数学:18.2勾股定理的逆定理(人教新课标八年级下)

合集下载

《18.2勾股定理的逆定理》作业设计方案-初中数学沪科版12八年级下册

《18.2勾股定理的逆定理》作业设计方案-初中数学沪科版12八年级下册

《勾股定理的逆定理》作业设计方案(第一课时)一、作业目标1. 掌握勾股定理的逆定理的基本内容。

2. 理解勾股定理的逆定理在几何图形中的应用。

3. 培养学生的逻辑推理能力和空间想象能力。

二、作业内容1. 知识点复习:回顾勾股定理的基本内容,明确直角三角形三边关系。

2. 预习新知:学习勾股定理的逆定理,即若三角形三边满足一定关系,则该三角形为直角三角形。

重点掌握“两短边的平方和等于最长边的平方”这一条件。

3. 练习题:- 完成课本上的相关练习题,包括判断题、选择题和证明题。

- 结合生活中的实例,如建筑物的斜边与两直角边关系等,进行讨论与解析。

- 完成一份简单的逆定理应用报告,以小组为单位,收集至少三个生活中运用勾股定理逆定理的实例,并分析其应用过程。

三、作业要求1. 认真复习和预习,做好笔记,标记疑难问题。

2. 练习题要求独立完成,不能抄袭他人答案。

如有不懂的问题,可以请教同学或家长。

3. 应用报告需小组合作完成,每个学生至少要负责一个实例的收集与分析。

报告中要注明每个实例的具体情况、如何运用逆定理以及应用的意义。

4. 作业需按时提交,不迟到、不早退。

四、作业评价1. 练习题完成情况:评价学生是否正确理解和掌握了勾股定理的逆定理,以及其应用方法。

2. 应用报告评价:评价学生小组合作的情况、实例收集的多样性和分析的深度。

3. 课堂表现评价:评价学生在课堂上的参与度、发言情况和思维活跃度。

4. 综合评价:综合以上各项评价,给出学生本次作业的总体评价。

五、作业反馈1. 针对学生在练习题和报告中的错误和不足,进行及时的讲解和指导,帮助学生改正错误,提高其解题能力和应用能力。

2. 对于表现优秀的学生和小组,给予表扬和鼓励,激发学生的学习积极性和团队合作精神。

3. 针对学生在课堂上的表现和作业完成情况,及时与家长进行沟通,共同关注学生的学习进步,为下一步的教学工作做好准备。

以上是“初中数学课程《勾股定理的逆定理》作业设计方案(第一课时)”的部分内容。

八年级数学下册 第十八章勾股定理全章教案 人教新课标版

八年级数学下册 第十八章勾股定理全章教案 人教新课标版

18.1勾股定理(1)年级:八年级科目:数学课型:新授执笔:姜艳审核:徐中国,薛柏双备课时间:2010.3.28 上课时间:2010.3.31教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

重点:勾股定理的内容及证明。

难点:勾股定理的证明。

课前预习导学过程阅读教材第64页至第67页的部分,完成以下问题在Rt△ABC,∠C=90°⑴已知a=b=5,求c。

⑵已知a=1,c=2, 求b。

⑶已知c=17,b=8, 求a。

⑷已知a:b=1:2,c=5, 求a。

⑸已知b=15,∠A=30°,求a,c课堂活动:活动1、预习反馈多种方法证明勾股定理活动2、例习题分析例1:一个门框的尺寸如图,一块3m,宽2.2m的薄木板能否从门框内通过?为什么?CA B例2:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO ,这时AO 的距离为2.5m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5m 吗?课堂练习:1.勾股定理的具体内容是:2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ;⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;⑷三边之间的关系: 。

3.⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。

⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

精品 八年级数学下册 勾股定理逆定理

精品 八年级数学下册 勾股定理逆定理

18.2勾股定理逆定理例1.如图,四边形ABCD,已知∠A=900,AB=3,BC=12,CD=13,DA=4.求四边形的面积。

例2.如图,在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17.求△ABC的面积。

例3.已知△ABC中,AB=17cm,BC=30cm,BC上的中线AD=8cm,请你判断△ABC的形状,并说明理由.例4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.例5.如图,等腰△ABC中,底边BC=20,D为AB上一点,CD=16,BD=12,求△ABC的周长。

