11高等数学(理工类)考研真题十一.

合集下载

高等工程数学考研真题试卷

高等工程数学考研真题试卷

高等工程数学考研真题试卷一、选择题(每题3分,共30分)1. 设函数\( f(x) \)在点\( x_0 \)处可导,且\( f'(x_0) \neq 0 \),则\( f(x) \)在\( x_0 \)处的切线斜率为:A. \( f(x_0) \)B. \( f'(x_0) \)C. \( x_0 \)D. \( 0 \)2. 线性代数中,若矩阵\( A \)可逆,则下列哪个说法是正确的?A. \( A \)是对称矩阵B. \( A \)是正交矩阵C. \( A \)的行列式不为零D. \( A \)是单位矩阵3. 根据概率论,若随机变量\( X \)服从正态分布\( N(\mu,\sigma^2) \),则其期望值和方差分别是:A. \( \mu, \sigma \)B. \( \sigma, \mu \)C. \( \mu, \sigma^2 \)D. \( \sigma, \sigma^2 \)4. 常微分方程\( y'' - 2y' + y = 0 \)的特征方程是:A. \( r^2 - 2r + 1 = 0 \)B. \( r^2 - 2r + 2 = 0 \)C. \( r^2 + 2r + 1 = 0 \)D. \( r^2 - 2r - 1 = 0 \)5. 在多元函数极值问题中,若函数\( f(x, y) \)在点\( (x_0, y_0) \)处取得极小值,则下列说法正确的是:A. 在该点处,\( f(x, y) \)的一阶偏导数都为零B. 在该点处,\( f(x, y) \)的二阶偏导数都为正C. 在该点处,\( f(x, y) \)的Hessian矩阵是正定的D. 在该点处,\( f(x, y) \)的梯度向量为零二、填空题(每题4分,共20分)6. 若函数\( f(x) = 3x^3 - 2x^2 + x - 5 \),则\( f''(x) \)的值为________。

2011年考研数学一试卷真题及答案解析

2011年考研数学一试卷真题及答案解析

2011年考研数一真题及答案解析一、选择题1、 曲线()()()()4324321----=x x x x y 的拐点是( )(A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0)【答案】C 【考点分析】本题考查拐点的判断。

直接利用判断拐点的必要条件和第二充分条件即可。

【解析】由()()()()4324321----=x x x x y 可知1,2,3,4分别是()()()()23412340y x x x x =----=的一、二、三、四重根,故由导数与原函数之间的关系可知(1)0y '≠,(2)(3)(4)0y y y '''===(2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。

2、 设数列{}n a 单调减少,0lim =∞→n n a ,()∑===n k k n n a S 12,1 无界,则幂级数()11nn n a x ∞=-∑的收敛域为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D )(0,2]【答案】C 【考点分析】本题考查幂级数的收敛域。

主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。

【解析】()∑===n k k n n a S 12,1 无界,说明幂级数()11nn n a x ∞=-∑的收敛半径1R ≤;{}n a 单调减少,0lim =∞→nn a ,说明级数()11nn n a ∞=-∑收敛,可知幂级数()11nn n a x ∞=-∑的收敛半径1R ≥。

因此,幂级数()11nn n a x ∞=-∑的收敛半径1R =,收敛区间为()0,2。

又由于0x =时幂级数收敛,2x =时幂级数发散。

2011年全国硕士研究生入学统一考试数学(一)真题及答案解析

2011年全国硕士研究生入学统一考试数学(一)真题及答案解析

0
2
2
.
13.【答案】 1
【解】本题等价于将二次型 f (x, y, z) x2 3y2 z2 2axy 2xz 2 yz 经正交变换后化为
了 f y12 4z12 .由正交变换的特点可知,该二次型的特征值为1, 4, 0 .
1 a 1
该二次型的矩阵为
A
a
3
1 ,可知 A a2 2a 1 0 ,因此 a 1 。
0
0
5.【答案】
【解】由初等矩阵与初等变换的关系知
AP1
B
,P2 B
E
,所以
A
BP11
P2
P 1 1 1
P2 P11

故选 D.
6.【答案】D
【解】由 x 0 的基础解系只有一个知 r( A) 3 ,所以 r( A) 1,又由 A A A E 0 知,
1,2 ,3,4 都是 x 0 的解,且 x 0 的极大线生无关组就是其基础解系,又
^
(1)求参数 2 的最大似然估计 2 ;
^
^
(2)计算 E( 2 ) 和 D( 2 ) .
2011 年全国研究生入学统一考试数学一试题
答案及解析
一、选择题
1.【答案】C
【解】由 y x 1x 22 x 33 x 44 可知1, 2,3, 4 分别是
y
x
1
x
2
2
x
33
x
4
4
0
的一、二、三、四重根,故由导数与原函数之间的关
C. P2P1
D. P21P1
6.设 A (1,2,3,4 ) 是 4 阶矩阵, A* 是 A 的伴随矩阵,若 (1,0,1,0)T 是方程组 Ax 0 的一 个基础解系,则 A*x 0 的基础解系可为( )

2011考研数学真题和答案详解

2011考研数学真题和答案详解

2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0s inlim1xxx→=1lim1xxex→∞⎛⎫+=⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学 考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学 考试内容多元函数的概念 二元函数的几何意义二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解xe .sin x .c o s x .ln (1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程 考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念. 6.了解一阶常系数线性差分方程的求解方法. 7.会用微分方程求解简单的经济应用问题.线 性 代 数一、行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵 考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()0xef x x λλ-⎧=⎨≤⎩若x >0若5.会求随机变量函数的分布.三、多维随机变量及其分布 考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u u σσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2分布t分布F 分布 分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1n i i S X X n ==--∑2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

