D.4【考点】平行线的性质.【分析】根据平行线的性质,平角等于180°对各小题进行验证即可得解.【解答】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,故(1)(2)正确;∵三角板是直角三角板,∴∠2+∠4=180°﹣90°=90°,故(3)正确;∴∠3+∠5=180°,∴∠4+∠5=180°,故(4)正确,综上所述,正确的个数是4.故选D.7.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度求出点A的纵坐标,再根据点到y轴的距离等于横坐标的长度求出横坐标,即可得解.【解答】解:∵A点到x轴的距离为3,A点在第二象限,∴点A的纵坐标为3,∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,∴点A的横坐标为﹣9,∴点A的坐标为(﹣9,3).故选A.8.已知M(1,﹣2),N(﹣3,﹣2),则直线MN与x轴,y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交【考点】坐标与图形性质.【分析】根据坐标与图形的性质可知,两点纵坐标相等,所以直线MN与x轴平行,直线MN与y轴垂直相交.【解答】解:由题可知:MN两点的纵坐标相等,所以直线MN与x轴平行,直线MN与y轴垂直相交,故选D.9.将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,则所得图形与原图形的关系是()A.将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B.将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C.将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D.将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位【考点】坐标与图形变化-平移.【分析】根据坐标与图形变化﹣平移的有关结论进行求解.【解答】解:将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,相对把△ABC向左平移6个单位,再向下平移3个单位.故选:C.10.已知长江比黄河长836千米,黄河长的6倍比长江长的5倍多1284千米.若设长江长x千米,黄河长y千米,则下列方程组能满足上述关系的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】此题中的等量关系:①长江比黄河长836千米;②黄河长度的6倍比长江长度的5倍多1284千米.【解答】解:设长江长x千米,黄河长y千米,根据长江比黄河长836千米,则x﹣y=836;根据黄河长度的6倍比长江长度的5倍多1284千米,则6y=5x+1284.可列方程组为.故选A.11.不等式组的整数解共有()A.3个B.4个C.5个D.6个【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,在取值范围内可以找到整数解.【解答】解:由①式解得x≥﹣2,由②式解得x<3,∴不等式组的解集为﹣2≤x<3,∴不等式组的整数解为x=﹣2,﹣1,0,1,2共5个.故选C.12.我校七年级学生总人数为700,其男女生所占比例如图所示,则该校七年级男生人数为()A.48 B.52 C.336 D.364【考点】扇形统计图.【分析】利用扇形统计图得到男生所占的百分比为52%,然后用七年级学生总人数乘以这个百分比即可得到该校七年级男生人数.【解答】解:该校七年级男生人数=700×52%=364(人).故选D.13.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有()A.1个B.2个C.3个D.4个【考点】不等式的性质.【分析】根据不等式的基本性质进行判断.【解答】解:①∵a>b,∴a﹣b>0.故①正确;②若c≤0时,ac≤bc.故②错误;③∵a>b>0,∴<.故③正确;④∵a>b>0,∴0<b<a,则b•b<ab,即b2<ab.故④错误.综上所述,正确的不等式是①③,共2个.故选:B.14.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为()A.45°B.60°C.72°D.108°【考点】条形统计图;扇形统计图.【分析】首先根据打篮球的人数是20人,占40%,求出总人数,用360°乘以足球所占的百分百,即可得出扇形的圆心角的度数.【解答】解:总人数是:20÷40%=50(人),360°×=72°,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°.故选C.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!共6题,每小题3分,共18分)15.计算:= 2 .【考点】二次根式的乘除法.【分析】直接利用二次根式的性质进而化简求出即可.【解答】解:==2.故答案为:2.16.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)位于第二象限.【考点】点的坐标.【分析】根据x轴上点的纵坐标为0求出n,然后确定出点B的坐标,再根据各象限内点的坐标特征解答.【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B(n﹣1,n+1)为(﹣1,1),∴点B位于第二象限.故答案为:二.17.如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于 2 .【考点】角平分线的性质;平行线之间的距离.【分析】过点O作OF⊥AB于F,作OG⊥CD于G,然后根据角平分线上的点到角的两边的距离相等可得OE=OF=OG,再根据两直线平行,同旁内角互补求出∠BAC+∠ACD=180°,然后求出∠EOF+∠EOG=180°,从而判断出E、O、G三点共线,然后求解即可.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=+=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.18.已知是二元一次方程组的解,则m+3n的立方根为 2 .【考点】二元一次方程组的解;立方根.【分析】把x与y的值代入方程组求出m+3n的值,利用立方根定义计算即可.【解答】解:把代入方程组得:,①+②得:m+3n=8,则m+3n的立方根为2,故答案为:219.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对17 道题,成绩才能在80分以上.【考点】一元一次不等式的应用.【分析】利用答对一道得5分,答错一道扣2分,不答得0分,表示出所得分数以及所扣分数,进而得出答案.【解答】解:设这个同学答对x道题,故5x﹣2(20﹣1﹣x)>80,解得:x>16,故这个同学至少要答对17道题,成绩才能在80分以上.故答案为:17.20.将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(11,5)表示的实数是60 .【考点】实数;规律型:数字的变化类.【分析】观察图形可知,每一排的数字的个数与排数相同,先求出前10排的数字的总个数,然后根据有序数对的实际意义写出第11排的第5个数即可.【解答】解:由图可知,前10排共有:1+2+3+4+5+6+7+8+9+10=55个,∵(11,5)表示第11排从左到右第5个数,∴(11,5)表示的实数是60.故答案为:60.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算:.【考点】实数的运算;绝对值;立方根;二次根式的性质与化简.【分析】根据乘方、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=6+﹣1+2+5=12+.22.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:5x=10,即x=2,将x=2代入①得:y=3,则原方程组的解是.23.解不等式组:,并在数轴上表示出不等式组的解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.【解答】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:24.我们在小学就已经知道,任意一个三角形的内角和等于180°我们是通过度量和剪拼得到这一结论的,我们马上就要升入八年级,在八年级的数学学习中,“三角形的内角和等于180°”是需要通过推理的方法去证明的,接下来我们需要接受挑战,完成下列题目要求:(1)在证法一中的括号内,填上推理的根据.(2)在证法二的提示下写出证明过程.并写清楚推理的根据.三角形内角和定理:三角形三个内角的和等于180°已知:如图1,△ABC求证:∠A+∠B+∠C=180°.证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,两直线平行,内错角相等,∠2=∠B 两直线平行,同位角相等,又∵∠1+∠2+∠ACB=180°平角的定义∴∠A+∠B+∠ACB=180°等量代换证法二:提示:如图3,过点C作DE∥AB.【考点】平行线的性质;三角形内角和定理.【分析】(1)证法一:如图2,作BC的延长线CD,过点C作CE∥BA,根据平行线的性质得到∠1=∠A,∠2=∠B,由平角的定义得到∠1+∠2+∠ACB=180°,等量代换即可得到结论;(2)根据平行线的性质得到∠1=∠A,∠2=∠B,由平角的定义得到∠1+∠2+∠ACB=180°,等量代换即可得到结论;【解答】解:(1)证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,两直线平行,内错角相等,∠2=∠B,两直线平行,同位角相等,又∵∠1+∠2+∠ACB=180°,平角定义,∴∠A+∠B+∠ACB=180°,等量代换;故答案为:两直线平行,内错角相等,两直线平行,同位角相等,平角定义,等量代换.(2)如图,∵DE∥AB,则∠1=∠B,(两直线平行,内错角相等),∠2=∠A(两直线平行,内错角相等),又∵∠1+∠ACB+∠2=180°平角定义∴∠A+∠ACB+∠B=180°等量代换.25.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (+2 ,0 ),C→ D (+1,﹣2 );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?【考点】坐标确定位置;有理数的加减混合运算;整式的加减.【分析】(1)根据规定及实例可知B→C (+2,0),C→D(+1,﹣2);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)根据M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2)可知5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到答案.【解答】解:(1)∵向上向右走为正,向下向左走为负,∴图中B→C (+2,0),C→D(+1,﹣2);故答案为:+2,0,D,﹣2.(2)甲虫走过的路程为1+4+2+1+2=10(3)∵M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),∴5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,∴点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).26.某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率50≤x<60 20 0.1060≤x<70 28 b70≤x<80 54 0.2780≤x<90 a 0.2090≤x<100 24 0.12100≤x<110 18 0.09110≤x<120 16 0.08(1)表中a和b所表示的数分别为:a 40 ,b 0.14 ;(2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)可先求出抽查的人数,根据50≤x<60这个分数段可求出抽查的人数为:20÷0.10=200人,根据频率=,可求出a和b的值.(2)根据(1)求出的a的值,画在图上就可以.(3)由70分以上频率和×20000,即可求出该市20000名九年级考生数学成绩为合格的学生人数.【解答】解:(1)抽查人数:20÷0.10=200(人),则a=200×0.20=40(人),b==0.14.(2)补全频数分布直方图,如图:(3)20000×(0.27+0.20+0.12+0.09+0.08)=15200(人).答:该市20000名九年级考生数学成绩为合格的学生约有15200人.27.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【考点】一元一次不等式组的应用.【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.2016年8月29日。
2020-2021学年河北省七年级下册期末数学试卷(有答案)-精品试卷
最新河北省七年级(下)期末数学试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是()A.4 B.﹣4 C.±4 D.±22.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是()A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)3.下列命题中,真命题的个数是()①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个 B.2个 C.3个 D.4个4.用代入法解方程组时,代入正确的是()A.x﹣2﹣x=4 B.x﹣2﹣2x=4 C.x﹣2+2x=4 D.x﹣2+x=45.估计的值在哪两个整数之间()A.75和77 B.6和7 C.7和8 D.8和96.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为()A.20°B.80°C.160°D.20°或160°8.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③9.已知方程组和有相同的解,则a,b的值为()A.B.C.D.10.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.90 B.144 C.200 D.8011.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为()A.14 B.13 C.12 D.1112.已知方程组:的解是:,则方程组:的解是()A.B.C.D.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是.14.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有人.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= .17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是.18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是.19.如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2).22.计算(1)解方程组:(2)解不等式组:.23.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.24.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.25.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?27.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b 分别相交于A、B两点.(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为;(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为.参考答案与试题解析一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是()A.4 B.﹣4 C.±4 D.±2【考点】平方根.【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.2.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是()A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)【考点】点的坐标.【分析】根据P到x轴的距离可得P的纵坐标的绝对值,根据P到y轴的距离可得P的横坐标的绝对值,根据第二象限的点的符号特点可得点P的坐标.【解答】解:∵点P到x轴的距离是4,到y轴的距离是5,∴P的纵坐标的绝对值为4,横坐标的绝对值为5,∵点P在第二象限内,∴横坐标的符号为负,纵坐标的符号为正,∴P的坐标为(﹣5,4).故选C.3.下列命题中,真命题的个数是()①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①同位角相等,是假命题;②a,b,c是三条直线,若a⊥b,b⊥c,则a∥c,是假命题.③a,b,c是三条直线,若a∥b,b∥c,则a∥c,是真命题;④过直线外一点有且只有一条直线与已知直线平行,是假命题,故选A4.用代入法解方程组时,代入正确的是()A.x﹣2﹣x=4 B.x﹣2﹣2x=4 C.x﹣2+2x=4 D.x﹣2+x=4【考点】解二元一次方程组.【分析】将①代入②整理即可得出答案.【解答】解:,把①代入②得,x﹣2(1﹣x)=4,去括号得,x﹣2+2x=4.故选C.5.估计的值在哪两个整数之间()A.75和77 B.6和7 C.7和8 D.8和9【考点】估算无理数的大小.【分析】先对进行估算,再确定是在哪两个相邻的整数之间.【解答】解:∵<<,∴8<<9,∴在两个相邻整数8和9之间.故选:D.6.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为()A.20°B.80°C.160°D.20°或160°【考点】平行线的性质.【分析】首先根据题意画出图形,由∠A的两边与∠B的两边互相平行,根据平行线的性质,即可求得∠B的度数.【解答】解:如图1:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠B=∠1,∵∠A=20°,∴∠B=∠A=20°;如图2:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠1+∠B=180°,∴∠B=180°﹣∠A=160°.故选D.8.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③【考点】平行线的判定.【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.9.已知方程组和有相同的解,则a,b的值为()A.B.C.D.【考点】二元一次方程组的解.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选D.10.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.90 B.144 C.200 D.80【考点】扇形统计图.【分析】根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:30÷15%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选D.11.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为()A.14 B.13 C.12 D.11【考点】一元一次不等式的应用.【分析】本题可设钢笔数为x,则笔记本有30﹣x件,根据小明用100元钱购得笔记本和钢笔共30件,就是已知不等关系:买笔记本用的钱数+买钢笔用的钱数≤100元.根据这个不等关系就可以得到一个不等式.求出钢笔数的范围.【解答】解:设钢笔数为x,则笔记本有30﹣x件,则有:2(30﹣x)+5x≤10060﹣2x+5x≤100即3x≤40x≤13因此小明最多能买13只钢笔.故选B.12.已知方程组:的解是:,则方程组:的解是()A.B.C.D.【考点】二元一次方程组的解.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即.故选C.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是﹣1<a<1 .【考点】点的坐标;解一元一次不等式组.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(a+1,a﹣1)在第四象限,∴,由①得:a>﹣1,由②得:a<1,所以,a的取值范围是﹣1<a<1.故答案为:﹣1<a<1.14.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是 3 .【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可作出判断.【解答】解:在3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、中,0.2060060006(相邻的两个6之间依次多一个0)、3.1415、0、、是有理数,﹣π、、这3个数是无理数,故答案为3.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有114000 人.【考点】用样本估计总体.【分析】根据题意计算出身体素质达标的人数所占百分比,然后再计算出该市12万名七年级学生身体素质达标的人数.【解答】解:120000×=114000,故答案为:114000.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= 2 .【考点】二元一次方程的解.【分析】将方程的解代入方程可得到关于a、b的方程,最后应用整体代入法求解即可.【解答】解:将代入ax+by=2得:2a﹣b=2.原式4﹣(2a﹣b)=4﹣2=2.故答案为:2.17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是(6,6)或(3,﹣3).【考点】点的坐标.【分析】分点的横坐标与纵坐标相等和互为相反数两种情况讨论求解.