例6.在正方形ABCD 中, E 为AB 的中点, F 为AD 上一点, 且AF=AD 41, 求证: ∠FEC=90︒例7.有一只喜鹊正在一棵高3 m 的小树的树梢上觅食,它的巢筑在距离该树24 m 且高为14 m 的一棵大树上,巢距离大树顶部1m ,这时,它听到巢中幼鸟求助的叫声,便立即赶过去.如果它飞行的速度为5m/s ,那么它至少需要几秒才能赶回巢中?课堂练习:1.下列三角形中,是直角三角形的是( )A.三角形的三边满足关系a+b=cB.三角形的三边长分别为32,42,52C.三角形的一边等于另一边的一半D.三角形的三边长为7,24,25 2.三角形的三边长为a 、b 、c ,且满足等式(a+b)2-c 2=2ab ,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形 3.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶5 4.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形.5.适合下列条件的△ABC 中,直角三角形的个数为( ) (1)31=a ,41=b ,51=c (2)b a =,︒=∠45A (3)︒=∠︒=∠58,32B A (4)7=a ,24=b ,25=c (5)25=a ,2=b ,3=c A.2个 B.3个 C.4个 D.5个 6.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.如图,△ABC 中,CD ⊥AB 于D ,若AD=2BD ,AC=6,BC=3,则BD 的长为( )A .3B .12C .1D .48.如图,一电线杆AB 高为10米,当太阳光线与地面夹角为600时,其影长AC 约为(3≈1.732,保留三个有效数字)( ) A .5.00米 B .8.66米 C .17.3米 D .5.77米 9.三角形的三边长分别是15,36,39,这个三角形是 三角形。

18.2 勾股定理的逆定理(二)

18.2  勾股定理的逆定理(二)

八数教学案一、课时学习目标1.灵活应用勾股定理及逆定理解决实际问题。

2.进一步加深性质定理与判定定理之间关系的认识。

重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题。

2.难点:灵活应用勾股定理及逆定理解决实际问题。

二、课前预习导学1.填空题。

⑴任何一个命题都有 ,但任何一个定理未必都有 。

⑵“两直线平行,内错角相等。

”的逆定理是 。

⑶在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 若a 2<b 2-c 2,则∠B 是 。

⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2,则△ABC 是 三角形。

2.下列四条线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5,b=3,c=2D .a :b :c=2:3:43.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=3,b=22,c=5; ⑵a=5,b=7,c=9;⑶a=2,b=3,c=7; ⑷a=5,b=62,c=1。

4.若三角形的三边是 ⑴1、3、2; ⑵51,41,31; ⑶32,42,52⑷9,40,41; ⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ) A .2个 B .3个 C.4个 D.5个 5.叙述下列命题的逆命题,并判断逆命题是否正确。

⑴如果a 3>0,那么a 2>0;⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形; ⑶如果两个三角形全等,那么它们的对应角相等; ⑷关于某条直线对称的两条线段一定相等。

三、课堂学习研讨例1(P75例2)在军事和航海上经常要确定方向和位置, 从而使用一些数学知识和数学方法。

分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR= ,PQ= ,QR= ;小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

18.2勾股定理的逆定理3

18.2勾股定理的逆定理3

C
1,一个零件的形状如图,工人师 傅量得一个零件的尺寸如下: AB=3 ,AD=4,BC=13,CD=12 且 ∠DAB=90°,你能求这个零件 的面积吗?
12
D
13
4
5
A 3 B
2.有一块菜地,形状如下,试求它的面积. B 12
C
3
D
13
4 A
3、如图,在正方形ABDC中,E是CD的中点, F为BD上一点,且BF=3FD,求证:∠AEF=90º.
3.三角形ABC中,∠A.∠B.∠C.的对边分别是a.b.c, 且 c+a=2b, c – a= ( )
──
1 b,则三角形ABC的形状是 2
A
A 直角三角形 C 等腰三角形
B 等边三角形 D 等腰直角三角形
已知a.b.c为△ABC的三边,且满足 a2c2 – b2c2=a4 – b4, 试判断△ABC的形状. 解 ∵ ∴ a2c2- b2c2 = a4 – b4 c2(a2 – b2) = (a2+ b2) (a2- b2) (1) (2)
N 海天 R P Q 远航 E
6.如图,点A是一个半径为 400 m的圆形森林公园 的中心,在森林公园附近有 B .C 两个村庄,现要在 B.C 两村庄之间修一条长为 1000 m 的笔直公路 将两村连通,经测得 ∠B=60°,∠C=30°,问此公 路是否会穿过该森林公园?请通过计算说明.
400
A
勾股定理:
直角三角形的两直角边为a ,b , 斜边为 c ,则有
a2+ b2=c2
逆定理:
三角形的三边a,b,c满足a2+b2=c2,则这个三角形 是直角三角形; 较大边c 所对的角是直角.