数1--11真题答案

数1--11真题答案

2011年考研数学(一)试题答案速查一、选择题(1)C (2)C (3)A (4)B (5)D (6)D (7)D (8)B 二、填空题(9)ln(1+ (10)esin xx − (11)4 (12)π(13)1 (14)22()μμσ+ 三、解答题 (15)12e−. (16)11112(1,1)(1,1)(1,1)f f f '''''++. (17)1k >时,原方程有三个根.1k 时,原方程有一个根. (18)略. (19)a .(20)(Ⅰ)5=a .(Ⅱ)112324=+−βααα,2122=+βαα,31235102=+−βααα.(21)(Ⅰ)1112223331231101,0,1,0,0,1,0110p k p k p k k k k λλλ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=−=====≠ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭.(Ⅱ)001000100⎛⎫⎪= ⎪ ⎪⎝⎭A .(22)(Ⅰ)(Ⅱ)(Ⅲ)0ρ=XY .(23)(Ⅰ)22011()n i i X n σμ==−∑.(Ⅱ)22()E σσ=,422()D nσσ=.2011年全国硕士研究生入学统一考试数学(一)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】C .【解答】易知该曲线与x 轴有四个交点(1,0),(2,0),(3,0),(4,0),且1x <时,0y >;当12x <<时,0y <;当34x <<时,0y >;当4x >时,0y >. 根据以上结论描绘出曲线y 的大致图形为: 故选择答案C .(2)【答案】C . 【解答】因为1nn a∞=∑发散,而1(1)nn n a ∞=−∑收敛,所以1n n n a x ∞=∑的收敛域是[1,1)−,因此1(1)nn n a x ∞=−∑的收敛域是[0,2)故选择答案C .(3)【答案】A . 【解答】(0,0)(0,0)()ln ()|(0)ln (0)0zf x f y f f x ∂''=⋅==∂(0,0)(0,0)()()(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=22(0,0)(0,0)()ln ()(0)ln (0)0,z A f x f y f f x ∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]()0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂22222(0,0)(0,0)()()[()][(0)]()(0)(0).()(0)z f y f y f y f C f x f f yf y f ''''∂−''''==⋅=−=∂又22[(0)]ln (0)0,AC B f f ''−=⋅>故(0)1,(0)0f f ''>>. 故正确答案选A. (4)【答案】B . 【解答】当π04x <<时,有0sin cos 1cot x x x <<<<,所以ln sin ln cos ln cot x x x <<,应选B . (5)【答案】D .【解答】易知100110,001⎛⎫⎪= ⎪⎪⎝⎭A B 100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭B =E 即12,=AP B P B =E ,所以1112121−−−A =P P =P P ,选答案D . (6)【答案】D .【解答】易知**,()3,()1r r ==AA =O A A ,*=A x 0的基础解系有3个线性无关的向量,1234,,,αααα是*=A x 0的解;又因为T (1,0,1,0)是方程组0Ax =的一个基础解系,即13+=0αα,所以13,αα线性相关,则方程组*=A x 0的基础解系为234,,ααα,选答案D . (7)【答案】D . 【解答】122112[()()()()]d ()()1f x F x f x F x x F x F x +∞+∞−∞−∞+==⎰,故选答案D .(8)【答案】B .【解答】因为{}{}()()max ,,min ,,22X Y X Y X Y X YU X Y V X Y ++−+−−====所以UV XY =. 又,X Y 相互独立,所以()E UV =EX EY ⋅,故答案选B .二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】(ln 1.【解答】(ππ440sec d ln |sec tan |ln 1s x x x x ===+=+⎰.(10)【答案】e sin xy x −=.【解答】d d e (e cos e d )x x xy x x C −−⎰⎰=⋅+⎰e (cos d )x x x C −=+⎰e (sin )x x C −=+由于(0)0,y =故0C =,所以esin xy x −=.(11)【答案】4.【解答】2sin 1()F xy y x xy ∂=⋅∂+,22222cos sin 2[1()]F y xy xy xy y x xy ∂−⋅=⋅∂+,故2(0,2)2|4F x ∂=∂. (12)【答案】π.【解答】设S 是平面=+z x y 上位于柱面221x y +=内的部分,S 在xOy 平面上的投影为22{(,)|1}D x y x y =+,由斯托克斯公式,得22d d d d d d d d d 22L Sy z z x x yy xz x x y z x y z y xzx∂∂∂++=∂∂∂⎰⎰⎰d d d d d d (1)d d πSDy y z x z x x y x y x y =++=−−=⎰⎰⎰⎰.(13)【答案】1.【解答】二次型矩阵为1131111a a ⎛⎫⎪= ⎪ ⎪⎝⎭A ,其特征值为0,1,4,所以0,1a =|A |=.(14)【答案】22()μμσ+.【解答】因为(,)X Y 服从二维正态分布22(,;,;0)N μμσσ,不相关,所以,X Y 相互独立,故22222()()()E XY EXEY EX E Y DY μμσ==+=+.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分)解:1e 10ln(1)lim x x x x −→+⎡⎤⎢⎥⎣⎦0ln(1)1lim[1].e 1e x x x x →+−−=2ln(1)limex x xx →+−=22201()2lim ex x x o x x x →−+−=12e .−=(16)(本题满分10分) 解:[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ []211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''⎡⎤=++⎣⎦∂∂[]{}22122(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+ 又()g x 在1x =可导,且为极值,所以(1)0g '=,所以21111211d (1,1)(1,1)(1,1).d d x y zf f f x y=='''''=++(17)(本题满分10分)解:易知0x =为方程的一个实根.当0x ≠时,令(),arctan xf x k x=−则()()22arctan 1arctan xx x f x x −+'=. 令()2arctan 1=−+xg x x x ,则 ()()()222222211220111x x x x g x x x x +−⋅'=−=>+++,()g x 单调递增.又(0)0g =,所以当0x <时,有()0g x <,从而()'0f x <; 当0x >时,有()0g x >,从而()'0f x >. 又,()00lim lim1arctan x x x f x k k x →→=−=−,()lim lim arctan x x xf x k x→±∞→±∞=−=+∞,所以当10k −<时,由零点定理可知()f x 在(,0)−∞,(0,)+∞内各有一个零点; 当10k −时,则()f x 在(,0)−∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根;当1k 时,原方程有一个根.(18)(本题满分10分) 证:(Ⅰ)设1()ln(1),[0,]f x x x n=+∈. 显然()f x 在1[0,]n上满足拉格朗日中值定理:111111()(0)ln(1)ln1ln(1),(0,)1f f n n n n nξξ−=+−=+=⋅∈+当1(0,)nξ∈时,11111111101n n n nξ⋅<⋅<⋅+++,即111111n n n ξ<⋅<++, 111ln 11n n n⎛⎫<+< ⎪+⎝⎭. (Ⅱ)利用(Ⅰ)的结论,可以得到11ln(1)1n n<++,所以11ln(1)01n n −+<+得到1n n a a +<,即数列{}n a 单调递减.因为,1111ln ln(1)ln nnn k k a n n k k ===−>+−∑∑,而,11112341ln(1)ln ()ln()ln(1)123nnk k k n n k k n==+++==⋅⋅=+∑∏, 所以,11111ln ln(1)ln ln(1)ln 0nnn k k a n n n k k n ===−>+−>+−>∑∑.因此,数列{}n a 有下界. 由单调有界定理可知,数列{}n a 收敛.(19)(本题满分11分) 解:110d (,)d xyI x x yf x y y ''=⎰⎰1100d (,)d x x x ydf x y y '=⎰⎰ ()()111000d ,,d x x x x yf x y f x y y ⎡⎤''=−⎢⎥⎣⎦⎰⎰ ()11d (,1)(,)d x x x x f x f x y y ''=−⎰⎰因为(,1)0f x =,所以(,1)0x f x '=110d (,)d x I x x f x y y '=−⎰⎰1100d (,)d x y xf x y x '=−⎰⎰111000d (,)(,)d y x f x y f x y x ⎡⎤=−−⎢⎥⎣⎦⎰⎰1100d (1,)(,)d y f y f x y x ⎡⎤=−−⎢⎥⎣⎦⎰⎰ d (,)d Df x y x y =⎰⎰a =.(20)(本题满分11分)解: (Ⅰ)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123(,,,,,)βββααα= 11310112401313115a ⎛⎫ ⎪ ⎪ ⎪⎝⎭113101011112023014a ⎛⎫ ⎪→− ⎪ ⎪−⎝⎭113101011112005210a ⎛⎫ ⎪→− ⎪ ⎪−−⎝⎭当5a =时,1231231(,,)2(,,,)3r r =≠=ββββββα,此时,1α不能由123,,βββ线性表示,故5a =.(Ⅱ)对123123(,,,,,)αααβββ进行初等行变换123123(,,,,,)=αααβββ101113013124115135⎛⎫ ⎪ ⎪ ⎪⎝⎭101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭1002150104210001102⎛⎫⎪→ ⎪ ⎪−−⎝⎭. 故112324=+−βααα,2122=+βαα,31235102=+−βααα.(21)(本题满分11分)解: (Ⅰ)设()()TT121,0,1,1,0,1=−=αα,则()()1212,,=−ααααA ,即1122,=−=ααααA A ,从而A 有特征值121,1λλ=−=,对应的特征向量分别为()1110k k ≠α,()2220k k ≠α. 由于()2r =A ,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()T3123,,x x x =α,则T 13T2300⎧=⎨=⎩αααα,即131300x x x x −=⎧⎨+=⎩ 解此方程组,得()T30,1,0=α,故30λ=对应的特征向量为()3330k k ≠α.故A 的所有特征值为1231,1,0λλλ=−==,对应的特征向量分别为()1110k k ≠α,()2220k k ≠α和()3330k k ≠α.(Ⅱ)由于不同特征值对应的特征向量已经正交,只需单位化:))()T T T3121231231,0,1,1,0,1,0,1,0==−====αααβββααα. 令()123,,=βββQ ,则T110−⎛⎫⎪== ⎪ ⎪⎝⎭ΛQ AQ , T =A Q QΛ022012200110220010022⎛⎫−⎛⎫ ⎪ ⎪ ⎪−⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪− ⎪ ⎪⎝⎭⎪⎝⎭022022000022010022⎛⎫−⎛⎫ ⎪− ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭001000100⎛⎫ ⎪= ⎪⎪⎝⎭. (22)(本题满分11分) 解:(Ⅰ)因为{}221P XY ==,所以有{}{}222210P X Y P X Y ≠=−==,即{}{}{}0,10,11,00P X Y P X Y P X Y ==−=======. 利用边缘概率和联合概率的关系得到{}{}{}{}10,000,10,13P X Y P X P X Y P X Y ====−==−−===;{}{}{}11,110,13P X Y P Y P X Y ==−==−−==−=;{}{}{}11,110,13P X Y P Y P X Y ====−===;即(),X Y 的概率分布为(Ⅱ)Z 的所有可能取值为1,0,1−,{}{}111,13P Z P X Y =−==−=−=,{}{}111,13P Z P X Y =====,{}{}{}101113P Z P Z P Z ==−=−=−=.所以,Z XY =的概率分布为(Ⅲ) cov XY XY E XY E X E Y ρ−⋅==由(I )中(),X Y 的联合分布可知()()1111010333E XY E Z ==−⋅+⋅+⋅=,()1111010333E Y =−⋅+⋅+⋅=,()()()0E XY E X E Y −⋅=,所以cov 0XY XY E XY E X E Y ρ−⋅===.(23)(本题满分11分) 解:总体X 的概率密度为202()2()x f x μσ−−=,x −∞<<+∞(Ⅰ)似然函数 202()22211()(;)i x nn i i i L f x μσσσ−−==⎡⎤==⎥⎥⎦∏∏, 取对数 222211ln ()ln(2π)ln ()222nii n n L x σσμσ==−−−−∑,求导 22022221d ln ()1[()]d()22()nii L n x σμσσσ==−+−∑,令22d ln ()0d()L σσ=,解得22011()n i i x n σμ==−∑, 故2σ的最大似然估计量为22011()ni i X n σμ==−∑.(Ⅱ)20~(,)i X N μσ,则~(0,1)i X N μσ−,得到()2201~ni i X Y n μχσ=−⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==−∑. ()()()222222011111().n i i E E X E Y E Y n n n n n σμσσσσ=⎡⎤=−===⋅=⎢⎥⎣⎦∑ ()()()22244402222111112()2.n i i D D X D Y D Y n n nn n n σμσσσσ=⎡⎤=−===⋅=⎢⎥⎣⎦∑。