【解答】解:∵点P(a+2,3a﹣6)到两坐标轴的距离相等,∴a+2=3a﹣6或a+2+3a﹣6=0,解得a=4或a=1,当a=4时,a+2=4+2=6,此时,点P(6,6),当a=1时,a+2=3,此时,点P(3,﹣3),综上所述,点P(6,6)或(3,﹣3).故答案为:(6,6)或(3,﹣3).18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是6≤a<9 .【考点】一元一次不等式的整数解.【分析】解不等式得x≤,由于只有两个正整数解,即1,2,故可判断的取值范围,求出a的取值范围.【解答】解:原不等式解得x≤,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.故答案为:6≤a<9.19.如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于10 .【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是﹣7 .【考点】解二元一次方程组;有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:,①+②得:a=﹣1,b=1,则原式=2a﹣5b=﹣2﹣5=﹣7.故答案为:﹣7三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2).【考点】实数的运算.【分析】(1)原式利用二次根式性质,乘方的意义,以及立方根定义计算即可得到结果;(2)原式利用二次根式乘法法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4﹣1﹣3=0;(2)原式=2+2﹣2+=3.22.计算(1)解方程组:(2)解不等式组:.【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)先把①变形为x﹣y=5的形式,再用代入消元法求解即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)解方程组:由①得,x﹣y=5③,把③代入②得,20﹣y=5,解得,y=15.把y=11代入③得,x=20,所以方程组的解为:;(2),由①得,x≥,由②得,x>,故方程组的解为:x≥.23.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为(0,4);B′的坐标为(﹣1,1);C′的坐标为(3,1);(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据同底等高的三角形面积相等即可得出结论.【解答】解:(1)图略;(2)由图可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).24.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计图;折线统计图.【分析】(1)根据图①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由图可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣=410﹣335=75;如图:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.25.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意关系式为:40x+30(7﹣x)≥253+7,(2)分别算出各个方案的租金,比较即可.【解答】解:(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意,得40x+30(7﹣x)≥253+7,解得x≥5,又x≤7,即5≤x≤7,x=5,6,7,有三种租车方案:租甲种客车5辆,则租乙种客车2辆,租甲种客车6辆,则租乙种客车1辆,租甲种客车7辆,则租乙种客车0辆;(2)∵5×350+2×280=2310元,6×350+1×280=2380元,7×350=2450元,∴租甲种客车5辆;租乙种客车2辆,所需付费最少为2310(元).27.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b 分别相交于A、B两点.(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠1=∠2+∠3 ;(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠2=∠1+∠3 .【考点】平行线的性质.【分析】(1)过点P作a的平行线,根据平行线的性质进行解题;(2)过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;(3)设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【解答】解:(1)如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为:∠1=∠2+∠3;(3)如图3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为:∠2=∠1+∠3.2017年2月21日。
2020-2021学年河北省七年级下学期期末考试数学试题及答案-精品试卷
最新度第二学期期末质量检测七年级数学试卷题号选择题填空题21 22 23 24 25 26 总分得分一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1. 9的值等于()A . 3B . -3C . ±3D . 32. 已知a<b,则下列四个不等式中,不正确的是()A.a-2<b-2 B.-2a<-2b C.2a<2b D.a+2<b+23. 下列说法正确的是()A . 相等的两个角是对顶角B .和等于180度的两个角互为邻补角C . 若两直线相交,则它们互相垂直D . 两条直线相交所形成的四个角都相等,则这两条直线互相垂直4.下列命题中,属于真命题的是()A.两个锐角的和是锐角B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.同位角相等D.在同一平面内,如果a//b,b//c,则a//c5. 若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A . 第一象限B . 第二象限C . 第三象限D .第四象限6.如右图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5C.∠1+∠4=180°D.∠3=∠57.一副三角板按如右图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °, ∠2=y °,则可得到方程组为( )A .⎩⎨⎧=+-=18050y x y xB .⎩⎨⎧=++=18050y x y x C .⎩⎨⎧=+-=9050y x y x D .⎩⎨⎧=++=9050y x y x8.在下列各数中:39,3.1415926,23, -5,38,3,0.5757757775…(相邻两个5之间的7的个数逐次加1),无理数有( )个 A .1 B .2 C .3 D .49.点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 ( )A . (3,2)B .(3,-2)C .(-2,3) C .D .(2,-3) 10.要反映本县一周内每天的最高气温的变化情况,宜采用 ( ) A .条形统计图 B .扇形统计图 C .折线统计图C .频数分布直方图11.二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky=10,则k 的值等于( )A .4B .-4C .8D .-8 12. 下列调查方式,你认为最合适的是( ) A. 了解全市每天的流动人口数,采用抽样调查方式B. 要了解全市七年级学生英语单词的掌握情况,采用全面调查方式C. 了解全市居民日平均用水量,采用全面调查方式D. 旅客进火车站上车前的安检,采用抽样调查方式13.不等式2(1)3x x +<的解集在数轴上表示出来应为( )14.若不等式组2<x <a 的整数解恰有3个,则a 的取值范围是( ) A .a >5 B .5<a <6 C .5≤a <6 D .5<a ≤6二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.用不等式表示“a 与5的差不是正数”16.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫左眼的坐标为 (–4,3)、则移动后猫左眼的坐标为17.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD=30°,则∠AOC= 度. 18.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_____度.CBA17题图 19题图19.如图,小强告诉小华图中A 、B 两点的坐标分别为(–3,5)、(3,5),小华一下就说出了C1 2 30 -1 -2 B .3 4 5 2 1 0 C .1 2 30 -1 -2 A .3 4 52 1 0 D .点在同一坐标系下的坐标是20.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点。
河北省石家庄市2020-2021学年七年级下学期数学期末复习测试卷(word版 含答案)
河北省石家庄市2020-2021学年七年级下学期数学期末复习测试卷一、单选题(本大题共10小题,每小题3分,共30分)1、下列长度的三条线段能组成三角形的是( )A .5cm 2cm 3cmB .5cm 2cm 2cmC .5cm 2cm 4cmD .5cm 12cm 6cm2、在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A .1个B .2个C .3个D .4个3、下列分解因式的变形中,正确的是( )A .xy(x -y)-x(y -x)=-x(y -x)(y +1)B .6(a +b)2-2(a +b)=(2a +b)(3a +b -1)C .3(n -m)2+2(m -n)=(n -m)(3n -3m +2)D .3a(a +b)2-(a +b)=(a +b)2(2a +b)4、不等式组⎩⎨⎧x -1≤0,2x -5<1的解集为( ) A .x <-2 B .x ≤-1 C .x ≤1 D .x <35、如果关于x 、y 的二元一次方程组2351x y k x y k +=⎧⎨+=-⎩的解x 、y 满足2x y +=,那么k 的值是( )A .2-B .3-C .3D .2 6、若x n +与2x +的乘积中不含x 的一次项,则3n 的值为( )A.4-B.4 C.8 D.8-7、如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC 的延长线于点E、H、F、G,下列四个式子中正确的是()A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠18、已知a,b,c是△ABC的三边长,满足a2+b2=6a+8b-25,则最长边c的范围是( )A.1<c<7 B.4≤c<7 C.4<c<7 D.1<c≤49、若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=4的解,则k的值为()A.12-B.12C.2 D.﹣210、小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是( )A .①④B .②③C .①②D .③④二、填空题(本大题共6小题,每小题4分,共24分)11、若|a -2|+b 2-2b +1=0,则a b =______.12、若a m =6,a n =8,则a m+n =______,a m-n =_____.13、已知 x+2y ﹣3z=0,2x+3y+5z=0,则x y z x y x++-+=_____. 14、如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于_____.15、已知关于x 的不等式组⎩⎨⎧x -3m <0,n -2x <0的解集是-1<x <3,则(m +n)2 021=____. 16、如图,在△ABC 中,已知点E 、F 分别是AD 、CE 边上的中点,且S △BEF =3cm 2,则S △ABC 的值为_________cm 2 .三、解答题(共66分)17、(8分)利用公式计算(1)(2x+3y-z )(2x-3y+z); (2)2(2)(2)(4)x x x +--.18、(本小题满分12分)分解因式:(1)2x2-18; (2)3m2n-12mn+12n;(3)(a+b)2-6(a+b)+9; (4)(x2+9)2-36x2.19、(6分)已知2xy=⎧⎨=⎩和350xy=-⎧⎨=-⎩是关于x,y的二元一次方程mx-ny=10的两个解.(1)求m,n的值.(2)先化简,再求值:(m-n)(4m+n)-(2m+n)(2m-n).20、(6分)已知关于x的不等式4(x+2)-2>5+3a的解都能使不等式(3a+1)x3>a(2x+3)2成立,求a的取值范围.21、(8分)如图,直线AB,CD,EF相交于点O,且AB CD⊥,OC平分∠BOE,若722EOG AOE∠=∠,求EOG∠和DOF∠的度数.22、(8分)七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店笔记本(元/水笔(元/件)件)友谊超市 2.4 2网店 2 1.8(1)请求出需购买笔记本和水笔的数量;(2)求从网店购买这些奖品可节省多少元.23、(10分)(1)如图1,直线a∥直线b,点A、D在直线a上,点B、C在直线b上,连接AB、AC、BD、DC,得△ABC和△BDC,△ABC的面积_______△BDC的面积(填“>”、“=”或“<”).(2)如图2,已知△ABC,过点A有一条线段,将△ABC的面积平分,且交BC于点D,则BDBC.(3)如图3,已知四边形ABCD,请过点D作一条线段DG将四边形ABCD面积平分.24、(10分)解决问题:(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是____.(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是____.(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式____.(4)利用所得公式计算:24814111112(1)(1)(1)(1)22222+++++参考答案一、单选题(本大题共10小题,每小题3分,共30分)1、下列长度的三条线段能组成三角形的是( C )A .5cm 2cm 3cmB .5cm 2cm 2cmC .5cm 2cm 4cmD .5cm 12cm 6cm2、在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( C )A .1个B .2个C .3个D .4个3、下列分解因式的变形中,正确的是( A )A .xy(x -y)-x(y -x)=-x(y -x)(y +1)B .6(a +b)2-2(a +b)=(2a +b)(3a +b -1)C .3(n -m)2+2(m -n)=(n -m)(3n -3m +2)D .3a(a +b)2-(a +b)=(a +b)2(2a +b)4、不等式组⎩⎨⎧x -1≤0,2x -5<1的解集为( C ) A .x <-2 B .x ≤-1 C .x ≤1 D .x <35、如果关于x 、y 的二元一次方程组2351x y k x y k +=⎧⎨+=-⎩的解x 、y 满足2x y +=,那么k 的值是( B )A .2-B .3-C .3D .26、若x n +与2x +的乘积中不含x 的一次项,则3n 的值为( D )A.4-B.4 C.8 D.8-7、如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC 的延长线于点E、H、F、G,下列四个式子中正确的是( C )A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠18、已知a,b,c是△ABC的三边长,满足a2+b2=6a+8b-25,则最长边c的范围是( C )A.1<c<7 B.4≤c<7 C.4<c<7 D.1<c ≤49、若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=4的解,则k的值为( B )A.12-B.12C.2 D.﹣210、小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是( C )A .①④B .②③C .①②D .③④二、填空题(本大题共6小题,每小题4分,共24分)11、若|a -2|+b 2-2b +1=0,则a b =2.12、若a m =6,a n =8,则a m+n =___48___,a m-n =___34__. 13、已知 x+2y ﹣3z=0,2x+3y+5z=0,则x y z x y x ++-+=___729__. 14、如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于___75°__.15、已知关于x 的不等式组⎩⎨⎧x -3m <0,n -2x <0的解集是-1<x <3,则(m +n)2 021=__-1__.16、如图,在△ABC 中,已知点E 、F 分别是AD 、CE 边上的中点,且S △BEF =3cm 2,则S △ABC 的值为_____12____cm 2 .三、解答题(共66分)17、(8分)利用公式计算(1)(2x+3y-z )(2x-3y+z);(2)2(2)(2)(4)x x x +--.解:(1)原式=4x 2-9y 2+6yz -z 2;(2)原式=42816x x -+.18、(本小题满分12分)分解因式:(1)2x 2-18;解:原式=2(x 2-9)=2(x +3)(x -3).(2)3m 2n -12mn +12n ;解:原式=3n(m 2-4m +4)=3n(m -2)2.(3)(a +b)2-6(a +b)+9;解:原式=(a +b -3)2.(4)(x 2+9)2-36x 2.解:原式=(x 2+9+6x)(x 2+9-6x)=(x +3)2(x -3)2.19、(6分)已知2xy=⎧⎨=⎩和350xy=-⎧⎨=-⎩是关于x,y的二元一次方程mx-ny=10的两个解.(1)求m,n的值.(2)先化简,再求值:(m-n)(4m+n)-(2m+n)(2m-n).解:(1)把和代入方程得:,解得512mn=⎧⎪⎨=⎪⎩.(2)原式=4m2﹣3mn﹣n2﹣4m2+n2=﹣3mn,当m=5,n=时,原式=﹣.20、(6分)已知关于x的不等式4(x+2)-2>5+3a的解都能使不等式(3a+1)x3>a(2x+3)2成立,求a的取值范围.解:解不等式4(x+2)-2>5+3a,得x>3a-1 4.解不等式(3a+1)x3>a(2x+3)2,得x>9a2.由题意,得3a-14≥9a2.解得a≤-1 15 .21、(8分)如图,直线AB ,CD ,EF 相交于点O ,且AB CD ⊥,OC 平分∠BOE ,若722EOG AOE ∠=∠,求EOG ∠和DOF ∠的度数.解:∵OG 平分∠BOE ,∴EOG BOG ∠=∠.设AOE x ︒∠=, ∴722EOG BOG x ︒∠=∠=∴772222x x x ++180=,解得110x =. ∴71103522EOG ︒︒∠=⨯=. ∵AB CD ⊥,∴90BOC ︒∠=,∴DOF COE ∠=∠903535︒︒︒=--20︒=.22、(8分)七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店 笔记本(元/水笔(元/件)件)友谊超市 2.4 2网店 2 1.8(1)请求出需购买笔记本和水笔的数量;(2)求从网店购买这些奖品可节省多少元.解:(1)设需购买笔记本x件,水笔y件,根据题意得:,解得:.答:需购买笔记本25件,水笔15件.(2)在网店购买这些奖品所需费用为25×2+15×1.8=77(元),节省的钱数为90﹣77=13(元).答:从网店购买这些奖品可节省13元.23、(10分)(1)如图1,直线a∥直线b,点A、D在直线a上,点B、C在直线b上,连接AB、AC、BD、DC,得△ABC和△BDC,△ABC的面积___=____△BDC的面积(填“>”、“=”或“<”).(2)如图2,已知△ABC ,过点A 有一条线段,将△ABC 的面积平分,且交BC 于点D ,则BD BC = 12. (3)如图3,已知四边形ABCD ,请过点D 作一条线段DG 将四边形ABCD 面积平分.解:(3)如图,连接BD ,过点A 作BD 的平行线AE ,延长CB 交AE 于点F ,取FC 中点G ,连接DG ,DG 为所求线段.24、(10分)解决问题:(1)如图1,已知正方形ABCD 的边长为a ,正方形FGCH 的边长为b ,长方形ABGE 和EFHD 为阴影部分,则阴影部分的面积是__22a b -__.(写成平方差的形式)(2)将图1中的长方形ABGE 和EFHD 剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是__()()a b a b +-__.(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式__22()()a b a b a b +-=-__.(4)利用所得公式计算:24814111112(1)(1)(1)(1)22222+++++解:原式=4。
2020-2021学年第二学期七年级期末数学试卷及答案
20.(5 分)先阅读材料,然后解方程组. 材料:善于思考的小军在解方程组
时,采用了如下方法:
解:将②变形,得 4x+10y+y=5
即 2(2x+5y)+y=5③
把①代入③,得 2×3+y=5,解得 y=﹣1.
把 y=﹣1 代入①,得 2x+5×(﹣1)=3,解得 x=4.
∴原方程组的解为
.
这种方法称为“整体代入法”.请用这种方法解方程组:
D.0
A. =±5
B.
=4
C.( )2=4 D.± =2
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
4.(3 分)下列说法正确的是( ) A.调查全国初中生每天体育锻炼所用时间的情况,适合采用全面调查 B.调查黄河某段的水质情况,适合采用抽样调查 C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查 D.为了了解一批袋装食品是否含有防腐剂,选择全面调查
D.
,故本选项不合题意.
故选:C.
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
【分析】根据不等式的性质 1,可判断 A、B;根据不等式的性质 2,可判断 C;根据不 等式的性质 3,可判断 D. 【解答】解:A、不等式的两边都减 3,不等式的方向不变,故 A 正确; B、不等式的两边都减 b,不等号的方向不变,故 B 错误; C、不等式的两边都乘以 ,不等号的方向不变,故 C 错误;
个大长方形的面积为
cm2.