八年级-人教版-数学-下册-第1课时-勾股定理的逆定理

八年级-人教版-数学-下册-第1课时-勾股定理的逆定理

本题易错点:没有弄清楚哪条边是最长边的情况下 就盲目地运用勾股定理的逆定理,从而导致错误.
勾股定理的逆定理
互逆命题:原命题、逆命题 勾股定理的逆定理的证明 勾股数
例2 在△ABC 中,a∶b∶c=9∶15∶12,试判断△ABC 是否 是直角三角形.
解:依题意知 b 是最长边, 设 a=9k,b=15k,c=12k(k>0), ∵ a2+c2=(9k)2+(12k)2=225k2,b2=(15k)2=225k2, ∴ a2+c2=b2,即△ABC 是直角三角形.
第1课时 勾股定理的 逆定理
命题1 如果直角三角形两直角边长分别为 a,b,斜边长为 c, 那么 a2+b2=c2.
这个命题的条件和结论分别是什么?
条件:直角三角形的两直角边长为 a,b,斜边长为 c. 结论:a2+b2=c2.
如果将条件和结论反过来,这个命题还成立吗?
思考
据说,古埃及人曾用如图所示 的方法画直角.
勾股定理是直角三角形的一个性质定理,而其逆定理是直角三 角形的一个判定定理.
例1 判断由线段 a,b,c 组成的三角形是不是直角三角形: (1) a=15,b=8,c=17; (2) a=13,b=14,c=15.
分析:只要看两条较小边长的平方和是否等于最大边长的平方.
例1 判断由线段 a,b,c 组成的三角形是不是直角三角形: (1) a=15,b=8,c=17; (2) a=13,b=14,c=15. 解:(1)∵ 152+82 =225+64=289,172 =289, ∴ 152+82 =172. ∴ 以 15,8,17 为边长的三角形是直角三角形.
这样我们证明了命题 2 是正确的,它也是一个定理.我们把 这个定理叫做勾股定理的逆定理.

勾股定理的逆定理

勾股定理的逆定理
(2)你能否举a出2 两个b这2 种关c系2的命题?
我们把这样的两个命题叫做互逆
命另命满题一题足如个.如2:叫”果同做把如位它a其果角2的中相三逆一等b角命个2,形两题叫直的.c做线2三原平边命行长题”,a那与,b么,”c
两那直么线这平个行,三同角位角形相是等直”角是三互角逆形命.题.
一起探究
系:
.
2.52 62 6.52
那么画出的三角形是直角三角形吗? 换成三边分别是4cm,7.5cm,8.5cm 呢?
由以上例子,我们猜想:
命题2 如果三角形的三边长a,b,c
满足 a2 b2 c2
那么这个三角形是直角三角形.
观察思考
(什1命)直么命题?角题它1边1和们长命如有分题什果别2么直的为关角题a系、设三?、b角,斜结形边论的分长两别为是 c,那么
命题1经证明是正确的,你能证 明命题2的正确性吗?练习本上试 一试,与同学交流你的想法.
一般地,如果一个定理的逆命题经 过证明是正确的,它也是一个定理,称 这两个定理互为逆定理.
命题2经证明是正确的,所以我 们把它叫做勾股定理的逆定理.
一个命题一定有逆命题,但逆命 题不一定正确.所以一个定理不一定 有逆定理.
练习
1.如果三条线段a,b,c满足 a2 c2 b2 , 这三条线段组成的三角形是不是 直角三角形?为什么?
练习
2.说出下列命题的逆命题.这些命题的逆命题 成立吗?
(1)两条直线平行,内错角相等; (2)如果两个实数相等,那么它们的绝对值相
等; (3)全等三角形的对应角相等; (4)到角的两边距离相等的点在角的平分线上.
我国古代大禹治水测量工程时,也用 类似方法确定直角.你知道这是为什么 吗?其中蕴涵什么道理?