2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc

2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc

2011 年普通高等学校招生全国统一考试数学理试题(全国卷,含答案)本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。

第Ⅰ卷 1 至 2 页。

第Ⅱ卷 3 至 4 页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前, 考生在答题卡上务必用直径0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

..........3.第Ⅰ卷共 l2 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是 符合题目要求的。

一、选择题(1) 复数 z 1i , z 为 z 的共轭复数,则 zz z 1( A ) 2i( B ) i( C ) i( D ) 2i【答案】 B(2) 函数 y 2 x( x 0) 的反函数为( A ) yx 2( x R)( B )4( C )y 4x 2( x R)( )Dyx 2( x 0)4y 4x 2 ( x 0) 【答案】 B(3) 下面四个条件中,使 a b 成立的充分而不必要的条件是( A ) a >b 1( B ) a >b 1(C ) a 2> b 2( D ) a 3> b 3【答案】 A(4) 设 S n 为等差数列a n 的前 n 项和,若 a 1 1,公差 d2 , S k 2 S k 24 ,则 k( A ) 8 (B ) 7( C ) 6( D ) 5【答案】 D(5) 设函数 f ( x) cos x(0) ,将 yf ( x) 的图像向右平移个单位长度后,所得的图3像与原图像重合,则的最小值等于( A )1(B ) 3(C ) 6( D ) 93【答案】 C(6) 已知直二面角l , 点 A , AC l , C 为垂足 , B , BD l , D 为垂足.若 AB2, AC BD 1,则 D 到平面 ABC 的距离等于2 (B) 36 (D) 1(A)3 (C)33【答案】 CA(7) 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4 位朋友每位朋友 1 本,则不同的赠送方法共有(A) 4 种(B)10 种(C)18 种(D)20 种lD【答案】 BCB E(8) 曲线 y e 2 x1在点 (0,2) 处的切线与直线 y 0 和 y x 围 成的三角形的面积为(A)1(B)1 (C)2 (D)1323【答案】 A(9) 设 f ( x) 是周期为 2 的奇函数,当 0x 1 时, f (x)2x(1 x) , 则 f (5 )11112(A) -(B)(C)(D)2442【答案】 A(10) 已知抛物线C : y 24x 的焦点为 F ,直线 y2x 4 与 C 交于 A , B 两点.则cos AFB(A)4(B)3 (C)3 (D)4 5555【答案】 D(11) 已知平面 α截一球面得圆 M ,过圆心 M 且与 α 成 600 二面角的平面 β 截该球面得圆 N .若该球面的半径为 4,圆 M 的面积为 4 ,则圆 N 的面积为(A) 7 (B) 9(C)11(D)13【答案】 D(12) r r rr rr r 1 rr r rr设向量 a , b , c 满足 | a | | b |1, agb, ac,bc60 ,则 | c | 的最大值2等于(A) 2 (B)3(c)2(D) 1【答案】 AB绝密★启用前2011 年普通高等学校招生全国统一考试ACD理科数学 ( 必修 +选修 II)第Ⅱ卷注意事项:1 答题前,考生先在答题卡上用直径0. 5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2011年高考数学真题(全国卷)理科(详细解析)

2011年高考数学真题(全国卷)理科(详细解析)

1. 复数1z i =+,z 为z 的共轭复数,则1z z z --=【精讲精析】选B .1,1(1)(1)(1)1z i z z z i i i i =---=+----=- 2. 函数2(0)y x x =≥的反函数为【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。

【精讲精析】选B .在函数2(0)y x x =≥中,0y ≥且反解x 得24yx =,所以2(0)y x x =≥的反函数为2(0)4xy x =≥.3. 下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a b >,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。

4. 解:设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。

思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。

【精讲精析】2k k S S +-= 21k k a a +++= 11(21)(11)a k d a k d ++-+++-=12(21)a k d ++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。

5. 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。

高等数学统考卷11-12届附答案

高等数学统考卷11-12届附答案

高等数学统考卷 1112届附答案一、选择题(每题1分,共5分)1. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = x^4D. y = |x|A. 积分的上下限互换,积分值不变B. 被积函数乘以常数,积分值也乘以该常数C. 积分区间可加性D. 积分中值定理3. 下列极限中,哪个是正确的?A. lim(x→0) (sin x) / x = 0B. lim(x→0) (1 cos x) / x^2 = 1C. lim(x→∞) (1 / x) = 0D. lim(x→∞) (x^2 1) / x = 1A. ∫∫(x^2 + y^2) dxdyB. ∫∫xy dxdyC. ∫∫x dxdyD. ∫∫y dxdy5. 下列级数中,哪个是收敛的?A. 1 + 1/2 + 1/3 + 1/4 + …B. 1 1/2 + 1/3 1/4 + …C. 1 + 2/3 + 4/9 + 8/27 + …D. 1 + 1/2 + 1/4 + 1/8 + …二、判断题(每题1分,共5分)1. 高斯公式可以用来计算曲面积分。

()2. 泰勒公式可以用来近似计算函数值。

()3. 无穷小量相乘仍为无穷小量。

()4. 拉格朗日中值定理是罗尔定理的推广。

()5. 偏导数连续必可微。

()三、填空题(每题1分,共5分)1. 函数f(x) = e^x 在x = 0处的导数值为______。

2. 曲线y = x^3 在点(1, 1)处的切线方程为______。

3. 若f(x, y) = x^2 + y^2,则f_x(1, 2) =______。

4. 设A为矩阵,若|A| = 0,则A为______矩阵。

5. 空间曲线r(t) = (cos t, sin t, t) 在t = π/2处的切线方向向量为______。

四、简答题(每题2分,共10分)1. 简述罗尔定理的内容。

2. 解释复合函数求导法则。

3. 举例说明什么是隐函数。

高等数学(理工类)考研真题1-5

高等数学(理工类)考研真题1-5

10. 曲线 y = ln x 与直线 x + y = 1 垂直的切线方程为 ________ . 04数一考研题 11. 设函数 f ( x) 在 ( ∞ , + ∞) 上有定义 , 在区间 [ 0 , 2 ] 上 , f ( x ) = x ( x 2 4 ), 若对任意的 x 都满足 f ( x ) = kf ( x + 2 ), 其中 k 为常数 . (1) 写出 f ( x ) 在 [ 2 , 0 ) 上的表达式 ;
06数二考研题
h→ 0
h →0
设函数 y = y ( x ) 由方程 e y + 6 xy + x 2 1 = 0 所确定 , 则 y ′′(0) =
02数一考研题
.k hd
).
02数二考研题
(B) ln 3 1 ;
(C) ln 2 1;
(D) ln 2 1.
7. 设函数 f ( u ) 可导 , y = f ( x 2 ) 当自变量 x 在 x = 1 处取得增量 x = 0.1 时, 相应的函数增量 y 的线性主部为 0.1, 则 f ′ (1) = ( (A) 1 ; (B) 0.1 ; (C) 1 ;
4. 求 f ( x ) = x 2 ln(1 + x ) 在 x = 0 处的 n 阶导数 f 5. 曲线 y = ( x 1 ) 2 ( x 3 ) 2 的拐点个数为 ( (A) 0 ; (B) 1 ; (C) 2 ;
( 0) ( n ≥ 3) .
00数二考研题
). (D) 3.
01数二考研题
(2) 问 k 为何值时, f ( x ) 在 x = 0 处可导 .
考研真题二
1. 填空
xy 设函数 y = y ( x ) 由方程 2 = x + y 所确定 , 则 dy x =0