三、解答题(本大题共 7 个小题,共 55 分.解答应写出文字说明,证明过程或演算步骤) 16.(8 分)(1)计算: +| ﹣3|﹣ + ;
2020-2021学年河北省七年级数学下学期期末试卷及答案-精品试卷
最新河北省七年级(下)期末数学试卷一、精心选一选:(本大题共10个小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列四个数中,无理数是()A.B.﹣0.1 C.D.2.在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.下列统计中,适合用“全面调查”的是()A.某厂生产的节能灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.某品牌瓶装饮料的合格率4.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠45.若a<b,则下列各式中一定成立的是()A.a﹣c<b﹣c B.a2<b2C.﹣a<﹣b D.ac<bc6.若方程组的解为,则前后两个□的数分别是()A.4,2 B.1,3 C.2,3 D.5,27.下列命题中,是假命题的是()A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c8.﹣8的立方根是()A.±2 B.2 C.﹣2 D.249.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.10.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=128°,则∠DBC的度数为()A.52°B.62°C.72°D.128°二、细心填一填(本题共8个小题,每小题3分,共24分,把答案写在题中横线上)11.9的平方根是.12.平面直角坐标系中某点M(a,a+1)在x轴上,则a= .13.已知x=1,y=﹣8是方程3mx﹣y=﹣1的一个解,则m的值是.14.不等式﹣2x<3的解集是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.根据去年某班学生体育毕业考试的成绩(成绩取整数),制成如图所示的频数分布直方图,若成绩在24.5~27.5分范围内为良好,则该班学生体育成绩良好的百分率是.17.已知线段AB的端点A(﹣1,﹣2),B(1,2),将线段AB平移后,A的坐标是(1,2),则B点坐标是.18.如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为.三、用心算一算(本大题共6个小题,共56分,解答应写出文字说明、证明过程或演算步骤)19.解方程组:.20.解不等式组,并把解集在数轴上表示出来.21.如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移得到△A1B1C1,且点P 的对应点为P1(a+5,b+4).(1)写出△ABC的三个顶点的坐标;(2)求△ABC的面积;(3)请在平面直角坐标系中画出△A1B1C1.22.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.23.学习了统计知识后,老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:(1)该班共有名学生;(2)将“骑自行车”部分的条形统计图补充完整;(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;24.某中学为了丰富学生的校园生活,准备从体育用品店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若买3个足球和1个篮球需230元;购买2个足球3个篮球共需340元,则购买一个足球,一个篮球各需多少元?参考答案与试题解析一、精心选一选:(本大题共10个小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列四个数中,无理数是()A.B.﹣0.1 C.D.【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、﹣0.1是有理数,故B错误;C、=4是有理数,故C错误;D、是无理数,故D正确;故选:D.2.在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.3.下列统计中,适合用“全面调查”的是()A.某厂生产的节能灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.某品牌瓶装饮料的合格率【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:某厂生产的节能灯使用寿命适合用抽样调查;全国初中生的视力情况适合用抽样调查;某校七年级学生的身高情况适合用全面调查;某品牌瓶装饮料的合格率适合用全面调查,故选:C.4.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4【考点】平行线的判定.【分析】因为∠1与∠2是AD、BC被AC所截构成的内错角,所以结合已知,由内错角相等,两直线平行求解.【解答】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故选:B.5.若a<b,则下列各式中一定成立的是()A.a﹣c<b﹣c B.a2<b2C.﹣a<﹣b D.ac<bc【考点】不等式的性质.【分析】根据不等式两边同加上(或减去)一个数,不等号方向不变可对A进行判断;通过举例子如可a=﹣1,b=0可对B进行判断;根据不等式两边同乘以(或除以)一个负数,不等号方向改变可对C进行判断;由于c的值不确定,若c=0可对D进行判断.【解答】解:A、由a<b,则a﹣c<b﹣c,故A选项正确;B、a<b,可设a=﹣1,b=0,则a2<b2不成立,故B选项错误;C、由a<b,则﹣a>﹣b,故C选项错误;D、当c=0,ac=bc,故D选项错误.故选:A.6.若方程组的解为,则前后两个□的数分别是()A.4,2 B.1,3 C.2,3 D.5,2【考点】二元一次方程组的解.【分析】将x=1代入x+y=3可求得y=2,接下来将x=1,y=2代入2x+y进行计算即可.【解答】解:x=1代入x+y=3得:1+y=3,解得y=2,将x=1,y=2代入2x+y得2x+y=2×1+2=4.故选:A.7.下列命题中,是假命题的是()A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c【考点】命题与定理.【分析】根据平行的判定方法对A、C进行判断;根据平行的性质和垂直的定义对B、D进行判断.【解答】解:A、在同一平面内,若a∥b,b∥c,则a∥c,所以A选项为真命题;B、在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题;C、在同一平面内,若a⊥b,b⊥c,则a∥c,所以C选项为假命题;在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题.故选C.8.﹣8的立方根是()A.±2 B.2 C.﹣2 D.24【考点】立方根.【分析】根据立方根的定义求出即可.【解答】解:﹣8的立方根是﹣2.故选C.9.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【解答】解:由①,得x>﹣2,由②,得x≤2,所以不等式组的解集是:﹣1<x≤2.不等式组的解集在数轴上表示为:.故选:B.10.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=128°,则∠DBC的度数为()A.52°B.62°C.72°D.128°【考点】平行线的性质.【分析】由∠ADE=125°,根据邻补角的性质,即可求得∠ADB的度数,又由AD∥BC,根据两直线平行,内错角相等,即可求得∠DBC的度数.【解答】解:∵∠ADE=128°,∴∠ADB=180°﹣∠ADE=52°,∵AD∥BC,∴∠DBC=∠ADB=52°.故选A.二、细心填一填(本题共8个小题,每小题3分,共24分,把答案写在题中横线上)11.9的平方根是±3 .【考点】平方根.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.12.平面直角坐标系中某点M(a,a+1)在x轴上,则a= ﹣1 .【考点】点的坐标.【分析】由x轴上点的坐标特征得出a+1=0,即可得出结果.【解答】解:∵点M(a,a+1)在x轴上,∴a+1=0,解得:a=﹣1,故答案为:﹣1.13.已知x=1,y=﹣8是方程3mx﹣y=﹣1的一个解,则m的值是﹣3 .【考点】二元一次方程的解.【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=1,y=﹣8代入方程3mx﹣y=﹣1,得3m+8=﹣1,解得m=﹣3.故答案为﹣3.14.不等式﹣2x<3的解集是x>﹣.【考点】解一元一次不等式.【分析】根据不等式的性质解答即可.【解答】解:﹣2x<3,系数化为1得,,故答案为x>﹣.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.16.根据去年某班学生体育毕业考试的成绩(成绩取整数),制成如图所示的频数分布直方图,若成绩在24.5~27.5分范围内为良好,则该班学生体育成绩良好的百分率是40% .【考点】频数(率)分布直方图.【分析】用优秀的人数除以总人数,然后计算即可得解.【解答】解:优秀的百分率=×100%=40%.故答案为:40%.17.已知线段AB的端点A(﹣1,﹣2),B(1,2),将线段AB平移后,A的坐标是(1,2),则B点坐标是(3,6).【考点】坐标与图形变化-平移.【分析】根据平移的性质得出由A到A'是A点向右平移2个单位,再向上平移4个单位得到A′,根据这个规律即可求出答案.【解答】解:∵将线段AB平移至线段A′B′,如果A的对应点A′的坐标是(1,﹣2),A(1,2),∴A点向右平移2个单位,又向上平移4个单位到点A′处,∵点B的坐标是(1,2),∴1+2=3,2+4=6,∴B的对应点B′,的坐标是(3,6),故答案为:(3,6).18.如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为120°.【考点】平行线的性质.【分析】先利用邻补角可计算出∠BDC=30°,再利用平行线的性质得∠ABD=∠BDC=30°,接着根据角平分线定义得∠CBD=∠ABD=30°,然后根据三角形内角和计算∠C的度数.【解答】解:∵∠CDE=150°,∴∠BDC=180°﹣150°=30°,∵AB∥CD,∴∠ABD=∠BDC=30°,∵BE平分∠ABC,∴∠CBD=∠ABD=30°,∴∠C=180°﹣∠BDC﹣∠CBD=180°﹣30°﹣30°=120°.故答案为120°.三、用心算一算(本大题共6个小题,共56分,解答应写出文字说明、证明过程或演算步骤)19.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=8,即x=2,把x=2代入①得:2﹣y=5,即y=﹣3,则方程组的解为:.20.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x>;由②得,x≥4,故此不等式组的解集为:x≥4,在数轴上表示为:21.如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移得到△A1B1C1,且点P 的对应点为P1(a+5,b+4).(1)写出△ABC的三个顶点的坐标;(2)求△ABC的面积;(3)请在平面直角坐标系中画出△A1B1C1.【考点】作图-平移变换.【分析】(1)根据各点在坐标系中的位置写出各点坐标即可;(2)利用矩形的面积减去三角形三个顶点上三角形的面积即可;(3)根据图形平移的性质画出△A1B1C1即可.【解答】解:(1)由图可得A(﹣3,0),B(﹣5,﹣1),C(﹣2,﹣2);=2×3﹣×1×2﹣×1×2﹣×1×3=;(2)S△ABC(3)如图所示,△A1B1C1即为所求.22.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】平行线的判定与性质.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.23.学习了统计知识后,老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题:(1)该班共有40 名学生;(2)将“骑自行车”部分的条形统计图补充完整;(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;【考点】条形统计图;扇形统计图.【分析】(1)根据步行的人数是20,对应的百分比是50%,据此即可求得总人数;(2)利用总人数乘以对应的百分比求得骑自行车的人数,补全直方图;(3)利用360°乘以对应的百分比求解.【解答】解:(1)该班总人数是20÷50%=40(人),故答案是:40;(2)将“骑自行车”部分的人数是:40×20%=8(人).;(3)出“乘车”部分所对应的圆心角的度数是360°×=108°.24.某中学为了丰富学生的校园生活,准备从体育用品店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若买3个足球和1个篮球需230元;购买2个足球3个篮球共需340元,则购买一个足球,一个篮球各需多少元?【考点】二元一次方程组的应用.【分析】设购买一个足球x元,购买一个篮球y元,由买3个足球和1个篮球需230元列方程为:3x+y=230;由购买2个足球3个篮球共需340元列方程为:2x+3y=340,组成方程组解出即可.【解答】解:设购买一个足球x元,购买一个篮球y元,根据题意得:,解得:,答:购买一个足球50元,购买一个篮球80元.2016年8月25日。
2020-2021学年七年级(下)期末数学试卷(解析版)
2020-2021学年七年级(下)期末数学试卷(解析版)一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.下列各式不能成立的是()A.(x2)3=x6B.x2•x3=x5C.(x﹣y)2=(x+y)2﹣4xy D.x2÷(﹣x)2=﹣1【考点】4C:完全平方公式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的乘法运算以及幂的乘方运算和完全平方公式求出即可.【解答】解:A.(x2)3=x6,故此选项正确;B.x2•x3=x 2+3=x5,故此选项正确;C.(x﹣y)2=(x+y)2﹣4xy=x2+y2﹣2xy,故此选项正确;D.x2÷(﹣x)2=1,故此选项错误;故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和完全平方公式的应用,熟练掌握其运算是解决问题的关键.2.给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.【解答】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.【点评】此题主要考查了轴对称图形,关键是找出图形的对称轴.3.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x) D.(x2+y)(x ﹣y2)【考点】4F:平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.【点评】本题考查了平方差公式,要熟悉平方差公式的形式.4.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2 D.以上都有可能【考点】X5:几何概率.【分析】先根据甲和乙给出的图形,先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选A.【点评】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.5.在同一平面内,如果两条直线被第三条直线所截,那么()A.同位角相等B.内错角相等C.不能确定三种角的关系D.同旁内角互补【考点】J6:同位角、内错角、同旁内角.【分析】根据平行线的性质定理即可作出判断.【解答】解:A、两条被截直线平行时,同位角相等,故选项错误;B、两条被截直线平行时,内错角相等,故选项错误;C、正确;D、两条被截直线平行时,同旁内角互补,故选项错误.故选C.【点评】本题主要考查了平行线的性质定理,注意定理的条件:两直线平行.6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个【考点】E6:函数的图象.【分析】观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.【解答】解:读图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选C.【点评】解决本题的关键是读懂图意,明确横轴与纵轴的意义.7.如图,AB∥ED,则∠A+∠C+∠D=()A.180°B.270°C.360°D.540°【考点】JA:平行线的性质.【分析】首先过点C作CF∥AB,由AB∥ED,即可得CF∥AB∥DE,然后根据两直线平行,同旁内角互补,即可求得∠1+∠A=180°,∠2+∠D=180°,继而求得答案.【解答】解:过点C作CF∥AB,∵AB∥ED,∴CF∥AB∥DE,∴∠1+∠A=180°,∠2+∠D=180°,∴∠A+∠ACD+∠D=∠A+∠1+∠2+∠D=360°.故选C.【点评】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握两直线平行,同旁内角互补定理的应用.8.已知一个正方体的棱长为2×102毫米,则这个正方体的体积为()A.6×106立方毫米B.8×106立方毫米C.2×106立方毫米D.8×105立方毫米【考点】47:幂的乘方与积的乘方.【分析】正方体的体积=棱长的立方,代入数据,然后根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:正方体的体积为:(2×102)3=8×106立方毫米.故选B.【点评】考查正方体的体积公式和积的乘方的性质,熟记体积公式和积的乘方的性质是解题的关键.9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.10.如图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可得到所得图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,展开即可得到答案.【解答】解:由折叠可得最后展开的图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,并且关于长边对称的两个剪去部分是不相连的,各选项中,只有选项D符合.故选D.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解决本题的关键是根据折叠确定所得图形的对称轴.二、填空题(本大题共6个小题,每题3分,共计18分)11.任意翻一下2016年的日历,翻出1月6日是不确定事件,翻出4月31日是确定事件.(填“确定”或“不确定”)【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意翻一下2016年的日历,翻出1月6日是随机事件,即不确定事件,翻出4月31日是不可能事件,即确定事件,故答案为:不确定;确定.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.等腰三角形一边长为8,另一边长为5,则此三角形的周长为18或21.【考点】KH:等腰三角形的性质.【分析】本题应分为两种情况8为底或5为底,还要注意是否符合三角形三边关系.【解答】解:当8为腰,5为底时;8﹣5<8<8+5,能构成三角形,此时周长=8+8+5=21;当8为底,5为腰时;8﹣5<5<8+5,能构成三角形,此时周长=5+5+8=18;故答案为18或21.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.13.若x2+6x+b2是一个完全平方式,则b的值是±3.【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征计算即可求出b的值.【解答】解:∵x2+6x+b2是一个完全平方式,∴b=±3,故答案为:±3【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【考点】KN:直角三角形的性质.【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.15.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD 的中点,则MN=8cm.【考点】ID:两点间的距离.【分析】结合图形,得MN=MC+CD+ND,根据线段的中点,得MC=AC,ND=DB,然后代入,结合已知的数据进行求解.【解答】解:∵M、N分别是AC、BD的中点,∴MN=MC+CD+ND=AC+CD+DB=(AC+DB)+CD=(AB﹣CD)+CD=×(10﹣6)+6=8.故答案为:8.【点评】此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.16.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:时间t(s) 1 2 3 4距离s(m) 2 8 18 32 …则写出用t表示s的关系式s=2t2.【考点】E3:函数关系式.【分析】根据物理知识列出函数表达式s=at2,代入数据计算即可得到关系式.【解答】解:设t表示s的关系式为s=at2,则s=a×12=2,解得a=2,∴s=2t2.故t表示s的关系式为:s=2t2.故答案为:2t2.【点评】本题考查了由实际问题列函数关系式,关键是掌握两个变量的关系.三、解答题(本大题共8个题,共72分.解答题要写出过程.)17.(15分)计算(1)简便计算:(2)计算:2a3b2•(﹣3bc2)3÷(﹣ca2)(3)先化简再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(5x﹣2y)]÷4x,其中x=,y=2.【考点】4J:整式的混合运算—化简求值.【分析】(1)把15、16分别写成(16﹣)与(16+)的形式,利用平方差公式计算.(2)先乘方,再按整式的乘除法法则进行运算.(3)先计算左括号里面的,再算除法.最后代入求值.【解答】解:(1)原式=(16﹣)×(16+)=162﹣()2=255(2)原式=2a3b2×(﹣27b3c6)÷(﹣ca2)=54a3﹣2b2+3c6﹣1=54ab5c5(3)原式=[(9x2﹣4y2)﹣(5x2+8xy﹣4y2)]÷4x=(4x2﹣8xy)÷4x=x﹣2y当x=,y=2时原式=﹣4=﹣【点评】本题考查了整式的乘方、乘除、加减运算及乘法公式.解题过程中注意运算顺序.平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差.18.(5分)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.【考点】N4:作图—应用与设计作图.【分析】到两条公路的距离相等,则要画两条公路的夹角的角平分线,到A,B两点的距离相等又要画线段AB的垂直平分线,两线的交点就是点P的位置.【解答】解:如图所示,.【点评】本题主要考查了角平分线的性质及垂直平分线的性质.解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.19.(8分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.【考点】X5:几何概率.【分析】(1)根据题意先得出奇数的个数,再根据概率公式即可得出答案;(2)根据概率公式设计如:自由转动的转盘停止时,指针指向大于2的区域,答案不唯一.【解答】解:(1)根据题意可得:转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6,有3个扇形上是奇数.故自由转动转盘,当它停止转动时,指针指向奇数区的概率是=.(2)答案不唯一.如:自由转动的转盘停止时,指针指向大于2的区域.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)如图,已知∠1=∠2,∠3=∠4,∠E=90°,试问:AB∥CD吗?为什么?解:∵∠1+∠3+∠E=180°180°∠E=90°已知∴∠1+∠3=90°∵∠1=∠2,∠3=∠4已知∴∠1+∠2+∠3+∠4=180°∴AB∥CD同旁内角互补,两直线平行.【考点】J9:平行线的判定;K7:三角形内角和定理.【分析】第一空利用三角形内角和定理即可求解;第二利用已知条件即可;第三空利用等式的性质即可求解;第四空利用已知条件即可;第五孔利用等式的性质即可;第六空利用平行线的判定方法即可求解.【解答】解:∵∠1+∠3+∠E=180°∠E=90°(已知),∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4 (已知),∴∠1+∠2+∠3+∠4=180°,∴AB∥CD (同旁内角互补两直线平行).故答案为:180°、90°已知、已知、180°、同旁内角互补两直线平行.【点评】此题主要考查了平行线的判定及三角形的内角和定理,解题的关键是利用三角形内角和定理得到同旁内角互补解决问题.21.(7分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?【考点】E6:函数的图象.【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不在随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【解答】解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/小时.【点评】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.22.(10分)把两个含有45°角的直角三角板如图放置,点D在AC上,连接AE、BD,试判断AE与BD的关系,并说明理由.【考点】KD:全等三角形的判定与性质.【分析】可通过全等三角形将相等的角进行转换来得出结论.本题中我们可通过证明△AEC 和BCD全等得出∠FAD=∠CBD,根据∠CBD+∠CDB=90°,而∠ADF=∠BDC,因此可得出∠AFD=90°,进而得出结论.那么证明三角形AEC和BCD就是解题的关键,两直角三角形中,EC=CD,AC=BC,两直角边对应相等,因此两三角形全等.【解答】解:BF⊥AE,理由如下:由题意可知:△ECD和△BCA都是等腰Rt△,∴EC=DC,AC=BC,∠ECD=∠BCA=90°,在△AEC和△BDC中EC=DC,∠ECA=∠DCB,AC=BC,∴△AEC≌△BDC(SAS).∴∠EAC=∠DBC,AE=BD,∵∠DBC+∠CDB=90°,∠FDA=∠CDB,∴∠EAC+∠FDA=90°.∴∠AFD=90°,即BF⊥AE.故可得AE⊥BD且AE=BD.【点评】本题考查了全等三角形的判定与性质,解答本题首先要大致判断出两者的关系,然后通过全等三角形来将相等的角进行适当的转换,从而得出所要得出的角的度数.23.(8分)暑假期间某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”.若全票价为240元(1)设学生数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式.(2)当学生人数为多少时,两旅行社收费相同?【考点】E3:函数关系式.【分析】(1)由题意不难得出两家旅行社收费的函数关系式,(2)若求解那个更优惠,可先令两个式子相等,得到一个数值,此时两家都一样进而求解即可.【解答】解:(1)y甲=240+120x;y乙=240×60%(x+1);(2)240+120x=240×60%(x+1)解得x=4,所以当有4名学生时,两家都可以.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.24.(12分)如图1,线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.(1)找出图中的所有全等三角形.(2)找出一组相等的线段,并说明理由.(3)如图2,取AE的中点M、BD的中点N,连接MN,试判断三角形CMN的形状,并说明理由.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)根据全等三角形的判定,可得答案;(2)根据全等三角形的判定与性质,可得答案;(3)根据全等三角形的判定与性质,可得CM=CN,根据等边三角形的判定,可得答案.【解答】解:(1)△BCD≌△ACE;△BPC≌△AQC;△DPC≌△EQC(2)BD=AE.理由:等边三角形ABC、DCE中,∵∠ACB=∠ACD=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.(3)等边三角形.理由:由△BCD≌△ACE,∴∠1=∠2,BD=AE.∵M是AE的中点、N是BD的中点,∴DN=EM,又DC=CE.在△DCN和△ECM中,,∴△DCN≌△ECM(SAS),∴CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.∴∠NCD+∠DCM=60°,即∠NCM=60°,又∵CM=CN,∴△CMN为等边三角形.【点评】本题考查了全等三角形的判定与性质,解(1)的关键是全等三角形的判定,解(2)的关键是全等三角形的判定;解(3)的关键是利用全等三角形的判定与性质得出CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.,又利用了等边三角形的判定.。