18.2 勾股定理的逆定理(二)39

18.2 勾股定理的逆定理(二)39

班级: 组别: 姓名: 钢屯中学八年级导学案(2011-2012学年度第二学期)学科:数学 编号: 39个性天地 课题 18.2 勾股定理的逆定理(二) 课型 自学课 总课时 39 主创人 刘国利 教研组长签字 王廷臣领导签字个性天地学习目标:灵活应用勾股定理及逆定理解决实际问题。

学习重点:灵活应用勾股定理及逆定理解决实际问题。

学习难点:灵活应用勾股定理及逆定理解决实际问题。

学法指导:1、学生独立阅读课本P 75,探究课本基础知识,提升自己的阅读理解 能力。

2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。

3、教师巡视,及时指导、帮助学生解决疑难问题。

导学流程: 一、旧知回顾⑴我们已经学习了勾股定理及其逆定理,你能叙述吗? ⑵你能用勾股定理及其逆定理解决那些问题? 二、基础知识探究问题:“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?温馨提示:①“远航”号航行的距离是多少海里? ②“海天”号航行的距离是多少海里? ③“远航”号航行的距离和“海天”号航行的距离与两船之间的距离满足什么关系? ④根据以上各题你能知道“海天”号沿哪个方向航行吗? 解:三、综合应用探究 问题:有一块菜地形状如下,试求它的面积。

四、达标反馈1、三角形的三边长a,b,c 满足(a+b )2=c 2+2ab,则这个三角形是( )。

A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形2、长度分别为3,4,5,12,13的五根木棒能拼成直角三角形的个数为( )。

A.1个 B.2个 C.3个 D.4个3.如果△ABC 的三边a,b,c 满足关系式602-+b a +(b-18)2+30-c =0则△ABC 是 _______三角形。