高等数学11-1答案A201012_mixed_mixed_mixed_mixed.doc

高等数学11-1答案A201012_mixed_mixed_mixed_mixed.doc

高等数学11-1答案A201012一、填空题(每小题2分,共10分)1.设20,00,0(),(),0,0x x f x g x x x x x ≤≤⎧⎧==⎨⎨>->⎩⎩,则(())g f x = ()g x 2.极限lim )x x x →+∞= +∞3.()ln(f x x =,则()f x '=4.()(1)(2)(100)f x x x x x =--- ,则 100!5.3tan sec x xdx =⎰31s e c s e c 3x x C -+ 二、计算题(一)(每小题7分,共21分) 1.设()ln(sec tan )y x x x =+,求().y x '解:2sec tan sec ()sec .sec tan x x xy x x x x+'==+ 2.设1121(),021xxf x x +=≠-,判定0lim ()x f x +→与0lim ()x f x -→是否存在,问0x =为()f x 的哪类间断点?解:0lim ()1,lim ()1x x f x f x +-→→==-,0x =为()f x 的第一类间断点。

3.求摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩在2t π=处的法线方程。

解:2sin cot ,1,()(1),()(1cos )222t dy a t dy x x a y a dx a t dx ππππ=====-=- 故所求法线方程为((1))2y a x a π-=---,即0.2ax y π+-=三、计算题(二)(每小题7分,共21分)1. 设102,(2) 1.n n n a a a +<<-≥用单调有界证明lim n n a →∞极限存在,并求此极限。

解:221112(1)11,02222n n n n n n n n n n na a a a a a a a a a a ++-+-≥-≥-==≥----故n a 单调有界,从而lim n n a →∞极限存在,设为A 。

《高等数学11》理工类模拟试题及答案

《高等数学11》理工类模拟试题及答案

《高等数学11》理工类试题一一、求下列各函数的极限(每题4分,共24分)1、1lim(3ln )x x x →+-2、0lim sin x arctanxx→ 3、1111lim[]122334(1)nn n →∞++⋅⋅⋅⋅+⋅⋅⋅+ 4、23111lim x x x →-- 5、30sin lim x tanx x x →- 6、22122lim()1x x x x -→∞+- 二、研究22,()2,x e x f x x x ⎧-≤⎪=⎨+>⎪⎩的连续性,若有间断点请指出其类型(5分) 三、求下列函数的导数或微分(每题4分,共20分)1、ln cos ,(0)y x x x a y -'=>求2、2arccos 1,y x y '=-求3、2()ln()0.dyy f x x y xy x dx=+-=由方程:所确定,求4、sin22)(),0(x a y x a dy >=⋅其中求5、()y f x =由参数方程 22132x t y t t =⎧⎪⎨=-⎪⎩所确定,求dy dx四、求函数42()23f x x x =-+的单调区间和极值. (5分)五、求下列积分(每题4分共20分) 1、33()x x x dx x +⎰ 2、22sin cos x dx x x -+⎰ 3、 cos x e xdx -⎰4、 23cos x dx x-⎰5、32dx x ⎰六、求函数223y x =+在点1x =处的,y dy ∆,其中0.01x ∆=.(4分)七、求由曲线21y x =-和1y x =+所围成的平面图形的面积.(6分)八、求下列微分方程的解. (1题6分,2题5分,共11分) 1、求微分方程222()xydy x y dx =+的通解。

2、求微分方程4(1)2(1)x y y x '--=-的通解。

九、证明:当0x ≥时, arctan x x ≥. (5分)《高等数学11》理工类试题二一、求下列各函数的极限(每题4分,共24分)1、lim(21)n n n →∞+--2、230lnsin lim lnsin x xx→+ 3、0lim 2x x cot x →⋅ 4、2211213lim x x x x →++- 5、01cos lim cos x x x x →- 6、2232lim ()3x x x x →∞-二、研究sin 2,0()1,0xx x f x x ⎧≠⎪=⎨⎪=⎩的连续性,若有间断点请指出其类型(5分)三、求下列函数的导数或微分(每题4分,共20分)1、ln(2),.y x y '=+求2、22,.x y y a x'=+求 3、2()20.dyy f x y xy x dx=--=由方程:所确定,求4、,12.x y e dy x=+求 5、()y f x =由参数方程 cos sin x a t y b t=⎧⎨=⎩所确定22,.d y dx 求四、求函数32()26187f x x x x =---的单调区间和极值. (6分)五、求下列积分(每题4分共20分) 1、2ln(1)x dx +⎰2、1sin sin (1cos )xdx x x ++⎰ 3、1(1)dx x x +⎰4、 1201x x dx -⎰5、21xe dx -⎰ 六、求函数21y x =+在点1x =处的,y dy ∆,其中0.01x ∆=.(5分)七、求由曲线1y x=2x =,y x =和,x 轴所围成的平面图形的面积.(8分) 八、求下列微分方程的解. (每题6分,共12分) 1、求微分方程0x xy y e '+-=的通解。

2011年考研数学(一)真题(含答案解析)

2011年考研数学(一)真题(含答案解析)
因为用心,所以专业
11 年全国硕士研究生入学统一考试数学(一)试题 20 2011 一、选择题 1.曲线 y = ( x − 1)( x − 2) 2 ( x − 3) 2 ( x − 4) 2 拐点 A(1,0) B(2,0) C(3,0) D(4,0)
n k =1 n k =1
2 设数列 {an }单调递减, lim an = 0, S n =
an = 1 + 1 / 2 + … +
′′ ( x, y )dxdy = ∫ xdx ∫ yf xy ′′ ( x, y )dy I = ∫∫ xyf xy
0 0
1
1
D

19.解:
1
0
′′ ( x, y )dy = ∫ ydf x′( x, y ) = y f xy ′ ( x, y ) 1 ′ yf xy 0 − ∫ f x ( x, y ) dy ,

π 4
0
4 4 ln sin xdx , J = ∫ ln cot xdx , K = ∫ ln cos xdx 则I、J、K的大小关系是
π
π
0
0
A I<J<K B I<K<J C J<I<K D K<J<I 5.设 A 为 3 阶矩阵,将 A 的第二列加到第一列得矩阵 B,再交换 B 的第二行与第一行得单
显然 g ( 0 ) = 0 , 因为 g ′( t ) = 2 t arctan t > 0 , 所以 g ( t ) > g ( 0 ) = 0 (当 t > 0 ),
k −1 −
k − 1 > 0 , 极小值 − k arctan k − 1 > 0,

2011考研数一真题解析

2011考研数一真题解析

0.
第 6 页 共 11 页 第 6 页,共 11 页
梦想不会辜负每一个努力的人
得到数列an 有下界.利用单调递减数列且有下界得到an 收敛.
(19)(本题满分 11 分)
【解析】 I
1
xdx
0
1 0
yf
'' xy
(
x,
y)dy
1
xdx
0
1 0
ydf
' x
(
x,
y)
1 0
xdx
yf
n1
k 1
处发散,(D)不正确.当 x 0 时,交错级数 (1)n an 满足莱布尼茨判别法收敛,故 x 0 n1
时 (1)n an 收敛.故正确答案为(C). n1
(3)【答案】(A).
【解析】 z x
|(0,0)
f
(x) ln
f
( y) |(0,0)
f (0) ln
f
(0)
0,
z y
1 0
dy
f
(1,
y)
1 0
f
(x,
y)dx
fdxdy a .
D
(20)(本题满分 11 分)
【解析】(I)由于1,2,3 不能由 1, 2, 3 线性表示,对 (1, 2, 3,1,2,3) 进行初
等行变换:
1 1 3 1 0 1
(1, 2, 3,1,2,3) 1
2
4
0
1
3
1 3 a 1 1 5
【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为 1,幂级数收敛区间
的中心在
x
1
处,故(A),(B)错误;因为