2020-2021学年河北省初中七年级下册期末考试数学试题有答案A-精品试卷
最新度第二学期期末质量监测七年级数学试卷注意事项:1.本次考试试卷共6页,试卷总分120分,考试时间90分钟。
2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,务必在答题卡规定的地方填写自己的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号和本人姓名、准考证号是否一致。
3.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号。
写在本试卷上无效。
一、精心选一选,慧眼识金(本大题共16个小题:每小题3分,共48分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1.计算23a a ⋅正确的是A.aB.5aC.6aD.9a2.某种细菌直径约为0.00000067mm ,若将0.00000067mm 用科学记数法表示为n 107.6⨯mm (n 为负整数),则n 的值为A.-5B.-6C.-7D.-83.下列三天线段不能构成三角形的三边的是A.3cm ,4cm ,5cmB.5cm ,6cm ,11cmC.5cm ,6cm ,10cmD.2cm ,3cm ,4cm4.如图,直线a ,b 被直线c 所截,若a ∥b ,=∠︒=∠︒=∠3702401,则,A.70°B.100°C.110°D.120°5.当x <a <0时,2x 与ax 的大小关系是A.2x >axB.2x ≥axC.2x <axD.2x ≤ax6.不等式组⎩⎨⎧≤+x4-168-x 213x 4>的最小整数解是A.0B.-1C.1D.27.如图,下列能判定AB ∥EF 的条件有①︒=∠+∠180BFE B ②21∠=∠③43∠=∠ ④5∠=∠BA.1个B.2个C.3个D.4个8.当a ,b 互为相反数时,代数式2a +ab-4的值为A.4B.0C.-3D.-49.下列运算正确的是A.222b a b a +=+)(B.(-2ab 3)622b a 4-=C.3a 632a a 2-=D.a 3-a=a (a+1)(a-1)10.(-8)201320148-)(+能被下列整数除的是 A.3 B.5 C.7 D.911.若不等式组⎩⎨⎧-ax <<x 312的解集是x <2,则a 的取值范围是A.a <2B.a ≤2C.a ≥2D.无法确定12.如图,是三个等边三角形(注:等边三角形的三个内角都相等)随意摆放的图形,则321∠+∠+∠等于A.90°B.120°C.150°D.180°13.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时,阴影部分的面积为S 2,则S 1和S 2的大小关系是A.S 1>S 2B.S 1<S 2C.S 1=S 2D.无法确定14.已知的结果为,则计算:2m -m -m 01-m -m 342+= A.3 B.-3 C.5 D.-515.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙得速度的两倍,要保证在2小时以内相遇,则甲的速度A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h16.如图,E 是△ABC 中BC 边上的一点,且BE=31BC ;点D 是AC 上一点,且AD=41AC ,S =-=∆∆∆ADF EF ABC S S ,则24A.1B.2C.3D.4第Ⅱ (非选择题,共72分)二、细心填一填,一锤定音(每小题3分,共12分)17.分解因式:2-x 22=。
2020-2021石家庄市七年级数学下期末试题(含答案)
2020-2021石家庄市七年级数学下期末试题(含答案)一、选择题1.点M(2,-3)关于原点对称的点N的坐标是: ( )A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)2.116的平方根是( )A.±12B.±14C.14D.123.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块,16块B.8块,24块C.20块,12块D.12块,20块4.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°5.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩6.方程组23x y ax y+=⎧⎨-=⎩的解为5xy b=⎧⎨=⎩,则a、b分别为()A.a=8,b=﹣2B.a=8,b=2C.a=12,b=2D.a=18,b=8 7.如图,如果AB∥CD,那么下面说法错误的是()A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠88.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180° 9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 10.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)11.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题13.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.14.如图5-Z -11是一块长方形ABCD 的场地,长AB =102 m ,宽AD =51 m ,从A ,B 两处入口的中路宽都为1 m ,两小路汇合处路宽为2 m ,其余部分种植草坪,则草坪的面积为________m 2.15.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是_______________.16.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .17.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____.18.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________.19.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.20.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥,,,,…,则直线1a 与2019a 的位置关系是___________. 三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.22.在综合与实践课上,老师请同学们以“两条平行线AB ,CD 和一块含60︒角的直角三角尺EFG (90EFG ∠=︒,60EGF ∠=︒)”为主题开展数学活动.(1)如图(1),把三角尺的60︒角的顶点G 放在CD 上,若221∠=∠,求1∠的度数; (2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠之间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30角的顶点E 落在AB上.若AEG α∠=,CFG β∠=,请用含α,β的式子直接表示AEG ∠与CFG ∠的数量关系.23.(1)同题情境:如图1,AB ∥CD ,∠P AB =130°,∠PCD =120°.求∠APC 的度数. 小明想到一种方法,但是没有解答完:如图2,过P 作PE ∥AB ,∴∠APE +∠P AB =180°. ∴∠APE =180°-∠P AB =180°-130°=50°. ∵AB ∥C D .∴PE ∥C D .…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD ∥BC ,点P 在射线OM 上运动,∠ADP =∠α,∠BCP =∠β.①当点P 在A 、B 两点之间时,∠CPD ,∠α,∠β之间有何数量关系?请说明理由.②当点P 在A 、B 两点外侧时(点P 与点O 不重合),请直接写出∠CPD ,∠α,∠β之间的数量关系.24.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,12l l //,点P 在1l 、2l 内部,探究A ∠,APB ∠,B 的关系,小明过点P 作1l 的平行线PE ,可推出APB ∠,A ∠,B 之间的数量关系,请你补全下面的推理过程,并在括号内填上适当的理由.解:过点P 作1//PE l ,12//l l ∴1////PE l ∴ ∴ A =∠, B =∠( )APB APE BPE ∴∠=∠+∠= +(2)如图2,若//AC BD ,点P 在AC 、BD 外部,探究A ∠,APB ∠,B 之间的数量关系,小明过点P 作//PE AC ,请仿照(1)问写出推理过程.25.解不等式组:5(1)21111(3)32x xx x+>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.2.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】∵116=14,14的平方根是12±,∴116的平方根是12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.3.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.4.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.5.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.6.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.7.D解析:D【解析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD 和BC 被BD 所截形成得内错角,则∠4=∠8错误,故选D.8.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.9.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.10.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D .【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.11.A解析:A【解析】【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可.【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A .【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.12.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.【解析】【分析】根据不等式2<x <3a-1的整数解有四个得出关于a 的不等式组求解即可得出a 的取值范围【详解】∵不等式2<x <3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点 解析:7833a ≤<. 【解析】【分析】根据不等式2<x <3a-1的整数解有四个,得出关于a 的不等式组,求解即可得出a 的取值范围.【详解】∵不等式2<x <3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7, ∴7833a ≤<. 故答案为:7833a ≤<. 【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a 的代数式的取值范围.14.5000【解析】试题解析:由图片可看出剩余部分的草坪正好可以拼成一个长方形且这个长方形的长为102−2=100m 这个长方形的宽为:51−1=50m 因此草坪的面积故答案为:5000解析:5000【解析】试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102−2=100m ,这个长方形的宽为:51−1=50m ,因此,草坪的面积2501005000m .=⨯=故答案为:5000.15.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b <b为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】先估算7、32的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】∵4<7<9,∴2<7<3,∵a>7,a为正整数,∴a的最小值为3,∵31<32<38,∴1<32<2,∵b<32,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.16.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.17.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab的值进而得出答案【详解】∵(a﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2+b2+=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.18.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组19.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.20.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关解析:垂直.【解析】【分析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a1与a3的位置关系是:a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;再判断直线a1与a4的位置关系是:a1∥a4,如图2;∵直线a1与a3的位置关系是:a1⊥a3,直线a1与a4的位置关系是:a1∥a4,∵2019÷4=504…3,∴直线a1与a2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.(1)∠1=40°;(2)∠AEF+∠FGC =90°;(3)α+β=300°.【解析】【分析】(1)通过AB CD ∥,得出1EGD ∠∠=,再通过2180FGE EGD ∠+∠+∠︒= 求出∠1的度数;(2)如图,过点F 作FP AB ∥ ,通过FP AB CD ∥∥,解得AEF FGC EFG ∠+∠∠=,从而求出AEF FGC ∠+∠的度数;(3)根据AB CD ∥得出180AEF CFE ∠+∠=︒,代入求出αβ+的度数.【详解】解:(1)∵AB CD ∥ ,∴1EGD ∠∠= .∵2180221FGE EGD ∠+∠+∠︒∠∠=,= ,∴21601180∠+︒+∠︒= ,解得140∠︒= ;(2)如图,过点F 作FP AB ∥ ,∵CD AB ,∴FP AB CD ∥∥ .∴AEF EFP FGC GFP ∠∠∠∠=,= .∴AEF FGC EFP GFP EFG ∠+∠∠+∠∠==∵90EFG ∠︒= ,∴90AEF FGC ∠+∠︒= ;(3)300αβ+︒= .∵AB CD ∥∴180AEF CFE ∠+∠=︒即30900αβ-︒+-︒︒=18∴0αβ+︒=30【点睛】本题考查了平行线的性质以及判定定理,掌握平行线的内错角、同位角或同旁内角之间的关系是解题的关键.23.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.24.(1)2l ;APE ∠;BPE ∠;两直线平行,内错角相等;A ∠;B ;(2)APB B A ∠=∠-∠,推理过程见详解【解析】【分析】(1)过点P 作1//PE l ,根据平行线的性质得,APE A BPE B ∠=∠∠=∠,据此得出APB APE BPE A B ∠=∠+∠=∠+∠;(2)过点P 作//PE AC ,根据平行线的性质得出,EPA A EPB B ∠=∠∠=∠,进而得出APB B A ∠=∠-∠.【详解】解:(1)如图1,过点P 作1//PE l12//l l ∴12////PE l l ∴,APE A BPE B ∴∠=∠∠=∠(两直线平行,内错角相等)APB APE BPE A B ∴∠=∠+∠=∠+∠故答案为:2l ;APE ∠;BPE ∠;两直线平行,内错角相等;A ∠;B ; (2)APB B A ∠=∠-∠,理由如下:如图2,过点P 作//PE AC∵//AC BD∴////PE AC BD∴,EPA A EPB B ∠=∠∠=∠∴APB EPB EPA B A ∠=∠-∠=∠-∠∴APB B A ∠=∠-∠.【点睛】本题考查的知识点是平行线的判定与性质,掌握平行线的判定定理以及平行线的性质内容是解此题的关键.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
2021-2022学年河北省石家庄市七年级下期末数学试卷及答案解析
2021-2022学年河北省石家庄市七年级下期末数学试卷一、精化选择(本大题共16个小题,每小题2分,共32分,在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内,)1.计算:20()A.2B.﹣2C.1D.﹣12.下列图形具有稳定性的是()A.B.C.D.3.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103B.5.5×104C.5.5×105D.0.55×1054.下列各图中,正确画出AC边上的高的是()A.B.C.D.5.已知a>b,下列不等式错误的是()A.a+2>b+2B.a﹣1>b﹣1C.D.﹣3a<﹣3b 6.下列命题正确的有()①相等的角都是直角②如果∠1<∠2,那么∠1(是锐角)③对顶角相等④内错角相等A.1个B.2个C.3个D.4个7.为构建和谐校园,营造良好的教育范围,某学校服在如图所示的长方形草坪上修建甬道,道路的宽忽略不计,若草坪周长为320m,则道路的总长为()A.120m B.160m C.240m D.320m8.下列运算正确的是()A.x2+x=x3B.2﹣1=﹣2C.(x3)2÷x2=x4D.(﹣m2)2=﹣m49.如图,直线a∥b,∠1=50°,∠3=20°,则∠2的度数是()A.20°B.30°C.40°D.50°10.如图,在3×3方格中做填字游戏,要求每行,每列及对角线上三个方格中的数字和都相等,则表格中x,y的值是()3x2y1﹣32yA.B.C.D.11.9.72变形正确的是()A.9.72=92+0.72B.9.72=92﹣9×0.7÷0.72C.9.72=(10+0.3)(10﹣0.3)D.9.72=102﹣2×10×0.3+0.3212.将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105°D.120°13.把一根11cm长的绳子截成1cm和3cm两种规格的绳子,要求每种规格的绳子至少1根,且无浪费,则有几种不同的截法()A.3种B.4种C.5种D.6种14.如果两个角的两边分别平行,而其中一个角比另一个角的2倍少60°,那么这两个角的度数分别是()A.80°,100°B.60°,60°C.80°,100°或60°,60°D.以上都不对15.如果关于x的不等式组有解,则a的取值范围是()A.a≤3B.a≥3C.a>3D.a<316.如图,直线a||b,△ABC是等边三角形,点A在直线a上,边BC在直b上,把△ABC 沿BC方向平移BC长度的一半得到△A'B'C'(如图①):持续以上的平移得到图②,再持续平移以上的图案得到③,…第2019个图形中等边三角形的个数()A.8076B.6058C.4038D.2019二、准确填空(本大题片4个小题,每小题3分共12分.)17.(3分)计算:a2•a3=.18.(3分)如果x2+mx+4是一个完全平方式,那么m的值是.19.(3分)若关于x,y的二元一次方程组的解满足x+y>2,那么k的取值范围20.(3分)如图,在△ABC中,AD是BC上的中线,DE=3AE,若S△ABC=48,则S△ABE =.三、挑战技能(本大题2个小题,21题8分,22题14分,共22分)21.(8分)(1)分解因式:ax2﹣ay2(2)解方程组22.(14分)(1)化简,再求值:y(x﹣5y)﹣(x+2y)(x﹣2y)+(x﹣y)2,其中x=,y=2(2)求不等式组整数解四、能力展示(本大题23.(8分)如图,在△ABC中、D、E分别是AB,BC上任意一点,连结DE,若BD=4,DE=5.(1)BE的取值范围;(2)若DE∥AC,∠A=85°,∠BED=35°,求∠B的度数.24.(8分)某学校计划购进一批电脑和电子白板,经过市场考得知,购买1台电脑和2台电子白板需要3.6万元,购买2台电脑和1台电子白板需要2.4万元.(1)求每台电脑和每台电子白板各是多少万元?(2)根据学校实际,需购进电脑和电子白板共20台,总费用不超过17.6万元,那电子白板最多能买几台?25.(8分)如图,将方格纸(每个格的单位均为1)中的△ABC先向右平移3格得到△DEF,再将△DEF向上平移3格得到△GHI.(1)请按上面步画出△DEF和△GHI;(2)若AC与ED相交于点M,则图中与AC平行又相等的线是,图中与∠BAC 相等的角是;(3)△ABC向右平移3格得到△DEF的过程中,求△ABC扫过图形的面积.五、挑战自我(本大题10分)26.(10分)[尝试探究]如图1,在一张三角形纸片上,剪去△ABC,得到四边形BCHG,∠1与∠2分别为△ABC 的两个外角(1)请你试着说明:∠1+∠2=180°+∠A(2)如图2,如果沿着EF再剪一刀,∠3与∠4分别为△AEF的两个外角,那么∠1+∠2和∠3+∠4的数量关系为(3)如图3,EP,FP分别平分外角∠FEG、∠EFH,求∠EPF与∠A的数量关系:[拓展提升]如图4,在四边形BCFE中,EP、FP分别平分外分∠FEG、∠EFH,请写出∠EPF,∠1、∠2这三个角的数量关系,并说明理由.2021-2022学年河北省石家庄市七年级下期末数学试卷参考答案与试题解析一、精化选择(本大题共16个小题,每小题2分,共32分,在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内,)1.