勾股定理的逆定理

勾股定理的逆定理

18.2 勾股定理的逆定理知识点1 互逆命题在两个命题中,如果一个命题的题设和结论分别是另一个命题的结论和题设,那么这两个命题称为互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.原命题和逆命题的真假性一般有四种情况:真、假;真、真;假、假;假、真.知识点2 互逆定理如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.每个命题都有逆命题,但不是所有的定理都有逆定理.知识点3 勾股定理的逆定理——直角三角形的判别条件定理:如果三角形的边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.解读:(1)作用:可用边的关系来判断一个三角形是否是直角三角形.(2)用较短两边的平方和与最大边的平方进行比较.(3)条件中没有涉及直角三角形,结论是直角三角形.(4)勾股定理与勾股定理的逆定理的联系与区别:联系:①两者都与三角形的三边关系a2+b2=c2有关;②两者都与直角三角形有关.区别:①勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形的三边的数量关系,即a2+b2=c2.②勾股定理的逆定理是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是直角三角形,是判断一个三角形是否是直角三角形的一个有效的方法.(5)应用:①现实生活中,在没有测量角的仪器的情况下,常利用勾股定理的逆定理来确定直角(或垂线).②勾股定理与勾股定理的逆定理的综合运用.知识点4 勾股数概念:满足a2+b2=c2的三个正整数,称为勾股数.解读:(1)勾股数满足两个条件:①正整数;②满足a2+b2=c2.(2)常见的勾股数:3,4,5;6,8,10;5,12,13;8,15,17;9,40,41;…(3)小窍门:记住常见的勾股数可以提高做题速度.(4)一组勾股数中各数扩大相同的整数倍能得到一组新的勾股数,如当k=1,2,3,…,n时,下列各组数还是勾股数,{3k,4k,5k},{l5k,l2k,l3k},…延伸:(1)几个求勾股数的常见公式:①n2-1,2n,n2+1(n≥2,n.为正整数);②2n+1,2n2+2n,2n2+2n+1(n是正整数);③m2-n2,2mn,m2+n2(m>n,m、n都是正整数).(2)小窍门:①有最小的勾股数(3,4,5),没有最大的勾股数.②勾股数不能全是奇数,但可以全是偶数.③勾股数中不可能只有两个偶数.一、选择题1.以下面各组数为边长的三角形,能组成直角三角形的个数是( )①6,7,8;②8,15,17;③7,24,25;④12,35,37.A.1B.2C.3D.42.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,在满足下列条件下,不是直角三角形的是( )A.a :b :c =3:4:5B.a :b :c =9:12:15C.∠A :∠B :∠C =3:4:5D.∠A :∠B :∠C =1:2:33.在△ABC 中,∠A :∠B :∠C =2:1:3, a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则有( )A.b 2+a 2=c 2B.c 2=3b 2C.3a 2=2c 2D.c 2=2b 24.等腰三角形底边上的高为1cm,周长为4cm,则三角形的面积是( )A.14cm 2B.10cm 2C.1cm 2D.23cm 45.如图所示,已知AB ⊥CD , △ABD 、△BCE 都为等腰三角形,如果CD =7,BE =3,那么AC 的长为( )A.8B.5C.3D.46.下列说法中,正确的是( )A.三角形两条边的平方和等于第三条边的平方B.如果一个三角形两条边的平方差等于第三条边的平方,那么这个三角形是直角三角形C.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c , 若a 2+b 2=c 2,则∠A =90°D.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若c 2-a 2=b 2,则∠B=90°7.把直角三角形的三边都扩大n 倍( n >0),得到的三角形是( )A.等腰三角形B.锐角三角形C.直角三角形D.不能确定8.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先回家拿了钱去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟.小芳从公园到图书馆拐的角是( )A.锐角B.直角C.钝角D.不能确定9.如图所示,我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是13, 小正方形的面积是1,直角三角形较短的直角边为a ,较长的直角边为b ,那么(a +b )2的值为( )A.13B.19C.25D.16910.长度分别为9cm、12cm、15cm、36cm、39cm的五根木棍,选出三根首尾连接,最多可搭成的直角三角形的个数为( )A.1B.2C.3D.411.在下列长度的各组线段中,能组成直角三角形的是( )A.12,15,27B.32,42,52C.5a, l2a, l3a(a>0)D.1,2,312.满足下列条件的△ABC,不是直角三角形的是( )A.∠A=∠B-∠CB.∠A:∠B:∠C=1:1:2C.a:b:c=1:1:2D.b2=a2-c213.已知在△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )A.△ABC是直角三角形,且AC为斜边B.△ABC是直角三角形,且∠ABC=90°C.△ABC的面积为60D.△ABC是直角三角形,且∠A=60°14.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )A.∠C=90°B.a2=b2-c2C.c2=2a2D.a=b15.若△ABC的三边分别为m2-1,2m,m2+1(m>1),则下列结论正确的是( )A.△ABC是直角三角形,且斜边的长为m2+ 1B.△ABC是直角三角形,且斜边的长为2mC.△ABC是直角三角形,但斜边的长需由m的大小确定D.△ABC无法判定是否是直角三角形二、填空题1.若△ABC三边长为a、b、c,且满足(a-b)(a2+b2-c2)=0,则△ABC的形状为_______三角形.2.若三角形三边之比为3:4:5,则该三角形为________三角形;若三角形三角之比为1:2:3,则该三角形为__________三角形.3.三角形三边分别为6、8、10,则最长边上的高为__________.4.三边长为a=m2-n2,b=2mn,c=m2+n2(其中m>n>0)的三角形为_______三角形.5.