考研数学一(高等数学)历年真题试卷汇编11(题后含答案及解析)

考研数学一(高等数学)历年真题试卷汇编11(题后含答案及解析)

考研数学一(高等数学)历年真题试卷汇编11(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y”+p(x)y’+q(x)y=f(x)的解,c1,c2是任意常数,则该非齐次方程的通解是A.c1y1+c2y2+y3B.c1y1+c2y2一(c1+c2)y3C.c1y1+c2y2一(1一c1—c2)y3D.c1y1+c2y2+(1一c1一c2)y3正确答案:D解析:由于(D)中的y=C1y1+C2y2+(1一C1—C2)y3=C1(y1—y3)+C2(y2一y3)+y3其中y1一y3和y2一y3是对应的齐次方程的两个解,且y1一y3与y2一y3线性无关.事实上,若令A(y1一y3)+B(y2—y3)=0即Ay1+By2一(A+B)y3=0由于y1,y2,y3线性无关,则A=0,B=0,一(A+B)=0因此y1—y3与y2一y3线性无关,故y=C1y1+C2y2+(1一C1—C2)y3是原方程通解。

知识模块:高等数学2.若连续函数f(x)满足关系式,则f(x)等于A.exln2B.e2xln2C.ex+ln2D.e2x+ln2正确答案:B解析:等式两边求导得f’(x)=2f(x)解此方程得f(x)=Ce2x由原方程可知f(0)=ln2,代入f(x)=Ce2x得C=In2.故f(x)=e2xln2 知识模块:高等数学3.设曲线积分与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于A.B.C.D.正确答案:B解析:知识模块:高等数学4.已知函数y=y(x)在任意点x处的增量,且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于A.2πB.πC.D.正确答案:D解析:知识模块:高等数学5.在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是A.y’’’+y”-4y’一4y=0.B.y’’’+y”+4y’+4y=0.C.y’’’一y”一4y’+4y=0.D.y’’’一y”+4y’一4y=0.正确答案:D解析:由原题设知所求方程的特征方程的根为ρ1=1,ρ2,3=±2i则其特征方程为(ρ一1)(ρ2+4)=0,故所求方程应为y’’’一y”+4y’一4y=0故应选(D).知识模块:高等数学6.设是二阶常系数非齐次线性微分方程y”+ay’+by=cex的一个特解,则A.a=一3,b=2,c=一1.B.a=3,b=2,c=一1.C.a=一3,b=2,c=1.D.a=3,b=2,c=1.正确答案:A解析:由是方程y”+ay’+by=cex的一个特解可知,y1=e2x,y2=ex是齐次方程的两个线性无关的解,y*=xex是非齐次方程的一个解.1和2是齐次方程的特征方程的两个根,特征方程为(ρ—1)(ρ一2)=0即p2—3ρ+2=0则a=-3,b=2将y=xex代入方程y”一3y’+2y=cex得c=一1.故应选(A).知识模块:高等数学填空题7.微分方程y’+ytanx=cosx的通解为y=__________.正确答案:(x+c)cosx.解析:由线性方程通解公式得知识模块:高等数学8.y”一4y=e2x的通解为y=_____________.正确答案:解析:特征方程为λ2一4=0,则λ1=一2,λ2=2,从而齐次方程的解为知识模块:高等数学9.微分方程xy”+3y’=0的通解为___________.正确答案:解析:令y’=p,则y”=p’.代入原方程得解得因此知识模块:高等数学10.设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.正确答案:y”一2y’+2y=0.解析:所求方程的特征根为λ1,2=1±i则其特征方程为λ2一2λ+2=0故所求方程为y”一2y’+2y=0 知识模块:高等数学11.微分方程yy”+y’2=0满足初始条件的特解是____________.正确答案:y2=x+1或解析:令y’=P,则,代入原方程得知识模块:高等数学12.欧拉方程的通解为____________.正确答案:解析:令x=et 代入原方程所得新方程的特征方程为ρ(ρ一1)+4ρ+2=0解得ρ1=一1,ρ2=一2则新方程通解为y=C1e-t+C2e-2t,将x=et代入得原方程通解为.知识模块:高等数学13.微分方程xy’+2y=xlnx满足的解为___________.正确答案:解析:方程xy’+2y=xlnx是一阶线性方程,方程两端同除以x得:,则通解为知识模块:高等数学14.二阶常系数非齐次线性微分方程y”一4y’+3y=2e2x的通解为y=___________.正确答案:y=C1ex+C2e3x一2e2x.解析:齐次方程特征方程为ρ2一4ρ+3=0解得ρ1=1,ρ2=3,则齐次方程通解为y=C1ex+C2e3x设非齐方程特解为,代入原方程得A=一2,则原方程通解为y=C1ex+C2e3x一2e2x 知识模块:高等数学15.微分方程xy’+y=0满足条件y(1)=1的解是y=____________.正确答案:解析:方程xy’+y=0是一个变量可分离方程,原方程可改写为知识模块:高等数学16.若二阶常系数线性齐次微分方程y”+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y”+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.正确答案:y=一xex+x+2解析:由于y=(C1+C2z)ex是方程y”+ay’+by=0的通解,则该方程的两个特征根为λ1=λ2=1,故a=一2,b=1.设非齐次方程y”一2y’+y=x的特解为y*=Ax+B代入方程得A=1,B=2,则其通解为y=(C1+C2x)ex+x+2由y(0)=2,y’(0)=0得,C1=0,C2=一1.所以y=一xex+x+2 知识模块:高等数学17.微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=____________.正确答案:e-xsinx解析:由一阶线性方程的通解公式得由y(0)=0知,C=0,则y=e-xsinx 知识模块:高等数学18.若函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f”(x)+f(x)=2ex,则f(x)=___________正确答案:ex解析:知识模块:高等数学19.已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=____________.正确答案:C1ex+C2e3x—xe2x.解析:由题设知y1—y3=e3x,y2一y3=ex为齐次方程两个线性无关的特解,则非齐次方程的通解为y=C1ex+C2e3x—xe2x 知识模块:高等数学解答题解答应写出文字说明、证明过程或演算步骤。

2011考研数学一真题及答案)

2011考研数学一真题及答案)

2011考研数学一真题试卷一选择题1.曲线222)4()3()2)(1(----=x x x x y 拐点 CA (1,0)B (2,0)C (3,0)D (4,0)2设数列{}n a 单调递减,∑=∞→⋯===nk k n n n n a S a 1,2,1(,0lim )无界,则幂级数∑=-nk nk x a 1)1(的收敛域CA(-1,1] B[-1,1) C[0,2) D(0,2]3.设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件 AA 0)0(,1)0(>''>f fB 0)0(,1)0(<''>f fC 0)0(,1)0(>''<f fD 0)0(,1)0(<''<f f4.设⎰⎰⎰===444000cos ln ,cot ln ,sin ln πππxdx K xdx J xdx I 的大小关系是、、则K J IBA I<J<KB I<K<JC J<I<KD K<J<I5.设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B的第二行与第一行得单位矩阵。