计算:20()A.2B.﹣2C.1D.﹣1【分析】根据零指数幂的意义即可求出答案.【解答】解:原式=1,故选:C.【点评】本题考查零指数幂,解题的关键正确理解零指数幂的意义,本题属于基础题型.2.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:因为三角形具有稳定性.故选:B.【点评】此题考查了三角形的稳定性和四边形的不稳定性.3.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103B.5.5×104C.5.5×105D.0.55×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000用科学记数法可表示为:5.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在直线AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.【点评】本题主要考查了三角形的高线的定义,熟记定义并准确识图是解题的关键.5.已知a>b,下列不等式错误的是()A.a+2>b+2B.a﹣1>b﹣1C.D.﹣3a<﹣3b 【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都加同一个整式,不等号的方向不变,故A不符合题意;B、两边都减同一个整式,不等号的方向不变,故B不符合题意;C、两边都乘以,不等号的方向不变,故C符合题意;D、两边都乘以﹣3,不等号的方向改变,故D不符合题意;故选:C.【点评】本题考查了不等式的性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.6.下列命题正确的有()①相等的角都是直角②如果∠1<∠2,那么∠1(是锐角)③对顶角相等④内错角相等A.1个B.2个C.3个D.4个【分析】利用直角的定义、锐角的定义、对顶角的性质及平行线的性质分别判断后即可确定正确的选项.【解答】解:①相等的角不一定都是直角,故原命题不成立,不符合题意;②如果∠1<∠2,那么∠1(是锐角)错误,因为两个角比较小的那个不一定是锐角,不符合题意;③对顶角相等,正确,符合题意;④两直线平行,内错角相等,故原命题不成立,不符合题意,正确的有1个,故选:A.【点评】考查了命题与定理的知识,解题的关键是了解直角的定义、锐角的定义、对顶角的性质及平行线的性质,难度不大.7.为构建和谐校园,营造良好的教育范围,某学校服在如图所示的长方形草坪上修建甬道,道路的宽忽略不计,若草坪周长为320m,则道路的总长为()A.120m B.160m C.240m D.320m【分析】依据长方形草坪周长为320m,即可得到长方形的长和宽(一组邻边)之和为160m,进而得出道路的总长.【解答】解:∵长方形草坪周长为320m,∴长方形的长和宽(一组邻边)之和为160m,又∵道路的总长等于长方形一组邻边长之和,∴道路的总长为160m,故选:B.【点评】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.8.下列运算正确的是()A.x2+x=x3B.2﹣1=﹣2C.(x3)2÷x2=x4D.(﹣m2)2=﹣m4【分析】根据合并同类项法则,负整数指数幂,幂的乘方和积的乘方,同底数幂的除法分别求出每个式子的值,再进行判断即可.【解答】解:A、x2和x不能合并,故本选项不符合题意;B、2﹣1=,故本选项不符合题意;C、(x3)2÷x2=x4,故本选项符合题意;D、(﹣m2)2=m4,故本选项不符合题意;故选:C.【点评】本题考查了合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法,同底数幂的除法等知识点,能正确求出每个式子的值是解此题的关键.9.如图,直线a∥b,∠1=50°,∠3=20°,则∠2的度数是()A.20°B.30°C.40°D.50°【分析】首先运用平行线的性质求出∠4,然后借助三角形的外角性质求出∠3,即可解决问题.【解答】解:如图,由题意得:∠4=∠1=50°;由外角定理得:∠4=∠2+∠3,∴∠2=∠4﹣∠3=50°﹣20°=30°,故选:B.【点评】该题主要考查了三角形外角的性质、平行线的性质等几何知识点及其应用问题;解题的关键是牢固掌握三角形外角的性质、平行线的性质等几何知识点,这也是灵活运用、解题的基础.10.如图,在3×3方格中做填字游戏,要求每行,每列及对角线上三个方格中的数字和都相等,则表格中x,y的值是()3x2y1﹣32yA.B.C.D.【分析】由3×3方格中每行、每列及对角线上三个方格中的数字和都相等,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:依题意,得:,解得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.11.9.72变形正确的是()A.9.72=92+0.72B.9.72=92﹣9×0.7÷0.72C.9.72=(10+0.3)(10﹣0.3)D.9.72=102﹣2×10×0.3+0.32【分析】根据完全平方公式求出即可.【解答】解:9.72=(10﹣0.3)2=102﹣2×10×0.3+0.32,故选:D.【点评】本题考查了完全平方公式,能灵活运用公式进行计算是解此题的关键.12.将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105°D.120°【分析】求出∠ACO的度数,根据三角形的外角性质得到∠AOB=∠A+∠ACO,代入即可.【解答】解:∠ACO=45°﹣30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.故选:C.【点评】本题主要考查对三角形的外角性质的理解和掌握,能熟练地运用三角形的外角性质进行计算是解此题的关键.13.把一根11cm长的绳子截成1cm和3cm两种规格的绳子,要求每种规格的绳子至少1根,且无浪费,则有几种不同的截法()A.3种B.4种C.5种D.6种【分析】截下来的符合条件的绳子长度之和刚好等于总长11cm时,不造成浪费,设截成1cm长的绳子x根,3cm长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解答】解:截下来的符合条件的绳子长度之和刚好等于总长11cm时,不造成浪费,设截成1cm长的绳子x根,3cm长的y根,由题意得,x+3y=11,因为x,y都是正整数,所以符合条件的解为:,则有3种不同的截法.故选:A.【点评】此题考查了二元一次方程的应用,读懂题意,找出题目中的等量关系,得出x,y的值是解本题的关键,注意x,y只能取正整数.14.如果两个角的两边分别平行,而其中一个角比另一个角的2倍少60°,那么这两个角的度数分别是()A.80°,100°B.60°,60°C.80°,100°或60°,60°D.以上都不对【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少20°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【解答】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=2x﹣60,解得:x=60,∴这两个角的度数是60°和60°;若这两个角互补,则180﹣x=2x﹣60,解得:x=80,∴这两个角的度数是80°和100°.∴这两个角的度数是60°和60°或80°和100°.故选:C.【点评】此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用.15.如果关于x的不等式组有解,则a的取值范围是()A.a≤3B.a≥3C.a>3D.a<3【分析】解第一个不等式,结合x>a且不等式组有解,利用大小小大中间找可得a的范围.【解答】解:解不等式x+1<4,得:x<3,∵x>a且不等式组有解,∴a<3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.如图,直线a||b,△ABC是等边三角形,点A在直线a上,边BC在直b上,把△ABC 沿BC方向平移BC长度的一半得到△A'B'C'(如图①):持续以上的平移得到图②,再持续平移以上的图案得到③,…第2019个图形中等边三角形的个数()A.8076B.6058C.4038D.2019【分析】先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有2n个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.【解答】解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第2019个图形中等边三角形的个数是:2×2019+2×2019=8076.故选:A.【点评】本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.二、准确填空(本大题片4个小题,每小题3分共12分.)17.(3分)计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.18.(3分)如果x2+mx+4是一个完全平方式,那么m的值是±4.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+4是一个完全平方式,∴m=±4,故答案为:±4【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19.(3分)若关于x,y的二元一次方程组的解满足x+y>2,那么k的取值范围k>3【分析】两个方程相加得x+y=k﹣1,根据题意得到关于k的不等式,解之即可.【解答】解:,①+②得:4x+4y=4k﹣4,即x+y=k﹣1,∵x+y>2,∴k﹣1>2,即k的取值范围为:k>3,故答案为k>3.【点评】本题考查解一元一次不等式和解二元一次方程组,正确掌握解一元一次不等式和解二元一次方程组的步骤是解题的关键.20.(3分)如图,在△ABC中,AD是BC上的中线,DE=3AE,若S△ABC=48,则S△ABE =6.【分析】根据AD是△ABC的边BC上的中线得出S△ABD=S△ABC=24,再由△ABD与△ABE是同高的两个三角形即可求出S△ABE.【解答】解:∵AD是△ABC的边BC上的中线,S△ABC=48,∴S△ABD=24,∵DE=3AE,∴S△ABE=S△ABD=6;故答案为6.【点评】本题考查了三角形的面积.中线能把三角形的面积平分,利用这个结论就可以求出三角形△ABE的面积.三、挑战技能(本大题2个小题,21题8分,22题14分,共22分)21.(8分)(1)分解因式:ax2﹣ay2(2)解方程组【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=a(x+y)(x﹣y);(2),①+②得:4x=8,把x=2代入②得:y=1,则方程组的解为.【点评】此题考查了提公因式法与公式法的综合运用,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.22.(14分)(1)化简,再求值:y(x﹣5y)﹣(x+2y)(x﹣2y)+(x﹣y)2,其中x=,y=2(2)求不等式组整数解【分析】(1)原式利用单项式乘以多项式法则,平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出解集,即可求出整数解.【解答】解:(1)原式=xy﹣5y2﹣x2+y2+x2﹣2xy+y2=﹣3y2﹣xy,当x=,y=2时,原式=﹣12﹣1=﹣13;(2),由①得:x>﹣1,由②得:x≤5,∴不等式组的解集为﹣1<x≤5,则整数解为0,1,2,3,4,5.【点评】此题考查了整式的混合运算﹣化简,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.四、能力展示(本大题23.(8分)如图,在△ABC中、D、E分别是AB,BC上任意一点,连结DE,若BD=4,DE=5.(1)BE的取值范围1<BE<9;(2)若DE∥AC,∠A=85°,∠BED=35°,求∠B的度数.【分析】(1)依据三角形三边关系进行判断,即可得出结论;(2)依据平行线的性质,即可得出∠C的度数,再根据三角形内角和定理,即可得到∠B的度数.【解答】解:(1)∵BD=4,DE=5,∴△BDE中,5﹣4<BE<5+4,即1<BE<9,即BE的取值范围为:1<BE<9;故答案为:1<BE<9;(2)∵DE∥AC,∴∠BED=∠C=35°,又∵∠A=85°,∴△ABC中,∠B=180°﹣∠A﹣∠C=180°﹣85°﹣35°=60°.【点评】本题主要参考了三角形三边关系以及平行线的性质,两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.24.(8分)某学校计划购进一批电脑和电子白板,经过市场考得知,购买1台电脑和2台电子白板需要3.6万元,购买2台电脑和1台电子白板需要2.4万元.(1)求每台电脑和每台电子白板各是多少万元?(2)根据学校实际,需购进电脑和电子白板共20台,总费用不超过17.6万元,那电子白板最多能买几台?【分析】(1)先设每台电脑x万元,每台电子白板y万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x,y 的值即可;(2)先设需购进电脑a台,则购进电子白板(20﹣a)台,根据需购进电脑和电子白板共20台,总费用不超过17.6万元,列不等式即可得到结论,【解答】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:解得:,答:每台电脑0.4万元,每台电子白板1.6万元;(2)设需购进电脑a台,则购进电子白板(20﹣a)台,则0.4a+1.6(20﹣a)≤17.6,解得:a≥12,则至少要购进电脑12台,电子白板最多能买8台.答:电子白板最多能买8台.【点评】此题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.25.(8分)如图,将方格纸(每个格的单位均为1)中的△ABC先向右平移3格得到△DEF,再将△DEF向上平移3格得到△GHI.(1)请按上面步画出△DEF和△GHI;(2)若AC与ED相交于点M,则图中与AC平行又相等的线是DF,GI,图中与∠BAC相等的角是∠EDF,∠HGI,∠AMD,∠CME;(3)△ABC向右平移3格得到△DEF的过程中,求△ABC扫过图形的面积.【分析】(1)先确定A、B、C三点向右平移3格后所得对应点D、E、F三点的位置,然后再连接,然后再向上平移3格可得G、H、I三点位置,再连接即可;(2)根据平移的性质可得与AC既平行又相等的线段有DF,GI;根据平移的性质可得与∠BAC相等的角是∠EDF,∠HGI,根据平行线的性质可得与∠BAC相等的角还有∠AMD,∠CME;(3)△ABC扫过的图形为梯形ABFD,依据梯形面积公式进行计算即可.【解答】解:(1)如图所示,△DEF和△GHI即为所求;(2)由平移的性质可得,与AC既平行又相等的线段有DF,GI;与∠BAC相等的角是∠EDF,∠HGI,∠AMD,∠CME;故答案为:DF,GI;∠EDF,∠HGI,∠AMD,∠CME;(3)△ABC扫过图形的面积为:×(3+7)×3=15.【点评】此题主要考查了作图﹣﹣平移变换,以及平移的性质,关键是掌握图形是有点组成的,平移图形时,只要找出组成图形的关键点平移后的位置即可.平移后图形的形状和大小不变.五、挑战自我(本大题10分)26.(10分)[尝试探究]如图1,在一张三角形纸片上,剪去△ABC,得到四边形BCHG,∠1与∠2分别为△ABC 的两个外角(1)请你试着说明:∠1+∠2=180°+∠A(2)如图2,如果沿着EF再剪一刀,∠3与∠4分别为△AEF的两个外角,那么∠1+∠2和∠3+∠4的数量关系为∠1+∠2=∠3+∠4(3)如图3,EP,FP分别平分外角∠FEG、∠EFH,求∠EPF与∠A的数量关系:[拓展提升]如图4,在四边形BCFE中,EP、FP分别平分外分∠FEG、∠EFH,请写出∠EPF,∠1、∠2这三个角的数量关系,并说明理由.【分析】(1)根据外角的性质得到∠1=180°﹣∠3,∠2=180°﹣∠4,求得∠1+∠2=360°﹣(∠3+∠4),根据三角形的内角和即可得到结论;(2)由(1)得,∠1+∠2=180°﹣∠A,同理得到∠3+∠4=180°﹣∠A,于是得到结论;(3)由(1)得,∠GEF+∠HFE=180°﹣∠A,根据角平分线的定义即可得到结论;(4)由(3)得到∠A+2∠P=180°,由(1)得到∠1+∠2=180°+∠A,于是得到结论.【解答】解:(1)∵∠1与∠2分别为△ABC的两个外角,∴∠1=180°﹣∠3,∠2=180°﹣∠4,∴∠1+∠2=360°﹣(∠3+∠4),∵三角形的内角和为180°,∴∠3+∠4=180°﹣∠A,∴∠l+∠2=360°﹣(180°﹣∠A)=180°+∠A;(2)由(1)得,∠1+∠2=180°+∠A,同理,∠3+∠4=180°﹣∠A,∴∠1+∠2=∠3+∠4,故答案为:∠1+∠2=∠3+∠4;(3)由(1)得,∠GEF+∠HFE=180°﹣∠A,∵EP,FP分别平分外角∠FEG、∠EFH,∴∠PEF=GEF,∠PFE=HFE,∴∠PEF+∠PFE=(∠GEF+∠HFE)=(180°﹣∠A),∴∠P=180°﹣(∠PEF+∠PFE)=180°﹣(180°﹣∠A)=90°+A;(4)解:数量关系:∠1+∠2+2∠P=360°,理由:如图,由(3)可知,∠A+2∠P=180°,由(1)可知,∠1+∠2=180°+∠A,∴(∠1+∠2﹣180°)+2∠P=180°∴∠1+∠2+2∠P=360°.【点评】本题考查的是角平分线的定义、三角形内角和定理,掌握三角形内角和等于180°是解题的关键.第21 页共21 页。
石家庄市2020年初一下期末监测数学试题含解析
石家庄市2020年初一下期末监测数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题只有一个答案正确)1.如图,天平左盘中物体A的质量为mg,,天平右盘中每个砝码的质量都是1g,则m的取值范围在数轴上可表示为A.B.C.D.【答案】D【解析】【分析】根据天平列出不等式组,确定出解集即可.【详解】解:根据题意得:1 {2 mm><,解得:1<m<2,故选:D.【点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【答案】D【解析】【分析】根据幂的运算法则进行计算,逐个分析即可.【详解】A. a2+a2≠a4,不是同类项不能合并;B. (2a)3=8a3,错误;C. a9÷a3=a6,错误;D. (-2a)2·a3=4a2∙ a3=4a5,正确;故选D【点睛】考核知识点:积的乘方,同底数幂相除.3.点P(2-4m,m-4)不可能在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据象限的坐标特点进行解答即可【详解】若在第二象限解得,m>4,若在第一象限解得,无解,∴p点不可能再第一象限故选A【点睛】此题考查点的坐标,解题关键在于分析点在各象限的特征.4.地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据A.836561284x yx y+=⎧⎨-=⎩B.836651284x yx y-=⎧⎨-=⎩C.836651284x yy x+=⎧⎨-=⎩D.836651284x yy x-=⎧⎨-=⎩【答案】D【解析】【分析】此题中的等量关系有:①长江比黄河长836千米;②黄河长度的6倍比长江长度的5倍多1284千米.【详解】根据长江比黄河长836千米,得方程x−y=836;根据黄河长度的6倍比长江长度的5倍多1284千米,得方程6y−5x=1284.列方程组为836 651284. x yy x-=⎧⎨-=⎩故选D.【点睛】考查由实际问题抽象出二元一次方程组,读懂题目,找出题目中的等量关系是解题的关键.5.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【答案】C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,观察只有C选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.6.若△ABC有一个外角是锐角,则△ABC一定是()A.钝角三角形B.锐角三角形C.等边三角形D.等腰三角形【答案】A利用三角形的外角与相邻的内角互补的性质计算.【详解】解:∵△ABC 有一个外角为锐角,∴与此外角相邻的内角的值为180°减去此外角,故此角应大于90°,故△ABC 是钝角三角形.故选A考点:三角形的外角性质.7.在等腰三角形ABC 中,它的两边长分别为8cm 和 3cm ,则它的周长为( )A .19cmB .19cm 或 14cmC .11cmD .10cm【答案】A【解析】【分析】从①当等腰三角形的腰长为8cm ,底边长为3cm 时;②当等腰三角形的腰长为3cm ,底边长为8cm 时,两种情况去分析即可.【详解】当8cm 的边是腰时,三角形的周长=8+8+3=19cm ,当3cm 的边是腰时,因为3+3<8,所以不能组成三角形,所以等腰三角形ABC 的周长=19cm ,故选A .8.如图,在一个单位面积为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,……是斜边在x 轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2 (1,-1),A 3(0,0),则依图中所示规律,点A 2019的横坐标为( )A .1010B .1010-C .1008D .1008-【答案】D先观察图像找到规律,再求解.【详解】观察图形可以看出A 1--A 4;A 5---A 8;…每4个为一组,∵2019÷4=504 (3)∴A 2019在x 轴负半轴上,纵坐标为0,∵A 3、A 7、A 11的横坐标分别为0,-2,-4,∴A 2019的横坐标为-(2019-3)×=-1.∴A 2019的横坐标为-1.故选:D .【点睛】本题考查的是点的坐标,正确找到规律是解题的关键.9.9的算术平方根是( )A .3B .﹣3C .±3D .9【答案】A【解析】【分析】根据算术平方根的定义求解即可,如果一个正数x 的平方等于a ,即x 2=a,那么x 叫做a 的算术平方根.【详解】∵32=9,∴9的算术平方根是3,即93=.故选A.【点睛】本题考查了算术平方根的求法,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.10.如图,已知直线//m n ,136∠=︒,290∠=︒,则3∠的度数为( )A .126︒B .136︒C .140︒D .144︒【答案】A过3∠的顶点作一条直线l m ,由平行于同一条直线的两直线平行可得l m n ,再由平行线的性质即可得到 31+2∠=∠∠,求值即可.【详解】解:过3∠的顶点作一条直线l m ,如图所示,l m4290︒∴∠=∠=又m nl n ∴5136︒∴∠=∠=3459036126︒︒︒∴∠=∠+∠=+=故选:A【点睛】本题考查了平行线的性质,正确作出辅助线是解题的关键.二、填空题11.如图,一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何点的可性都相同.那么它停在△AOB 上的概率是______.【答案】14【解析】【分析】 首先确定在△AOB 的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在△AOB 上的概率.【详解】1故停△AOB上的概率为14.故答案为:14.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.12.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.某天灌南县城区的PM2.5值是29微克/立方米,根据PM2.5检测网的空气质量新标准,这一天城区的PM2.5值为优,请用科学记数法表示:2.5微米= 米.(1米=1000000微米)【答案】2.5×10﹣6【解析】试题分析:科学计数法是指:a×10n,且1≤a<10,小数点向右移动几位,则n的绝对值就是几.考点:科学计数法.13.不等式5x-3<3-x的解集为_____.【答案】x<1【解析】【分析】先移项,再合并同类项,最后系数化为1,即可得出答案.【详解】5x-3<3-x移项:5x+x<3+3合并:6x<6系数化为1:x<1∴解集为x<1【点睛】本题考查的是解一元一次不等式,解一元一次不等式的步骤为:去分母、去括号、移项、合并同类项、系数化为1.14.写一个解为21xy=⎧⎨=-⎩的二元一次方程组____.【答案】答案不唯一【解析】∴x+y=1,x-y=3;∴这个方程组可以是1{3x yx y+-==.(答案不唯一).15.因式分解:x3﹣4x=_____.【答案】x(x+2)(x﹣2)【解析】试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.16.如图所示,下列结论正确的有_____(把所有正确结论的序号都选上)①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则∠1=59°.【答案】①③④【解析】【分析】根据平行线的判定和性质解答即可.【详解】解:①若AB∥CD,则∠3=∠4;正确;②若∠1=∠BEG,则AB∥CD;错误;③若∠FGH+∠3=180°,则EF∥GH;正确④∵AB∥CD,∴∠3=∠4=62°,∵∠BEF=180°-∠4=118°,∵EG平分∠BEF,∴∠2=59°,∴∠1=180°-∠2-∠3=59°,正确;本题考查平行线的判定和性质,角平分线的定义,三角形的内角和,熟练掌握平行线的定义是解题关键. 17.一个三位数,十位上的数字比个位上的数字大2,百位上的数字比个位上的数字小2,而这三个数位上的数字和的17倍等于这个三位数,如果设个位数字为x ,列方程为_______________【答案】()()()17221002102x x x x x x -+++=++-+【解析】设这个数的个位上的数为x,则十位上的数是x+2,百位上的数是x-2,再根据:17(个位上的数+十位上的数+百位上的数)=这个三位数可列方程:()()()1?7221002102x x x x x x -+++=++-+ 故答案是:()()()17221002102x x x x x x -+++=++-+.三、解答题18.先化简,再求值:2(2)(2+)(2-)a b a b a b +-的值,其中a=2,b=1.【答案】10.【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】2(2)(2+)(2-)a b a b a b +-=4a 2 +4ab+b 2−4a 2+b 2=4ab+2b 2,当a=2,b=1时,原式=4×2×1+2×12=10.【点睛】此题考查整式的混合运算—化简求值,解题关键在于掌握运算法则19.某餐厅新开业,为了吸引顾客,推出“模球有礼”优惠活动,餐厅在一个不透明的纸箱中装入除颜色外完全相同的小球共50个,其中红色球3个、黄色球5个、蓝色球12个,剩余为绿色。
河北省石家庄市2020-2021学年七年级数学下册 期末复习测试 (Word版有答案)
2020-2021学年七年级数学下册期末复习测试题一、选择题(本题共计 10 小题,每题 3 分,共计30分)1. 有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有()个.A.4B.5C.6D.无数2. 如图,∠1和∠2是对顶角的是()A. B. C. D.3. 下列哪些图形是通过平移可以得到的()A. B. C. D.4. △DEF(三角形)是由△ABC平移得到的,点A(−1, −4)的对应点为D(1, −1),则点B(1, 1)的对应点E,点C(−1, 4)的对应点F的坐标分别为( )A.(2, 2),(3, 4)B.(3, 4),(1, 7)C.(−2, 2),(1, 7)D.(3, 4),(2, −2)5. 如图,点A所表示的数是()A.1.5B.√3C.2D.√56. 如图,已知AB、CD相交于O,OE⊥CD于O,∠AOC=36∘,则∠BOE=()A.36∘B.64∘C.126∘D.54∘7. 如图,将△ABC绕点A顺时针旋转,得到△ADE,且点D在AC上,下列说法错误的是()A.AC平分∠BAEB.AB=ADC.BC // AED.BC=DE8. 下列说法正确的是()A.有且只有一条直线垂直于已知直线B.互相垂直的直线一定相交C.从直线外一点到这条直线的垂线段叫做点到直线的距离D.直线L外一点P与直线L上各点连接而成的线段中最短线段的长度是3cm,则点P到直线L的距离是3cm.9. 如图,在一张透明的纸上画一条直线l,在l外任取一点Q并折出过点Q且与l垂直的直线.这样的直线能折出()A.0条B.1条C.2条D.3条10. 如图,已知EF是⊙O的直径,把∠A为60∘的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x∘,则x的取值范围是()A.30≤x≤60B.30≤x≤90C.30≤x≤120D.60≤x≤120二、填空题(本题共计 7 小题,每题 3 分,共计21分)11. 计算:√12−√3的结果是________.12. 若√m−3+(n+1)2=0,则m−n的值为________.13. 若方程组{x+y=73x−5y=−3,则3(x+y)−(3x−5y)的值是________.14. 如图,若∠1+∠2=220∘,则∠3=________.15. 工厂C要将废水引入净化池AB中,则辅设的管道最短的是________.16. 如图,点D在AC上,点E在AB上,且BD⊥CE,垂足为点M.下列说法:①BM的长是点B到CE的距离;②CE的长是点C到AB的距离;③BD的长是点B到AC的距离;④CM的长是点C到BD的距离.其中正确的是________(填序号).17. 瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632…中,发现规律得到巴尔末公式,从而打开了光谱奥妙的大门,请按这种规律写出第6个数据是________.三、 解答题 (本题共计 7 小题 ,共计69分 )18. (9分) 计算: √27+√12−√(−3)2+√−8319. (10分) 如图所示,∠1=∠2,∠3=118∘,求∠4的度数.20. (10分) 如图,∠1=30∘,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数.21.(10分) 已知关于x ,y 的方程组满足{2x +3y =3m +7,x −y =4m +1,且它的解是一对正数. (1)试用m 表示方程组的解;(2)求m 的取值范围;(3)化简|m −1|+|m +23|.22.(10分) 如图①,△ABC 中,BD 平分∠ABC ,且与△ABC 的外角∠ACE 的角平分线交于点D .(1)若∠ABC =75∘ ,∠ACB =45∘,求∠D 的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D,∠M,∠N的关系,并说明理由.23.(10分)(1)如图,DE // BC,∠1=∠3,请说明FG // DC;(2)若把题设中DE // BC与结论中FG // DC对调,命题还成立吗?试证明.24.(10分) 如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE 平分∠CAD交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=α,∠ADC=β.(1)求证:∠EFC=∠FEC;(2)①若∠B=30∘,∠CAD=50∘,则α=_________,β=_________;②试探究α与β的关系,并说明理由;(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出α与β的关系.参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】二元一次方程组的应用——行程问题【解析】要求它符合条件的个数,就要求它都是几.要求两位数就要设出它的个位数和十位数.然后根据“它的十位数字与个位数字之和为5”列出方程,分析它解的情况.【解答】解:设这个数的个位为x,十位为y,且y不等于0,否则为一位数.则x+y=5.当x=0时,y=5,这时这个数是50;当x=1时,y=4,这时这个数是41;当x=2时,y=3,这时这个数是32;当x=3时,y=2,这时这个数是23;当x=4时,y=1,这时这个数是14;因此符合条件的数有5个.故选B.2.【答案】B【考点】对顶角【解析】根据对顶角的定义,判断解答即可.【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.选项B的图形符合对顶角的定义.故选B.3.【答案】B【考点】生活中的平移现象【解析】根据图形平移、旋转、轴对称的性质对各选项记性逐一分析即可.【解答】解:一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫做平移.经过观察可知,只有B符合题意.故选B.4.【答案】B【考点】坐标与图形变化-平移【解析】直接利用平移中点的变化规律求解即可.【解答】解:点A的对应点D,是横坐标从−1到1,说明是向右移动了1−(−1)=2个单位,纵坐标是从−4到−1,说明是向上移动了−1−(−4)=3个单位,那么其余两点移运转规律也如此,即横坐标加2,纵坐标加3.故点E,F的坐标为(3, 4),(1, 7).故选B.5.【答案】D【考点】在数轴上表示实数【解析】由图可知,点A到原点的距离等于三角形的斜边的长,运用勾股定理求出斜边长即可.【解答】解:三角形斜边长=√22+12=√5,点A所表示的数是√5.故选D.6.【答案】C【考点】垂线对顶角【解析】由垂直的定义可知∠DOE=90∘,∠DOB与∠AOC是对顶角,利用这些关系可解此题.【解答】解:∵ OE⊥CD,∵ ∠DOE=90∘,∵ ∠DOB=∠AOC=36∘,∵ ∠BOE=∠DOE+∠DOB=126∘.故选C.7.【答案】C【考点】旋转的性质等腰三角形的性质与判定平行线的判定【解析】根据旋转的性质即可得到结论.【解答】将△ABC绕点A顺时针旋转,得到△ADE,∵ ∠BAC=∠DAE,AB=AD,BC=DE,故A、B、D选项正确;∵ ∠C=∠E,但∠C不一定等于∠DAE,∵ BC不一定平行于AE,故C选项,错误;8.【答案】D【考点】点到直线的距离垂线【解析】根据垂线的性质:在平面内,过一点有且只有一条直线与已知直线垂直;同一平面内的直线的位置关系;点到直线的距离定义;垂线段最短进行分析即可.【解答】解:A、在平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;B、互相垂直的直线一定相交,说法错误,应为同一平面内,互相垂直的直线一定相交;C、从直线外一点到这条直线的垂线段叫做点到直线的距离,说法错误,应为从直线外一点到这条直线的垂线段的长度叫做点到直线的距离;D、直线L外一点P与直线L上各点连接而成的线段中最短线段的长度是3cm,则点P到直线L的距离是3cm.说法正确;故选:D.9.【答案】B【考点】垂线【解析】根据垂线的基本性质:过直线上或直线外的一点,有且只有一条直线和已知直线垂直,容易判断.【解答】根据垂线的性质,这样的直线只能作一条,10.【答案】A【考点】圆周角定理平移的性质【解析】分析可得:开始移动时x=30,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,即2×30∘=60∘,故x的取值范围是30≤x≤60.【解答】解:开始移动时,x=30,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,则根据同弧所对的圆心角等于它所对圆周角的2倍得:∠POF=2∠ABC=2×30∘=60∘,故x的取值范围是30≤x≤60.故选A.二、填空题(本题共计 7 小题,每题 3 分,共计21分)11.【答案】√3【考点】实数的运算【解析】首先化简√12,然后根据实数的运算法则计算.【解答】解:√12−√3=2√3−√3=√3.故答案为:√3.12.【答案】4【考点】非负数的性质:算术平方根非负数的性质:偶次方【解析】根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m.n的方程,从而求得m,n的值,进而求解.【解答】解:根据题意得:{m−3=0,n+1=0,解得:{m=3,n=−1,则m−n=3−(−1)=3+1=4.故答案为:4.13.【答案】24【考点】二元一次方程组的解代入消元法解二元一次方程组【解析】把(x+y)、(3x−5y)分别看作一个整体,代入进行计算即可得解.【解答】∵ {x+y=73x−5y=−3,∵ 3(x+y)−(3x−5y)=3×7−(−3)=21+3=24.14.70∘【考点】邻补角对顶角【解析】先根据对顶角相等求出∠1的度数,再根据平角等于180∘列式求解即可.【解答】解:∵ ∠1+∠2=220∘,∠1=∠2(对顶角相等),×220∘=110∘,∵ ∠1=12∵ ∠3=180∘−∠1=180∘−110∘=70∘.故答案为:70∘.15.【答案】②【考点】垂线段最短【解析】根据垂线段最短即可解决问题.【解答】解:因为垂线段最短,所以C要将废水引入净化池AB中,则辅设的管道最短的是②.故答案为②16.【答案】①④【考点】点到直线的距离【解析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【解答】解:①如图,因为BD⊥CE,因此BM的长是点B到CE的距离,故①正确;②如图,因为CE与AB不垂直,因此CE的长不是点C到AB的距离.故②错误;③如图,因为BD与AC不垂直,因此BD的长不是点B到AC的距离.故③错误;④如图,因为BD⊥CE,因此CM的长是点C到BD的距离,故④正确;综上所述,正确的说法是①④.故答案为:①④.17.【答案】6460【考点】规律型:数字的变化类【解析】首先观察分子:显然第6个数的分子是(6+2)2;再观察分母:分母正好比分子小4.因此可求得第6个式子.解:第6个数据是:(6+2)2(6+2)2−4=6460,故答案为:6460. 三、 解答题 (本题共计 7 小题 ,共计69分 )18.【答案】解:原式=3√3+2√3−3−2=5√3−5.【考点】二次根式的加法二次根式的化简求值立方根的性质【解析】此题暂无解析【解答】解:原式=3√3+2√3−3−2=5√3−5.19.【答案】解:∵ ∠1=∠2,∠1=∠5.∵ ∠2=∠5,∵ a // b ,∵ ∠3+∠6=180∘.∵ ∠3=118∘,∵ ∠6=62∘,∵ ∠4=∠6=62∘.【考点】平行线的判定与性质对顶角 【解析】结合图形,运用已知和对顶角相等,得∠2=∠5,根据同位角相等两直线平行得a // b ,再运用平行线的性质和对顶角相等的性质求∠4的度数.【解答】解:∵ ∠1=∠2,∠1=∠5.∵ ∠2=∠5,∵ a // b ,∵ ∠3+∠6=180∘.∵ ∠3=118∘,∵ ∠6=62∘,∵ ∠4=∠6=62∘.20.【答案】解:如图,由题意得:∠3=∠1=30∘(对顶角相等)∵ AB⊥CD(已知)∵ ∠BOD=90∘(垂直的定义)∵ ∠3+∠2=90∘即30∘+∠2=90∘∵ ∠2=60∘【考点】垂线对顶角【解析】∠1与∠3是对顶角;∠2与∠3互为余角.【解答】解:如图,由题意得:∠3=∠1=30∘(对顶角相等)∵ AB⊥CD(已知)∵ ∠BOD=90∘(垂直的定义)∵ ∠3+∠2=90∘即30∘+∠2=90∘∵ ∠2=60∘21.【答案】解:(1){2x +3y =3m +7①,x −y =4m +1②,由①−②×2得:y =1−m ③,把③代入②得:x =3m +2,∵ 原方程组的解为{x =3m +2,y =1−m.(2)∵ 原方程组的解为{x =3m +2,y =1−m是一对正数, ∵ {3m +2>0,1−m >0,解得{m >−23,m <1,∵ −23<m <1;(3)∵ −23<m <1, ∵ m −1<0,m +23>0,|m −1|+|m +23| =1−m +m +23=53.【考点】加减消元法解二元一次方程组不等式的解集绝对值【解析】(1)用解二元一次方程组的知识把m 当做已知,表示出x 、y 的值即可;(2)根据方程组的解是一对正数列出不等式组,求出m 的取值范围即可;(3)根据m 的取值范围及去绝对值符号的法则去掉绝对值符号再计算即可.【解答】解:(1){2x +3y =3m +7①,x −y =4m +1②,由①−②×2得:y =1−m ③,把③代入②得:x =3m +2,∵ 原方程组的解为{x =3m +2,y =1−m.(2)∵ 原方程组的解为{x =3m +2,y =1−m 是一对正数,∵ {3m+2>0,1−m>0,解得{m>−23,m<1,∵ −23<m<1;(3)∵ −23<m<1,∵ m−1<0,m+23>0,|m−1|+|m+2 3 |=1−m+m+2 3=53.22.【答案】解:(1)∵ ∠ACE=∠A+∠ABC,∵ ∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又∵ BD平分∠ABC,CD平分∠ACE,∵ ∠ABD=∠DBE,∠ACD=∠ECD,∵ ∠A=2(∠DCE−∠DBC),∠D=∠DCE−∠DBC,∵ ∠A=2∠D,∵ ∠ABC=75∘,∠ACB=45∘,∵ ∠A=60∘,∵ ∠D=30∘.(2)∠D=12(∠M+∠N−180∘).理由:延长BM,CN交于点A,则∠A=∠BMN+∠CNM−180∘,由(1)知,∠D=12∠A,∵ ∠D=12(∠M+∠N−180∘).【考点】三角形的角平分线三角形的外角性质三角形内角和定理邻补角【解析】(1)根据三角形内角和定理以及角平分线性质,先求出∠D,∠A的等式,推出∠A= 2∠D,最后代入求出即可 .(2)根据(1)中的结论即可得到结论.【解答】解:(1)∵ ∠ACE=∠A+∠ABC,∵ ∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又∵ BD平分∠ABC,CD平分∠ACE,∵ ∠ABD=∠DBE,∠ACD=∠ECD,∵ ∠A=2(∠DCE−∠DBC),∠D=∠DCE−∠DBC,∵ ∠A=2∠D,∵ ∠ABC=75∘,∠ACB=45∘,∵ ∠A=60∘,∵ ∠D=30∘.(∠M+∠N−180∘).(2)∠D=12理由:延长BM,CN交于点A,则∠A=∠BMN+∠CNM−180∘,∠A,由(1)知,∠D=12(∠M+∠N−180∘).∵ ∠D=1223.【答案】解:(1)证明:∵ DE // BC,∵ ∠1=∠2,又∵ ∠1=∠3,∵ ∠2=∠3,∵ FG // DC;(2)命题还成立,∵ FG // DC,∵ ∠2=∠3,已知∠1=∠3,∵ ∠2=∠1,∵ DE // BC.【考点】平行线的判定与性质命题与定理【解析】(1)根据平行线的性质:两直线平行,内错角相等,即可证得∠1=∠2,则∠2=∠3,从而根据平行线的判定定理证得FG // DC;(2)根据平行线的性质:两直线平行,同位角相等,即可证得∠2=∠3,则∠2=∠1,再根据平行线的判定定理证得DE // BC.【解答】解:(1)证明:∵ DE // BC,∵ ∠1=∠2,又∵ ∠1=∠3,∵ ∠2=∠3,∵ FG // DC;(2)命题还成立,∵ FG // DC,∵ ∠2=∠3,已知∠1=∠3,∵ ∠2=∠1,∵ DE // BC.24.【答案】(1)证明:∵EH⊥AB(已知),∵ ∠EHA=∠EHB=90∘,(垂直的定义)在△EHB中,∠FEC=∠HEB=180∘−∠EHB−∠ABC=90∘−∠ABC.又∠EFC=∠AFH(对顶角相等),在△AFH中,∠AFH=180∘−∠EHA−∠BAC=90∘−∠BAC.∵ ∠ABC=∠BAC,(已知)∵ ∠AFH=∠FEC,(等量代换)∵ ∠EFC=∠FEC.(等量代换)(2)解:① 根据题意可知∠ADC+∠CAD=∠ACB,即180∘−2×30∘=∠ADC+50∘,解得β=∠ADC=70∘.又∠AEH+∠EAH=∠AEH+∠EAF+∠CAB=∠AEH+1∠CAD+∠CAD=90∘,2即α+25∘+30∘=90∘,解得α=35∘.故答案为:35∘;70∘;②:2α=β,理由如下:=∠EFC,(三角形的一个外角等于与之不相邻的两个内角之和),α+∠DAC2又∠EFC=∠CFE,则β+∠DAC2=α+∠DAC2+α=∠AEC,得2α=β,(等式的性质)∵ 2α=β.(3)解:如图,∵ AE平分∠CAD,∵ ∠CAE=∠DAE.∵∠CAB=∠CAE+∠BAE=∠CBA=∠BAD+β,∠BAE=90∘−α,∵ 90∘−α+12∠CAD=β+∠BAD=β+12∠CAD−(90∘−α),化简得2α+β=180∘,即α+12β=90∘.【考点】三角形的外角性质三角形内角和定理角平分线的性质对顶角角平分线的定义【解析】【解答】(1)证明:∵EH⊥AB(已知),∵ ∠EHA=∠EHB=90∘,(垂直的定义)在△EHB中,∠FEC=∠HEB=180∘−∠EHB−∠ABC=90∘−∠ABC.又∠EFC=∠AFH(对顶角相等),在△AFH中,∠AFH=180∘−∠EHA−∠BAC=90∘−∠BAC.∵ ∠ABC=∠BAC,(已知)∵ ∠AFH=∠FEC,(等量代换)∵ ∠EFC=∠FEC.(等量代换)(2)解:① 根据题意可知∠ADC+∠CAD=∠ACB,即180∘−2×30∘=∠ADC+50∘,解得β=∠ADC=70∘.又∠AEH+∠EAH=∠AEH+∠EAF+∠CAB=∠AEH+12∠CAD+∠CAD=90∘,即α+25∘+30∘=90∘,解得α=35∘.故答案为:35∘;70∘;②:2α=β,理由如下:α+∠DAC2=∠EFC,(三角形的一个外角等于与之不相邻的两个内角之和),又∠EFC=∠CFE,则β+∠DAC2=α+∠DAC2+α=∠AEC,得2α=β,(等式的性质)∵ 2α=β.(3)解:如图,∵ AE平分∠CAD,∵ ∠CAE=∠DAE.∵∠CAB=∠CAE+∠BAE=∠CBA=∠BAD+β,∠BAE=90∘−α,∵ 90∘−α+12∠CAD=β+∠BAD=β+12∠CAD−(90∘−α),化简得2α+β=180∘,即α+12β=90∘.。
2020-2021学年河北省七年级下学期期末数学试卷(有答案)-精品试卷
最新河北省七年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.4的平方根是()A.±2 B.2 C.﹣2 D.±2.点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.下列四对数值中是方程2x﹣y=1的解的是()A.B.C.D.4.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查5.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)6.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°7.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.48.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.9.将一直角三角板与两边平行的纸条如图放置.已知∠2﹣∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°10.把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间11.在平面直角坐标系中,把点P首先向左平移7个单位,再向上平移5个单位得到点M,作点M关于Y 轴的对称点N,已知N的坐标是(5,1),那么P点坐标是()A.(2,﹣4)B.(6,﹣4)C.(6,﹣1)D.(2,﹣1)12.某市区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米二、填空题(共8小题,每小题3分,满分24分)13.+﹣=______.14.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是______.15.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是______.16.当______时,式子的值不大于零.17.已知是二元一次方程组的解,则m+3n的立方根为______.18.有3人携带会议材料乘坐电梯,这三人的体重共210kg,每捆材料重20kg,电梯最大负荷为1 050kg,则该电梯在此3人乘坐的情况下最多还能搭载______捆材料.19.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是______.20.将字母A、B、C、D按如图所示的规律无限排列下去,那么第17行从左到右第14个字母是______.三、解答题(共7小题,满分60分)21.解不等式组:,并把解集在数轴上表示出来.22.解方程组:(1)(2).23.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.24.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.篮球排球进价(元/个)80 50售价(元/个)95 60(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?25.在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=______,n=______.26.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是______;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.27.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的平方根是()A.±2 B.2 C.﹣2 D.±【考点】平方根.【分析】依据平方根的定义即可得出答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选B.3.下列四对数值中是方程2x﹣y=1的解的是()A.B.C.D.【考点】二元一次方程的解.【分析】将各选项代入方程进行验证即可.【解答】解:A、当x=2,y=0时,左边=2×2﹣0=4≠1,左边≠右边,故A错误;B、当x=﹣1,y=﹣1时,左边=2×(﹣1)﹣(﹣1)=﹣1≠1,左边≠右边,故B错误;C、当x=0,y=﹣1时,左边=2×0﹣(﹣1)=1=1,左边=右边,故C正确;D、当x=﹣1,y=1时,左边=2×(﹣1)﹣1=﹣3≠1,左边≠右边,故D错误.故选:C.4.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某一品牌家具的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;B、为了了解某公园的游客流量,选择抽样调查,故本项正确;C、为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D、为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误,故选:B.5.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点横坐标等于零,可得答案.【解答】解:由点P(a﹣4,a)在y轴上,得a﹣4=0,解得a=4,P的坐标为(0,4),故选:B.6.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°【考点】垂线.【分析】根据直线EO⊥CD,可知∠EOD=90°,根据AB平分∠EOD,可知∠AOD=45°,再根据邻补角的定义即可求出∠BOD的度数.【解答】解:∵EO⊥CD,∴∠EOD=90°,∵AB平分∠EOD,∴∠AOD=45°,∴∠BOD=180°﹣45°=135°,故选C.7.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.8.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.【考点】算术平方根;平方根.【分析】设这个自然数为x,则x=a2,故与之相邻的下一个自然数为a2+1,再根据算术平方根的定义进行解答即可.