记,010100001,010********⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=P P 则A=DA 21P PB 211P P -C 12P PD 112P P -6.设),,,(4321αααα=A 是4阶矩阵,*A 是A 的伴随矩阵,若T )0,1,0,1(是方程组0=Ax 的一个基础解系,则0*=x A 的基础解系可为 D A 31,αα B 21,αα C 321,,ααα D 432,,ααα7.设)(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是 DA )()(21x f x fB )()(222x F x fC )()(21x F x fD )()()()(1221x F x f x F x f +8.设随机变量X 与Y 相互独立,且EX 与EY 存在,记U=max{x,y},V={x,y},则E(UV)= B A EUEV B EXEY C EUEY D EXEV 二填空题9.曲线)40(tan 0⎰≤≤=xx tdt y π的弧长s= __)21ln(+_____10.微分方程x e y y x c o s -=+'满足条件y(0)=0的解为y=___x e y x sin -=_________ 11.设函数⎰+=xydt tty x F 021sin ),(,则__________22=∂∂=x x F 4 12.设L 是柱面方程为122=+y x 与平面z=x+y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分⎰=++___________22dz y xdy xzdx π13.若二次曲面的方程为42223222=+++++yz xz axy z y x ,经正交变换化为442121=+z y ,则=a _______1________ 三解答题15求极限110))1ln((lim -→+x e x xx 原式=21111)1()1ln(lim)1ln(1)1ln(021]))1ln((1[lim e eexxx x x e x x x xxx e x x x x x x x ===-++-+--+-+-+→→-16设))(,(x yg xy f z =,其中函数f 具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求1,12==∂∂∂y x yx z解由g(x)可导且在x=1处取极值g(1)=1所以0)1(='g)1,1()1,1()1,1()](,()()(,([)](,[)()](,[)](,[1211212111221f f f yx zx yg xy f x g x yg xy f x y x yg xy f yx zx g y x yg xy f y x yg xy f x zx ''+''+'=∂∂∂''+''+'=∂∂∂''+'=∂∂17求方程0arctan =-x x k 不同实根的个数,其中k 为参数。

2011年全国硕士研究生入学统一考试数学一试题及答案详解

2011年全国硕士研究生入学统一考试数学一试题及答案详解

2011年全国硕士研究生入学统一考试数学一试题及答案详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)曲线234(1)(2)(3)(4)y x x x x =−−−−的一个拐点是( ) (A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0) 【答案】应选(C ) 【详解】由凹凸性定义(2)设数列{}n a 单调减少,1lim 0,(1,2,)n n n kn k a S a n →∞====∑L 无界,则幂级数1(1)nkkk a x =−∑的收敛域是( )(A )(1,1]− (B )[1,1)− (C )[0,2) (D )(0,2] 【答案】应选(C ) 【详解】根据级数1kk a∞=∑发散,可知1kk k a x∞=∑在1x =发散,1x =−收敛,所以可判断收敛半径为1R =(3)设函数()f x 具有二阶连续导数,且()0,(0)0,f x f ′>= 则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A )(0)1,(0)0f f ′′>> (B )(0)1,(0)0f f ′′>< (C )(0)1,(0)0f f ′′<> (D )(0)1,(0)0f f ′′<< 【答案】应选(A )【详解】根据()ln ()0()()0()x yz f x f y f x f y z f y ′==⎧⎪′⎨==⎪⎩, 22()()ln (),[()()(())]()xx yy f x z f x f y z f y f y f y f y ′′′′′==− 对于(0,0),(0,0)(0)ln (0)xx z f f ′′=,(0,0)(0)yy z f ′′= 根据题意可判断(0)1,(0)0f f ′′>>(4)设4440ln sin ,ln cot ,ln cos I xdx J xdx K xdx πππ===∫∫∫,则,,I J K 的大小关系是(A )I J K << (B )I K J << (C )J I K << (D )K J I << 【答案】应选(B ) 【详解】在区间[0,4π上,sin cos cot ,ln x x x x <<是增函数,所以ln sin ln cos ln cot ,x x x <<由定积分比较大小的性质可知,应选(B ) (5)设A 为三阶矩阵,将A 的第二列加到第一列得到矩阵B ,再交换B 的第二行与第三行得到单位矩阵,记121 0 0 1 0 01 1 0,0 0 10 0 10 1 0P P ⎛⎞⎛⎞⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠,则A=( )(A) 12PP ; (B) 112P P −; (C) 21P P ; (D) 121P P −. 【答案】应选(D).【详解】由初等变换及初等矩阵的性质易知21P AP E =,从而1112121A P P P P −−−==,答案应选(D).(6)设1234(,,,)A αααα=,若(1,0,1,0)T是方程0AX =的一个基础解系,则*0A X =的基础解系可为( )(A)12,αα; (B) 13,αα; (C) 123,,ααα; (D) 234,,ααα.【答案】应选(D).【详解】由(1,0,1,0)T 是方程0AX =的一个基础解系,知()3r A =,从而*()1,0r A A ==,于是*0A A A E ==,即1234,,,αααα为*0A X =的解.由130αα+=,知13,αα线性相关,由()3r A =,知234,,ααα线性无关,又*()1r A =,从而234,,ααα为*0A X =的基础解系,故应选(D).(7)设12(),()F x F x 为两个分布函数,其相应的概率密度12(),()f x f x 是连续函数,则必为概率密度的是( )(A )12()()f x f x (B )212()()f x F x (C )12()()f x F x (D )1221()()()()f x F x f x F x + 【答案】应选(D).【详解】由概率密度的性质知,概率密度必须满足()1f x dx +∞−∞=∫,故由题知[]12211212()()()()()()()()1f x F x f x F x dx dF x F x F x F x +∞+∞+∞−∞−∞−∞+===∫∫ 故选择D.(8)设随机变量X 与Y 相互独立,且EX 与EY 存在.记max{,}U X Y =,min{,}V X Y =则EUV 等于( )(A )EU EV ×(B )EX EY ×(C )EU EY ×(D )EX EV × 【答案】应选(B).【详解】由题易知,当X Y <时,,U Y V X ==;当X Y >时,,U X V Y ==;当X Y =时, ,U Y V X ==;则都有EUV EXY EXEY ==,故选择B.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)曲线0tan (0)4xy tdt x π=≤≤∫的弧长s =【答案】1)+【详解】1)s ==+(10)微分方程'cos xy y e x −+=满足条件(0)0y =的解为y =【答案】sin x e x −【详解】11(cos )(sin )dx dx x xy e C e xe dx e C x −−−∫∫=+=+∫,由于(0)0y =,所以sin x y e x −=(11)设函数2sin (,)1xytF x y dt t=+∫,则20,22x y F x ==∂=∂【答案】2【详解】2sin()1()F xy y x xy ∂=∂+,20,222sin(2)()214x y x F d x x dx x===∂==∂+(12)设L 是柱面方程221x y +=与平面z x y =+的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22Ly xzdx xdy dz ++=ò 【答案】2π【详解】由斯托克斯公式。