【解答】解:设这个自然数为x,∵x平方根为a,∴x=a2,∴与之相邻的下一个自然数为a2+1,其算术平方根为:.故选D.9.将一直角三角板与两边平行的纸条如图放置.已知∠2﹣∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°【考点】平行线的性质.【分析】根据平行线的性质得∠2=∠3,再根据互余得到∠2+∠1=90°,进而得出答案.【解答】解:如图所示:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°﹣∠1=∠2,∴∠2+∠1=90°,∵∠2﹣∠1=30°,∴∠2=60°.故选:D.10.把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间【考点】估算无理数的大小.【分析】先求得正方形的面积,然后依据算术平方根的定义求得边长,然后再估算其大小即可.【解答】解:正方形的边长==.∵25<28<36,∴5<<6.故选:A.11.在平面直角坐标系中,把点P首先向左平移7个单位,再向上平移5个单位得到点M,作点M关于Y 轴的对称点N,已知N的坐标是(5,1),那么P点坐标是()A.(2,﹣4)B.(6,﹣4)C.(6,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据向左平移横坐标减,纵坐标不变,向上平移纵坐标加,横坐标不变,进行计算即可求解.【解答】解:∵点M关于Y轴的对称点N,已知N的坐标是(5,1),∴M(﹣5,1),∵点P首先向左平移7个单位,再向上平移5个单位得到点M,∴P(2,﹣4),故选A.12.某市区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米【考点】一元一次不等式的应用.【分析】本题可先用11减去5得到6,则1.5(x﹣3)≤6,解出x的值,取最大整数即为本题的解.【解答】解:依题意得:1.5(x﹣3)≤11﹣5,x﹣3≤4,x≤7.因此甲地到乙地路程的最大值是7千米.故选:B.二、填空题(共8小题,每小题3分,满分24分)13.+﹣= 1.【考点】实数的运算.【分析】原式利用立方根及算术平方根定义计算即可得到结果.【解答】解:原式=2+0﹣=1,故答案为:114.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是抽取500名学生的成绩.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.【解答】解:本题的研究对象是:2万名考生的成绩,因而样本是抽取的500名考生的成绩.故答案为:抽取500名学生的成绩.15.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是55°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据折叠性质得出∠2=∠EFG,求出∠BEF,根据平行线性质求出∠CFE,即可求出答案.【解答】解:∵根据折叠得出四边形MNFG≌四边形BCFG,∴∠EFG=∠2,∵∠1=70°,∴∠BEF=∠1=70°,∵AB∥DC,∴∠EFC=180°﹣∠BEF=110°,∴∠2=∠EFG=∠EFC=55°,故答案为:55°.16.当x≥时,式子的值不大于零.【考点】解一元一次不等式.【分析】根据题意列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子的值不大于零,∴≤0,解得x≥.故答案为:x≥.17.已知是二元一次方程组的解,则m+3n的立方根为 2 .【考点】二元一次方程组的解;立方根.【分析】将代入方程组,可得关于m、n的二元一次方程组,得出代数式即可得出m+3n 的值,再根据立方根的定义即可求解.【解答】解:把代入方程组,得:,则两式相加得:m+3n=8,所以==2.故答案为2.18.有3人携带会议材料乘坐电梯,这三人的体重共210kg,每捆材料重20kg,电梯最大负荷为1 050kg,则该电梯在此3人乘坐的情况下最多还能搭载42 捆材料.【考点】一元一次不等式的应用.【分析】先设还能搭载x捆材枓,根据电梯最大负荷为1050kg,列出不等式求解即可.【解答】解:设还能搭载x捆材枓,依题意得:20x+210≤1050,解得:x≤42.则该电梯在此3人乘坐的情况下最多能搭载42捆材枓.故答案为:42.19.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是480元、400元.【考点】二元一次方程组的应用.【分析】设甲、乙两种服装的原单价分别是x元、y元,满足等量关系:①甲、乙两种服装的原单价共为880元;②打折后两种服装的单价共为684元,由此列出方程组求解.【解答】解:设甲、乙两种服装的原单价分别是x元、y元.根据题意,得:,解得:,即:甲、乙两种服装的原单价分别是480元、400元.故答案是:480元、400元.20.将字母A、B、C、D按如图所示的规律无限排列下去,那么第17行从左到右第14个字母是 B .【考点】规律型:图形的变化类.【分析】先找到数的排列规律,求出第n﹣1行结束的时候一共出现的字母的个数,再求第n行从左向右的第14个字母,即可求出第17行从左向右的第14个字母.【解答】解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个字母.所以第n行从左向右的第13个字母共n(n﹣1)+13个.所以n=17时,×17×(17﹣1)+14=150,150÷4=37…2.故第17行从左向右的第14个字母为B.故答案为:B.三、解答题(共7小题,满分60分)21.解不等式组:,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出公共部分,表示在数轴上即可.【解答】解:,由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,22.解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:6y﹣7﹣y=13,即y=4,把y=4代入②得:x=17,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,即x=2,把x=2代入①得:y=3,则方程组的解为.23.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】平行线的判定与性质.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.24.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.篮球排球进价(元/个)80 50售价(元/个)95 60(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?【考点】二元一次方程组的应用.【分析】(1)设购进篮球x个,购进排球y个,根据等量关系:①篮球和排球共20个②全部销售完后共获利润260元可列方程组,解方程组即可;(2)设销售6个排球的利润与销售a个篮球的利润相等,根据题意可得等量关系:每个排球的利润×6=每个篮球的利润×a,列出方程,解可得答案.【解答】解:(1)设购进篮球x个,购进排球y个,由题意得:解得:,答:购进篮球12个,购进排球8个;(2)设销售6个排球的利润与销售a个篮球的利润相等,由题意得:6×(60﹣50)=(95﹣80)a,解得:a=4,答:销售6个排球的利润与销售4个篮球的利润相等.25.在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m= 3 ,n= 1 .【考点】作图-平移变换.【分析】(1)根据平面直角坐标系找出点A、B、C的位置,然后顺次连接即可,再利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解;(2)根据网格结构找出点A、B平移后的对应点A′、B′的位置,然后顺次连接即可,再根据平面直角坐标系写出A′、B′的坐标;(3)根据向右平移横坐标加,向下平移纵坐标减列出方程求解即可.【解答】解:(1)如图,△ABC如图所示;△ABC的面积=6×7﹣×3×7﹣×3×3﹣×4×6,=42﹣10.5﹣4.5﹣12,=42﹣27,=15;(2)△A′B′C′如图所示,A′(﹣1,8),B′(2,1);(3)由题意得,﹣3+4=n,m﹣6=﹣3,解得m=3,n=1.故答案为:3,1.26.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是100 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【解答】解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50﹣10﹣16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×=360人.27.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?【考点】一次函数的应用.【分析】(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小英家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.解得:答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤14时,y=x;当x>14时,y=14+(x﹣14)×2.5=2.5x﹣21,∴所求函数关系式为:y=(3)∵x=24>14,∴把x=24代入y=2.5x﹣21,得:y=2.5×24﹣21=39(元).答:小英家三月份应交水费39元.2016年9月21日。
2020-2021学年石家庄市桥西区七年级(下)期末数学复习卷
2020-2021学年石家庄市桥西区七年级(下)期末数学复习卷一、选择题(本大题共16小题,共32.0分)1. 如果a >b ,那么不等式变形正确的是( )A. a −2<b −2B. 0.5a <0.5bC. −2a <−2bD. −a >−b 2. 用10根同样长的火柴棒在桌面上摆一个三角形(不许将火柴棒折断,并且全部用完),能摆出不同形状的三角形的个数是( )A. 1B. 2C. 3D. 4 3. 我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度约为7100米/秒.将7100用科学记数法表示为( )A. 7100B. 0.71×104C. 71×102D. 7.1×103 4. 如图所示,将一把三角尺的直角顶点成在直尺的一边上,若∠1=40°,则∠2的度数为( )A. 60°B. 50°C. 40°D. 30°5. 下列运算正确的是( )A. a 5+a 5=a 10B. a 6−a 4=a 24C. a 6⋅a 4=a 24D. a 8÷a 5=a 3 6. △ABC 的两边分别为方程组{x +y =10x −y =2的解,第三边能被4整除.这样的三角形有( )个. A. 1B. 2C. 3D. 4 7. 把不等式组的解集表示在数轴上,正确的是( ). A. B. C.D.8. 下列命题: ①两直线平行,内错角相等;②如果a >0,b >0,那么ab >0;③等边三角形是锐角三角形;作为原命题,其中原命题和它的逆命题都正确的有( )A. 1个B. 2个C. 3个D. 0个 9. 下列叙述中,正确的有( )①如果2x =a ,2y =b ,那么2x+y =a +b ;②满足条件(23)2n =(32)n−3的n 存在; ③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④△ABC 在平移过程中,对应线段一定相等.A. 1个B. 2个C. 3个D. 4个10. 若二元一次联立方程式{2x −y =33x −4y =3的解为x =a ,y =b ,则a +b =( ) A. 1 B. 6 C. 35 D. 125 11. 下列多项式中能用完全平方公式分解的是( )A. x 2−x +1B. 1−2x +x 2C. −a 2+b 2−2abD. 4x 2+4x −112. 下列不是图形的旋转、平移、轴对称的共同特征的是( )A. 对应角的大小不变B. 图形的大小不变C. 图形的形状不变D. 对应线段平行13. 下列计算正确的是( ) A. a 2+a 2=a 4B. (−2−ab)2=4+4ab +a 2b 2C. 2a 6÷a 3=a 3D. (−3b)3⋅2b 3=−18b 614. 如图,把长方形ABCD 沿EF 折叠后使两部分重合,若∠1=30°,则∠AEF =( )A. 100°B. 150°C. 110°D. 105°15. 不等式组{x −2≤0x +1<0的解集是( ) A. x ≤2 B. x <−1 C. x ≥2 D. −1<x ≤216. 王老汉要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段AD 应该是△ABC 的( )A. 角平分线B. 中线C. 高D.垂直平分线 二、填空题(本大题共4小题,共12.0分)17. ①计算x 2⋅x 4= ______②已知a m =2,a n =3,那么a 2m−n = ______③已知3n =a ,3m =b ,则3m+n+1= ______ .④已知3m =181,则m = ______ .★⑤已知:(x +2)x+5=1,则x = ______ .18. 已知{x =1y =−2是方程ax +2y =3的一个解,则a 的值是______ . 19. 函数y =3x 和y =1x 在第一象限内的图象如图,点P 是y =3x 的图象上一动点,PC ⊥x 轴于点C ,交y =1x 的图象于点A ,PD ⊥y 轴于点D ,交y =1x的图象于点B.下面结论:①PA 与PB 始终相等;②△OBP 与△OAP 的面积始终相等;③四边形PAOB 的面积不变;④PA ⋅BD =PB ⋅AC .其中一定正确的是______(把你认为正确结论的序号都填上)20. 如图,在四边形ABCD 中,已知AD//BC ,BD 平分∠ABC ,AB =2,那么AD =______.三、解答题(本大题共7小题,共56.0分)21. 分解因式(1)(x 2+3x)2−(x −1)2(有理数范围)(2)x 2−2√2x +2(实数范围)22. 解不等式组{x 2>−12x1≥5(x −1),并写出它的所有整数解.23. 已知多项式A =(x +2)2+(1−x)(2+x)−3(1)化简多项式A ;(2)若x 是不等式x−12>x 的最大整数解,求A 的值.24. 如图1,在平面直角坐标系中,点O 为坐标原点,点A(3a,2a)在第一象限,过点A 作AB//y 轴,交x 轴于点B ,连接OA ,S △AOB =12.点M 从O 出发,沿y 轴的正半轴以每秒2个单位长度的速度运动,点N 从点B 出发以每秒3个单位长度的速度向x 轴负方向运动,点M 与点N 同时出发,设点M 的运动时间为t 秒,连接AM ,AN ,MN .(1)a 的值为______;点A 的坐标为______.(2)当0<t <2时,①∠ANM ,∠OMN ,∠BAN 之间的数量关系为______;②试判断四边形AMON 的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当t 为何值时,OM >ON ?25. 计算:(1)2xy 2⋅(−3xy 4).(2)(25y 3−3y 2+23y)÷23y.26. 今年疫情期间,某校为做好开学准备,计划购买A 、B 两种型号的测温仪.已知购买5个A 型测温仪和3个B 型测温仪共需1480元,购买3个A 型测温仪和4个B 型测温仪共需1240元.(1)每个A 型测温仪和每个B 型测温仪的价格分别是多少元?(2)学校计划购买A 、B 两种型号的测温仪共30个,并且总费用不超过5280元,A 型的测温仪最多能购买多少个?27.△ABC中,∠B=40°,∠C=70°,AD平分∠BAC,AE⊥BC,垂足为E.求∠DAE的度数.【答案与解析】1.答案:C解析:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C正确;D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D错误;故选:C.根据不等式的性质1,可判断A,根据不等式的性质2可判断B,根据不等式的性质3,可判断C、D.本题考查了不等式的性质,熟悉不等式的性质是解题的关键.2.答案:B解析:解:∵三角形两边之和大于第三边,∴只能有二种答案,即3、3、4;2、4、4.故选:B.此题可把三角形的周长看作10,再根据三角形的三边关系可得出结论.本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.3.答案:D解析:解:将7100用科学记数法表示为:7.1×103.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:解:如图,∵∠1=40°,∠FEG=90°,∴∠AEF=180°−∠1−∠FEG=180°−40°−90°=50°,∵AB//CD,∴∠2=∠AEF=50°,故选:B .先求出∠AEF 的度数,再由平行线的性质即可得出答案.此题考查了平行线的性质、直角三角形的性质.利用两直线平行,同位角相等是解此题的关键. 5.答案:D解析:解:A 、a 5+a 5=2a 5,故此选项错误;B 、a 6−a 4,无法计算,故此选项错误;C 、a 6⋅a 4=a 10,故此选项错误;D 、a 8÷a 5=a 3,故此选项正确.故选:D .直接利用同底数幂的乘除运算法则以及合并同类项法则分别计算得出答案.此题主要考查了同底数幂的乘除运算以及合并同类项,正确掌握相关运算法则是解题关键. 6.答案:B解析:解:∵△ABC 的两边分别为方程组{x +y =10x −y =2的解, ∴{x =6y =4, ∴设第三边长为x ,则2<x <10,∵第三边能被4整除,∴x =4或8,故这样的三角形有2个.故选:B .首先求出x ,y 的值,再根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围,即可得出答案.此题主要考查了三角形三边关系,熟练掌握三角形的三边关系定理是解决问题的关键.7.答案:B解析:本题考查解不等式组,和在数轴上的表示.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。
2020-2021石家庄市初一数学下期末模拟试卷附答案
2020-2021石家庄市初一数学下期末模拟试卷附答案一、选择题1.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩2.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折 D .9折 4.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .55.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( ) A .210x +90(15﹣x )≥1.8 B .90x +210(15﹣x )≤1800 C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.86.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤7.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .48.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-39.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度10.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一 B .二 C .三 D .四 11.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2 二、填空题13.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论: ①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降 ③音乐手机4月份的销售额比3月份有所下降 ④今年1-4月中,音乐手机销售额最低的是3月 其中正确的结论是________(填写序号).14.若方程33x x m +=-的解是正数,则m 的取值范围是______.15.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .16.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 17.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.18.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________.19.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC P 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.22.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比. (2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.23.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.24.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()25.如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点O ,如果66COD ∠=︒,求AOE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案. 【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩,故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.2.B解析:B 【解析】分析:先根据平行线的性质得出∠2+∠BAD =180°,再根据垂直的定义求出∠2的度数. 详解:∵直线a ∥b ,∴∠2+∠BAD =180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°. 故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.3.B解析:B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7.即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.4.D解析:D 【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选D .5.C解析:C 【解析】 【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题. 【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可, 即210x+90(15﹣x )≥1800 故选C. 【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.6.A解析:A 【解析】 【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可. 【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1, 解不等式②得:x<a ,∵不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.8.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.9.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.10.B解析:B 【解析】 【分析】由点P 在x 轴上求出a 的值,从而得出点Q 的坐标,继而得出答案. 【详解】∵点P (a ,a-1)在x 轴上, ∴a-1=0,即a=1, 则点Q 坐标为(-1,2), ∴点Q 在第二象限, 故选:B . 【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.11.B解析:B 【解析】 【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答. 【详解】在平面内,过一点有且只有一条直线与已知直线垂直, 故选:B 【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D 【解析】 【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D. 【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是8 5×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.14.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】+=-33x x m2x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变; (3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55 【解析】 【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可. 