工科类本科《高等数学》第11,12章自测题参考答案

工科类本科《高等数学》第11,12章自测题参考答案

工科类本科《高等数学》第11,12章自测题参考答案1. 若L 是抛物线 x y =2上从点A )1,1(-到点B )1,1(的一段弧,则()Lx y dx +=⎰43;(3)Lx y dy -=⎰ 2 . 解:L 的方程为2,x y y =从-1变到1,而2dx ydy =,于是()1111232211104()222043Lx y dx yy ydy y dy y dy y dy ---+=+⋅=+=+=⎰⎰⎰⎰⎰.()1111222111(3)33602Lx y dy y y dy y dy ydy y dy ----=-=-=-=⎰⎰⎰⎰⎰.注意:定积分的积分区间关于原点对称,考虑被积函数的奇偶性可以简化计算. 2.已知L 为圆周 122=+y x 沿逆时针方向,则曲线积分()(sin )xLey dx y x dy -++⎰=2π.解:计算封闭曲线积分,一般考虑用格林公式,这里(),sin ,112x Q P P e y Q y x x y ∂∂=-=+-=--=∂∂.于是()222211(sin )222xLx y x y ey dx y x dy dxdy dxdy π+≤+≤-++===⎰⎰⎰⎰⎰.注意:221x y dxdy +≤⎰⎰等于圆域221x y+≤的面积.3.若曲线积分()3222(cos )1sin 30Laxy y x dx ay x x y dy -+-+=⎰,则a =__2___.解:依题意,有Q P x y∂∂=∂∂,这里3222cos ,1sin 3,P axy y x Q ay x x y =-=-+2232cos ,cos 6.P Q axy y x ay x xy y x ∂∂=-=-+∂∂比较可得2a =. 4.若22xdy aydxx y-+在右半平面0x >内是某个函数的全微分,则a =__1__. 解:依题意,有Q P x y∂∂=∂∂,这里2222,,ay xP Q x y x y -==++ ()()()()()()2222222222222222222222,.a x y ay y x y x x P ax ay Q x y y x x y x y x y x y -++⋅+-⋅∂-+∂-+====∂∂++++ 比较可得1a =. 5.将()1x f x x +=展开为x 的幂级数1xx=+()1231, 1.n n x x x x x --+-+-+<或1xx=+()111,1n n n x x ∞-=-<∑.解:当1x <时,()()11x x f x x x =+--=为首项是x 公比为x -的等比级数,所以()()1123111, 1.1n n nn n xx x x x x x x∞--==-+-+-+=-<+∑6. 幂级数∑∞=1n 3n n x n的收敛半径R= 13,收敛域是11-33⎡⎫⎪⎢⎣⎭,.解:n n 113311,lim lim 33n n n n n n a n a R n a n +→∞→∞++===⋅=收敛半径,收敛区间是11-33⎛⎫⎪⎝⎭,,而当13x =-时,级数n 1131(1)n n n n x n n ∞∞===-∑∑是条件收敛的交错级数;当13x =时,级数n 1131n n n x n n∞∞===∑∑是发散的调和级数.故收敛域是11-33⎡⎫⎪⎢⎣⎭,.7.下列级数发散的是( A ).A.11ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑; B. 211n n∞=∑; C. 115n n ∞=∑; D. 111(1)2n nn ∞-=-∑. 解:A.1ln 1n u n ⎛⎫=+ ⎪⎝⎭,取1n v n =,由lim 1n n nu v →∞=,而调和级数11n n ∞=∑发散,故11ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑发散.B 选项是p 级数,21p =>,故211n n∞=∑收敛.C 选项是公比为15q =的等比级数,由115q =<知115n n ∞=∑收敛.D选项是交错级数,而正项级数11111(1)22n n n n n ∞∞-==-=∑∑115q ⎛⎫=< ⎪⎝⎭是收敛的等比级数,故111(1)2n n n ∞-=-∑绝对收敛.8.下列级数收敛的是( C ). A.11sin n n ∞=∑; B. 1n ∞= C. 115n n ∞=∑;D. n ∞=解:A 选项1sin n u n =,取1n v n =,由lim 1n n nu v →∞=,而调和级数11n n ∞=∑发散,故11sin n n ∞=∑发散.B选项15nn u -==,由0lim 510n n u →∞==≠知级数n ∞=. C 选项是公比为15q =的等比级数,由115q =<知115n n ∞=∑收敛. D选项1151n n n∞∞===∑是p 级数,115p =<,故n ∞=. 9.计算曲线积分22(3)(3),Lx y dx y x dy +++⎰其中L 是从O(0, 0)沿上半圆224(0)x y x y +=≥到A(4,0)的曲线段.解:已知22(,)3,(,)3P x y x y Q x y y x =+=+,则3,3P Qy x∂∂==∂∂.因为P Qy x∂∂=∂∂,所以曲线积分与路径无关.选取x 轴上直线段OA 路径,此时0,y x =从0 到4,0dy =,于是44222300164(3)(3)33Lx y dx y x dy x dx x +++===⎰⎰. 10.计算曲线积分3(2)(2)Ly x dy x y dx +-+⎰其中L 是从A(2, 0)沿上半圆222(0)x y x y +=≥到O(0,0)的曲线段.解: 已知3(,)(2),(,)2P x y x y Q x y y x =-+=+,则2,2,4P Q Q P y x x y∂∂∂∂=-=-=∂∂∂∂. 为了使用格林公式,添加辅助直线段OA ,记它与L 所围成的区域为D,D 是上半圆域222,0x y x y +≤≥,且边界封闭曲线方向是规定的正向. 而直线段OA 方程为:0,y x =从0到2,此时0dy =.则 3(2)(2)Ly x dy x y dx +-+⎰33(2)(2)(2)(2)L OAOAy x dy x y dx y x dy x y dx +=+-+-+-+⎰⎰()2342001444D Ddxdy x dx dxdy x =--=+⎰⎰⎰⎰⎰1442 4.2ππ=⋅+=+(注Ddxdy ⎰⎰等于上半圆域D 的面积)11.设dy y xy x dx y xy x du )32()23(2222+--+-=,求原函数),(y x u . 解法一:已知2222(,)32,(,)(23)P x y x xy y Q x y x xy y =-+=--+, 而22,22P Q x y x y y x ∂∂=-+=-+∂∂.因为P Qy x∂∂=∂∂,所以曲线积分L Pdx Qdy +⎰与路径无关.取折线路线0AB :(0,0)(,0)(,)O A x B x y →→.其中直线段OA 方程为:0,y x =从0到x ,此时0dy =;直线段AB 方程为:,x x y =从0到y ,此时0dx =.则原函数 (,)OAB OAABu x y Pdx Qdy C Pdx Qdy Pdx Qdy C =++=++++⎰⎰⎰22203(23)xy x dx x xy y dy C =+--++⎰⎰3223x x y xy y C =-+-+解法二:已知2222(32),(23)u ux xy y x xy y x y∂∂=-+=--+∂∂,两式子分别对,x y 两边积分,有 22322(,)(32)()u x y x xy y dx x x y xy y ϕ=-+=-++⎰,22223(,)(23)()u x y x xy y dy x y xy y x ψ=--+=-+-+⎰.从而,有 322223()()x x y xy y x y xy y x ϕψ-++=-+-+, 比较上式两边,有 33(),()y y C x x C ϕψ=-+=+.故 3223(,)u x y x x y xy y C =-+-+. 解法三:依题意,知2232u x xy y x ∂=-+∂(1), 22(23)ux xy y y∂=--+∂(2).(1)式两边对x 积分,得 22322(,)(32)()u x y x xy y dx x x y xy y ϕ=-+=-++⎰(3)(3)式两边对y 求偏导,得22()ux xy y yϕ∂'=-++∂ (4). 比较(2)、(4)式,得 2()3y y ϕ'=-,两边对y 积分,得 3()y y C ϕ=-+. 故 3223(,)u x y x x y xy y C =-+-+. 12.判别下列正项级数的敛散性:(1)12sin 3nn n π∞=∑;(2)2121n n n n ∞=+-∑;(3)13!n nn n n ∞=⋅∑;(4)121nn n n ∞=⎛⎫ ⎪+⎝⎭∑. 解:(1)()22sin2333nnn n nn u n πππ⎛⎫=⋅=→∞ ⎪⎝⎭,取23nn v ⎛⎫= ⎪⎝⎭.由23lim lim 23nn n n n nu v ππ→∞→∞⎛⎫ ⎪⎝⎭==⎛⎫ ⎪⎝⎭,又已知等比级数122133n n q ∞=⎛⎫⎛⎫=< ⎪ ⎪⎝⎭⎝⎭∑收敛. 因此根据正项级数的比较判别法知 级数2sin3n nπ∑收敛.(2)221n n u n n =+-,取1n v n =. 由22lim lim 121n n n nu n v n n →∞→∞==+-,又已知调和级数1n ∑发散.因此根据正项级数的比较判别法知 级数221nn n +-∑发散.(3)13!n nn n n∞=⋅∑ 解:3!n n n n u n ⋅=,因为 ()()11131!13lim lim 3lim 3lim 13!1111nn n n n n n n n n n nn u n n u n n e n n +++→∞→∞→∞→∞⋅+⎛⎫=⋅===> ⎪⋅+⎝⎭+⎛⎫+ ⎪⎝⎭, 所以根据正项级数的比值判别法知 级数3!n nn n ⋅∑发散.(4)21n n n ⎛⎫ ⎪+⎝⎭∑ 解:21nn n u n ⎛⎫= ⎪+⎝⎭,因为1lim 1212n n n n →∞==<+, 所以根据正项级数的根值判别法知 级数21nn n ⎛⎫⎪+⎝⎭∑收敛.13.求下列幂级数的和函数:(1)111n n x n -∞=+∑;(2)11n n nx ∞-=∑. 解:(1)此幂级数的收敛半径为1,收敛区间为(1,1)-.设幂级数的和函数为()s x ,则11()1n n x s x n -∞==+∑ (1x <), 1(0)2s =对121()1n n x x s x n +∞==+∑逐项求导,得()1211()11n n n n x x x s x x n x +∞∞=='⎛⎫'=== ⎪+-⎝⎭∑∑ ()11x -<< 对上式从0到x 积分,得 ()[]2000111()1ln(1).111xx x t t x s x dt dt dt x x t t t --⎛⎫⎛⎫==-=--=-+- ⎪ ⎪---⎝⎭⎝⎭⎰⎰⎰ 于是当0x ≠时,有 2ln(1)()x x s x x +-=-.从而 和函数2ln(1),01;()1,0.2x x x xs x x +-⎧-<<⎪⎪=⎨⎪=⎪⎩.特殊的,当1x =-时,级数()()112111n nn n n n-∞∞==--=+∑∑收敛.所以2ln(1)()x x s x x +-=-在1x =-也成立.(2)此幂级数的收敛半径为1,收敛区间为(1,1)-.设和函数为()s x ,则11()n n s x nx∞-==∑ (1x <).对上式从0到x 逐项积分,得111()1x xn n n n xs t dt nt dt x x∞∞-=====-∑∑⎰⎰ 对上式求导,得22(1)(1)1()1(1)(1)x x x s x x x x '--⋅-⎛⎫=== ⎪---⎝⎭,1x <.。

高等数学(理工类)考研真题6-10

高等数学(理工类)考研真题6-10

87数一考研题
求过 L 1 且平行于 L 2 的平面方程 . 4. 设 ( a × b ) c = 2 , 求 [( a + b ) × ( b + c )] ( c + a ).
91数一考研题 95数一考研题
x + 3 y + 2z + 1 = 0 5. 试确定直线 L : 与平面 ∏ : 4 x 2 y + z 2 = 0 的 2 x y 10 z + 3 = 0 位置关系 .
考研真题六
1. 设曲线 y = ax 2 ( a > 0 , x ≥ 0 ) 与 y = 1 x 2 交于点 A , 过坐标原点 O 和 点 A 的直线与曲线 y = ax 2 围成一平面图形 . 问 a 为何值时 , 该图形绕 x 轴旋 转一周所得的旋转体体积最大 ? 最大体积是多少 ?
00数二考研题
1 3
{1, 1, 1}, 则
w
h ( x, y ) = 75 x 2 y 2 + xy . . 19 .
05数一考研题
w
12. 设有三元方程 xy z ln y + e xz = 1, 根据隐函数存在定理 , 存在点 (0,1,
1) 的一个邻域 , 在此邻域内该方程 ( ).
05数一考研题
04数一考研题
4. 选择 考虑二元函数 f ( x , y ) 的下面 4 条性质 : ① f ( x, y ) 在点 ( x 0 , y 0 ) 处连续 ;
02数一考研题
② f ( x , y ) 在点 ( x 0 , y 0 ) 处的两个偏导数连续 ; ③ f ( x , y ) 在点 ( x 0 , y 0 ) 处可微 ;
(0, 0) 01数一考研题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

37.
.考研真题十一
;
4
;
4
;
4
;4
( ).
,)0(:2.)(
)2,2,1(21321.1222222
21
1
1
1
则有在第一卦限中的部分为设的法线方程为在点曲面xyz d S xyz d S (D)
x d S z d S (C)
x d S ydS (B)
x d S x d S (A)
S S z
a z y x S z y x S S
S S
S S
S S
====≥=+
+
-=++.
00数一考研题
,00数一考研题
,)0,1(,43.2
2为中心是以点其中计算曲线积分R L y x y d x
x d y I +-=
为半
.
)1(取逆时针方向径的圆周R >00数一考研题
,
0)()(2z d z d y e d z d x x xyf d y d z x xf x =--,05.)()
(,4.)
2,2,1(2
2
2都有
内任意的光滑有向封闭曲面设对于半空间则设S x grad div z y x r >=++
=
-r .
00数一考研题01数一考研题
?
130
)9.0(),()
()
(2)(,,)()(.7.22的雪堆全部融化需多少小时问高度为比例系数已知体积减少的速度与侧面积成正比时间单位为小时设长度单位为其侧面满足方程
在融化过程中的雪堆为时间设有一高度为cm cm t h y x t h z t t h +-
=,,01数一考研题
.
,,12为逆时针方向轴正向看去从的交线与柱面L z y x z y x =+=++01数一考研题
,)3()2()(.6.222222是平
其中计算L d z y x d y x z d x z y I -+-+-=
)(,1)(lim ,),0()(0
求且内具有连续的一阶导数在其中函数x f x f x f x =+∞+→.
面]1)([)](1[1),(),(,)0(,),()(.8.222记
终点为其起点为内的有向分段光滑曲线是上半平面内具有一阶连续导数在设函数d y xy f y y
x
d x xy f y y I
d c
b a y
L x f L
-++=
>+-∞∞,,02数一考研题
38.
..
,(2);(1)的值求时当无关与路径证明曲线积分I cd ab L I =.},0,0|),{(ππ≤≤≤≤=D L y x y x D 试证:
的正向边界为已知平面区域9.03数一考研题
.
2(2)
(1)
2sin sin sin sin sin sin π≥--=
----x y x y x y d x ye d y xe d x ye d y xe d x ye d y xe ;
._____________2,210.22的值为则曲线积分
在第一象限中的部分为正向圆周设-=+L
y d x x d y y x L 04数一考研题
,
)1(32211.233计算曲面积分
-++=

d x d y z d z d x y d y d z x I 04数一考研题
.
)0(122的上侧是曲面其中≥--=∑z y x z 12.设Ω是由锥面22y x z +=
与半球面222y x R z --=围成的空间区
14.设∑是锥面)10(22≤≤+=z y x z 的下侧则
,∑
=
-++d x d y z y d z d x x d y d z )1(32.
15.设在上半平面D =}0),{(>y y x 内
),
(y x f 具有连续的偏导函数,06数一考研题
域,∑是Ω的整个边界的外侧, 则
.
_______=++∑
z d x d y y d z d x x d y d z 05数一考研题
13.设函数)(y ϕ具有连续导数, 在围绕原点的任意分段光滑简单闭曲线(1)证明: 对右半平面0>x 内的任意分段光滑简单闭曲线C , 有
(2) 求函数)(y ϕ的表达式.
L 上, ++y x xy d y
d x y 4
222)(ϕ的值恒为同一常数.
++y x xy d y
d x y 4
222)(ϕ;
0=05数一考研题
39..0>t 都有).,(),(2y x f t xy tx f -=数且对任意的,证明对滑的有向简单闭曲线都有
:D L ,
yf 0-=06数一考研题
(x , y )d x xf (x , y )d y .
内的任意分段光
16.设曲面1|||||:|=++∑z y x ,则
=+d S y x )|(____________.
|17.设曲线1),(:=y x f L (),(y x f 具有一阶连续偏导数)过第M 象限内的点Γ,N 为L 上从点M 到点N 的一段弧,分小于零的是( ).
(A)
Γ
d x y x f ),(; Γ
d y y x f ),(;
Γ
d s y x f ),(;
Γ
'+'d y y x f d x y x f y x ),(),(.
(B)
(C)
(D)
象限内ⅡⅣ和第18.计算曲面积分

++=
xy d x d y zy d z d x xz d y d z I 32,
其中∑为曲面)10(4
122
≤≤--=z y x z 的上侧.的点则下列积07数一考研题
07数一考研题
07数一考研题
19.设曲面∑是224y x z --=的上侧d x d y x x d z d x xy d y d z ∑
++2=则
,计算曲线积分
,)1(22sin 2y d y x x d x L
-+其中L 是曲线x y sin =上从
)0,0(到点)0,(π的一段.
20.______.
点08数一考研题
08数一考研题
22.计算曲面积分
()+
+++=
2
3222z y x z d x d y y d z d x x d y d z I 其中∑是曲面422222=++z y x 的外侧.
,
21.已知曲线()20:2≤≤=x x y L ,则L
x d s ________ .
=09数一考研题
09数一考研题
已知曲线L 的方程为||1x y -=,]}1,1[{-x ,起点是)0,1(-,终点是)0,1(,
∈23.40.
.设P 为椭球面1:222=-++yz z y x S 上的动点,若S 在点P 处的切平面
xOy 面垂直,求点P 的轨迹C ,并计算曲面积分
-+
+-+=,
44|2|)3(2
2d S yz
z y z y x I 其中是椭球面S 位于曲线C 上方的部分.
⎰⎰

则曲线积分+L
d y x xy d x 2= _________.
⎰24.为∑10数一考研题
10数一考研题。

相关文档
最新文档