【详解】设长为8x ,高为11x , 由题意,得:19x+20≤115, 解得:x≤5,故行李箱的高的最大值为:11x=55, 答:行李箱的高的最大值为55厘米. 【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.16.m>3【解析】试题分析:因为点P 在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3. 【解析】试题分析:因为点P 在第二象限,所以,30{0m m -<>,解得:考点:(1)平面直角坐标;(2)解不等式组17.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】 【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可. 【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.18.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.19.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式,∴x2+(m-2)x+9=(x±3)2.而(x±3)2=x2±6x+9,∴m-2=±6,∴m=8或m=-4.故答案为8或-4.20.【解析】【分析】本题可设打x折根据保持利润率不低于5可列出不等式:解出x的值即可得出打的折数【详解】设可打x折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关解析:【解析】【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF P ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC P ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪ (2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比 【详解】解:(1)∵(252+104+24)÷1000=38%, ∴这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人), ∴本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人), ∴该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人), ∴该市小学生患“中度近视”的约有1.04万人.23.(1)C(0,2),D(4,2),S 四边形ABDC =8;(2)M(0,4)或(0,-4);(3)∠CPA= ∠BAP+∠DCP 或∠CPA= ∠BAP-∠DCP .【解析】【分析】(1)由题意根据非负数的性质求出A 、B 坐标,进而分析得出C 、D 坐标,继而即可求出四边形ABDC 的面积;(2)由题意可知以AB 为底边,设点M 到AB 的距离为h 即三角形MAB 的高,求得h 的值即可得出点M 的坐标;(3)根据题意分当点P 在线段BD 上时以及当点P 在BD 延长线上时,利用平行线的性质进行分析即可.【详解】解: (1)由()()22130a b ++-=得a=-1,b=3,则A(-1,0),B(3,0),∵点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,如图,∴C(0,2),D(4,2),∴S四边形ABDC=AB×OC=4×2=8.(2)存在.设点M到AB的距离为h,S△MAB=12×AB×h=2h,由S△MAB=S四边形ABDC,得2h=8,解得h=4,可知这样的M点在y轴上有两个,∴M(0,4)或(0,-4).(3)①当点P在线段BD上时:∠CPA=∠DCP+∠BAP,理由如下:过P点作PE∥AB交OC与E点,∵AB∥CD, PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA=∠CPE+∠APE,∴∠CPA=∠DCP+∠BAP;②当点P在BD延长线上时:∠CPA= ∠BAP-∠DCP,理由如下:过P点作PE∥AB,∵AB∥CD,PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA= ∠APE-∠CPE。
2020-2021石家庄市初一数学下期末一模试卷附答案
2020-2021石家庄市初一数学下期末一模试卷附答案一、选择题1.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤52.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1600名学生的体重是总体B.1600名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本3.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)4.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.55.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣36.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个7.不等式组1212xx+>⎧⎨-≤⎩的解集是()A.1x<B.x≥3C.1≤x﹤3D.1﹤x≤38.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(2,1) B.(﹣2,﹣1) C.(﹣2,1) D.(2,﹣1)9.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)10.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行11.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.如果a 的平方根是3±,则a =_________14.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.15.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 16.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 17.64立方根是__________.18.若3的整数部分是a ,小数部分是b ,则3a b -=______.19.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 20.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.三、解答题21.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标(3)求出△A1B1C1的面积22.问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG =α,则∠CFG等于______(用含α的式子表示).23.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.24.把一堆书分给几名学生,如果每人分到 4 本,那么多 4 本;如果每人分到 5 本,那么最后 1 名学生只分到 3 本.问:一共有多少名学生?多少本书?25.解不等式组:5(1)21 111(3)32x xx x+>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 4.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.5.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.6.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D解析:D【解析】【分析】【详解】解:1212xx+>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3;故选D.8.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.9.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.11.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】,∵9的平方根为3,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.14.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=解析:48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=48(cm2)故答案为48 cm2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.15.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.16.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为3 解析:3【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.17.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】64,再计算8的立方根即可.【详解】6438=2,64 2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.18.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.19.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.20.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x轴上的点P到y轴的距离为3,则3x=,∴x=±3.故P的坐标为(±3,0).故答案为:(±3,0).三、解答题21.(1)详见解析;(2)A1(4,−2), B1(1,−4), C1(2,−1);(3)7 2【解析】【分析】(1)直接利用平移的性质得出A,B,C平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A1B1C1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A1(4,−2), B1(1,−4), C1(2,−1);(3) △A1B1C1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则22.(1)∠1=40°;(2)∠AEF+∠GFC=90°;(3)60°﹣α.【解析】【分析】(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出∠EGD13=(180°﹣60°)=40°,进而得到∠1=40°;(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠GFC=90°;(3)根据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB∥CD,∴∠1=∠EGD.又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.23.证明见解析.【解析】【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.24.一共有6名学生,28本书【解析】【分析】可设有 x 名学生,y 本书.根据总本数相等,每人分到4本,那么多4 本;如果每人分到5 本,那么最 后 1 名学生只分到3本,可列出方程组,求解即可.【详解】解:设一共有x 名学生,y 本书,依题意得:445(1)3x y x y +=⎧⎨-+=⎩解得628x y =⎧⎨=⎩答:一共有6名学生,28本书【点睛】本题考查了二元一次方程组的应用,根据该班人数表示出图书数量得出方程组是解题关键.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
2020-2021学年河北省石家庄市七年级下学期数学期末综合练习(word版 含答案)
七年级数学期末综合练习一、单选题(每小题3分,共36分)1.下列算式中能说明命题“两个无理数的和还是无理数”是假命题的是( )A 2=B .(11-C .23πππ+=D 4= 2.已知实数a ,b 在数轴上的位置如图,则下列结果正确的是( )A .b >aB .|a |>|b |C .﹣b >aD .a +b =03.在平面直角坐标系内,将点()3,1M 先向上平移2个单位长度,再向左平移3个单位长度,则平移后的点的坐标是( )A .()6,3B .()0,3C .()6,1-D .()0,1-4.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2021次碰到长方形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,35.水产养殖中常采用“捉-放-捉”的方式估计一个鱼塘中鱼的数量,如从某个鱼塘中随机地捞出100条鱼,将这些鱼作上记号后再放回鱼塘,隔数日后再从该鱼塘随机捞出144条鱼,其中带有记号的有6条,从而估计该鱼塘有( )条鱼A .1600B .2400C .1800D .20006.如图,ADE 是由DBF 沿BD 所在的直线平移得到的,AE ,BF 的延长线交于C ,若45BFD ∠=︒,则C ∠的度数是( )7.如图,把三角板的直角顶点放在直尺的一边上,若137∠=︒,则2∠的度数是( )A .43︒B .53︒C .63︒D .37︒8.已知二元一次方程233-=x y 的一组解为x m y n =⎧⎨=⎩,则下列说法一定不正确的是( ) A .0,0m n >> B .0,0m n >< C .0,0m n <>D .0,0m n << 9.在大长方形中放入6个形状、大小相同的小长方形,所标尺寸如图所示,则图中大长方形的面积是( )A .98B .112C .126D .14010.用加减法解方程组324233x y x y -=⎧⎨+=⎩①②,下列解法正确的是( ) A .①×2﹣①×3,消去yB .①×3+①×2,消去yC .①×3+①×2,消去xD .①×3﹣①×2,消去x11.若a b <,则下列式子中一定成立的是( )A .33a b +>+B .33a b >C .33a b >D .33a b -<- 12.某品牌手机的成本为每部2000元,售价为每部2800元,该商店准备举行打折促销活动,要求利润率不低于12%,如果将这种品牌的手机打x 折销售,则下列不等式中能正确表示该商店的促销方式的是( ).A .2800x ≥2000×12%B .2800×10x -2000≥2000×12% C .2800×10x ≥2000×12%二、填空题(每小题3分,共24分)13.已知一个正数的两个平方根分别是1a -和23a -,则这个正数是_________.14.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限. 15.如图,在长方形草地内修建了宽为2米的道路,则草地面积为_______米2.16.如图,点D 、E 分别在AB 、BC 上,//DE AC ,//AF BC ,160∠=︒,则2∠=___︒.17.若()2234x y +-与37x y +-互为相反数,则x y -=_______.18.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,就连同原来的鸽子,每个鸽笼刚好住8个鸽子,原来有_____只鸽子.19.若关于x 的不等式组2223x x x m+⎧≥-⎪⎨⎪<⎩的所有整数解的和是7-,则m 的取值范围是______.20.对任意四个整数a 、b 、c 、d 定义新运算:a b c d ad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.三、解答题(本大题共7个小题,共60分)21.(8分)解下列方程与不等式(组): ①513x +=1﹣216x - ①2401(8)202x x +<⎧⎪⎨+-≤⎪⎩22.(8分)如图,点1,0A ,点B 在y 轴上,将OAB 沿x 轴负方向平移,平移后的图形为DEC,且点C 的坐标为(),a b ,且3a =.(1)求线段AD 的长.(2)当点P 在CE 上运动时,请问,,CBP PAD BPA ∠∠∠之间有何数量关系?请说明理由.23.(8分)为了解龙华区某校七年级学生对A 《最强大脑》、B 《朗读者》、C 《中国诗词大会》、D 《极限挑战》四个电视节目的喜爱情况,随机抽取了m 位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(图1,图2).根据统计图提供的信息,回答下列问题:(1)在图1中,喜爱《朗读者》节目所对应的扇形的圆心角度数是 度;(2)请根据以上信息直接在答题卡中补全图2的条形统计图;(3)已知该校七年级共有420位学生,那么他们最喜欢《中国诗词大会》这个节目的学生约多少人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.
二、填空题
13.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>
解析:m>-2
【解析】
①求至少购进A种多少本?
②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)
22.解方程组
23.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出 =___________, =_____________;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?
24.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:
A.0B.-πC. D.-4
8.已知 是方程组 的解,则a、b间的关系是( )
A. B. C. D.
9.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为( )
进价(元/只)
售价(元/只)
甲种节能灯
30
40
乙种节能灯
35
50
(1)求幸福商场甲、乙两种节能灯各购进了多少只?
(2)全部售完100只节能灯后,商场共计获利多少元?
25.解不等式
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
.故选A.
2.D
解析:D
【解析】
【分析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
C、a=14-7=7,选项C正确;
D、设该队胜了z场,则负了(14-z)场,
依题意,得:2z=14-z,
解得:z= ,
∵z= 不为整数,
∴不存在该种情况,选项D错误.
故选:D.
【点睛】
本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.
11.不等式组 的解集在数轴上表示正确的是()
A. B.
C. D.
12.对于两个不相等的实数 ,我们规定符号 表示 中较大的数,如 ,按这个规定,方程 的解为( )
A. B. C. D. 或-1
二、填空题
13.若关于x、y的二元一次方程组 的解满足x+y>0,则m的取值范围是____.
14.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:
2020-2021石家庄市七年级数学下期末试题及答案
一、选择题
1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()
A.100°B.130°C.150°D.80°
2.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )
A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°
3.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是( )
队名
比赛场数
胜场
负场
积分
前进
14
10
4
24
光明
14
9
5
23
远大
14
7
a
21
卫星
14
4
10
b
钢铁
14
0
14
14
…
…
…
…
…
A.负一场积1分,胜一场积2分B.卫星队总积分b=18
④今年1-4月中,音乐手机销售额最低的是3月,故④正确.
故答案为:④.
【点睛】
此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.
15.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1
解析:【解析】
【详解】
若 的整数部分为a,小数部分为b,
∴a=1,b= ,
A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800
C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.8
10.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )
A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3
【详解】
∵直线EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故选D.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
3.D
解析:D
【解析】
【分析】
A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;
B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;
2月份的音乐手机销售额是80×15%=12(万元)
3月份音乐手机的销售额是60×18%=10.8(万元),
4月份音乐手机的销售额是65×17%=11.05(万元).
①从1月到4月,手机销售总额3-4月份上升,故①错误;
②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;
③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;
①从1月到4月,手机销售总额连续下降
②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降
③音乐手机4月份的销售额比3月份有所下降
④今年1-4月中,音乐手机销售额最低的是3月
其中正确的结论是________(填写序号).
15.若 的整数部分是a,小数部分是b,则 ______.
16.用适当的符号表示a是非负数:_______________.
11.B
解析:B
【解析】
【分析】
首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.
【详解】
解: ,
解不等式①得:x<2,
解不等式②得:x≥-1,
在数轴上表示解集为:
,
故选:B.
【点睛】
本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.
C、由负的场次数=总场次数-得胜的场次数,即可求出a值;
D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.
题意,得: ,
解得: ,
∴选项A正确;
B、b=2×4+1×10=18,选项B正确;
把x=1代入①得,3-2y=1,解得y=1,
∴方程组的解为 .
故选:D.
点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
6.B
解析:B
【解析】
【详解】
把 代入方程组 得: ,
解得: ,
所以a−2b= −2×( )=2.
故选B.
7.D
解析:D
【解析】
【分析】
∴ a-b= =1.
故答案为1.
16.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥0
解析:a≥0
【解析】
【分析】
非负数即大于等于0,据此列不等式.
【详解】
由题意得a≥0.
故答案为:a≥0.
17.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点
解析:【解析】
【分析】
用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.
【详解】
估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200× =400(人),
故答案为:400.
【点睛】
本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.
8.D
解析:D
【解析】
【分析】
把 代入 即可得到关于 的方程组,从而得到结果.
【详解】
由题意得, ,
得,
得 ,
故选:D.
9.C
解析:C
【解析】
【分析】
根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.
【详解】
解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,
即210x+90(15﹣x)≥1800
4.D
解析:D
【解析】