请任意写出三组勾股数_______,________,_________.6.一直角三角形的两直角边分别为9、12,该三角形的周长为_________.7.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则斜边上的高是__________cm.8.如图所示,在△ABC中,AB=AC,D是BC上一点,AD⊥AB,AD=9cm,BD=15cm,则AC=-_________cm.9.一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是_________.10.传说,古埃及人曾用“拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别是______厘米,_________厘米,_________厘米,其中的道理是________.11.一条对角线长39cm,一条边长是36cm的矩形的周长为________cm.12.三角形三边长为a+1,a+2,a+3,当a=_________时,此三角形为直角三角形.13.在△ABC中,三边为a、b、c,且满足a2+b2+c2=ab+ac+bc,则△ABC的形状为________.14.在△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=l2cm,则△ABC的面积为_______.15.如图所示,在Rt△ABC中,∠C=90°,∠1=∠2, CD=1.5,BD=2.5,则AC等于___________.16.将一根长24cm的筷子,置于直径为5cm、高为12cm的圆柱形水杯中(如图所示).设筷子露在杯子外面的长为h cm,则h的取值范围是__________.17.直角三角形的三边长分别是a-b,a,a+b,其周长为24cm,则面积为________cm2.三、解答题1.试判断三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是否是直角三角形.2.已知△ABC的三边的长分别为a、b、c,且满足关系式a2+b2+c2+50=6a+8b+10c,试判断△ABC的形状.3.在△ABC中,∠BAC=90°,AB=AC,P为BC上一点,求证:PB2+PC2=2P A2.4.如图所示,CD是△ABC的边AB上的高,且CD2=AD·DB.求证:∠ACB=90°.5.求证a=m2-n2, b=m2+n2,c=2mn(m>n>0)是一个直角三角形的三边.6.如图所示,如果只给你一把带刻度的直尺,你是否能检验∠MPN是不是直角,简述你的作法.7.如图所示,在四边形ABCD中,AB⊥BC,且AB=9,BC=12,CD=17,AD=8,求四边形ABCD的面积.8.如图所示,学校B前面有一条笔直的公路,学生放学后走AB、BC两条路可到达公路,经测量BC=6km,BA=8km,AC=10km.现需修建一条公路使学校B到公路的距离最短,请你帮助学校B设计一种方案,并求出公路的长.9.如图所示,一个池塘呈三角形形状,三角形的边长分别为6m、8m、10m,距池塘边缘5m 内的土地上栽着树,问池塘连同树木共占土地多少m2?(结果精确到1m2,π=3.14)10.如图所示,在正方形ABCD中,F为DC的中点,E为BC上一点,且1,4EC BC试判断AF与EF的位置关系,并说明理由.11.3,4 ,5 32+42=525, 12 , 13 52+122=327,24 ,25 72+242=2529,40 ,41 92+402=412……21, b ,c212+b2=c2(1)试找出它们的共同点,并说明你的结论;(2)当a=21时,求b、c的值.a b c第一组3=2×1+1 4=2×l×(1+1) 5=2×1×(1+1)+1第二组 5=2×2+1 12=2×2×(2+1) 13=2×2×(2+1)+1 第三组7=2×3+1 24=2×3×(3+1) 25=2×3×(3+1)+1 第四组9=2×4+1 40=2×4×(4+1) 41=2×4×(4+1)+1 … … … …根据以上勾股数组的组成傅点,你能求,出第七组勾股数的a 、b 、c 各是多少吗?第n 组呢?13.如图是一个零件的形状,校规这个零件中必须有AC ⊥BC ,工人师傅量得B 、C 两点距离为36,AD =12,CD =9,AB =39,∠ADC =90°.问:这个零件符合要求吗?并说明理由.14.如图所示,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,并且AB =4,1,4CE BC =F 为CD 的中点,连接AF 、AE 、EF ,△AEF 是什么三角形?请说明理由.15.甲、乙两船从港口A 同时出发,甲船以16海里/时的速度向北偏东35°航行,乙船沿南偏东一角度航行,船速为12海里/时,2小时后,甲、乙两船相距40海里,问乙船的航行方向.16.如图所示,在△ABC 中,AB =40,BC =100,且BC 边上的中线长AD =30.(1)试说明2;ABC ABD S S ∆∆=(2)求△ADC 的面积.17.同学们在数学老师的带领下来到平坦的草原上游玩,他们发现前面有两棵大树,当地的牧'民告诉他们,这是两棵古老而特别的树,两楝树之间的距离为750 m,一部分同学以45 m/min 的速度向一棵大树走去,伺时,剩下的一部分同学以60m/min 的速度向另一棵大树走去,10min 后,两组同学同时到达目的地.问:(1)两组同学行走的方向是否成直角?(2)如果他们仍以原速度行走,至少还需要几分钟才能相遇?18.Tom 和Jerry 去野外宿营,在某地要确定两条互相垂直的路,而身边又没带直角尺,可利用的只有背包带,你能帮他们想一个简单可行的办法吗?19.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在该空地上种上草皮,经测量,∠A =90°,AB =3m,BC =12m,CD =13m,DA =4m.若每平方米草皮需要200元,问需要投人多少元.20.阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.解:∵222244a c b c a b -=-① ∴2222222()()()c a b a b a b -=+- ②∴222c a b =+③ ∴△ABC 是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:________;(2)错误的原因为___________;(3)本题正确的结论是_____________;21.观察下列两组勾股数:(1)3,4,5;5,12,13;7,24,25;…(2)6,8,10;10,24,26;14,48,50;…你发现上述两组勾股数各有什么特征?请用含有字母m 、n 的式子表示出来,你还能发现勾股数有什么特征?与同学交流.22.已知,如图△ABC 的周长是24,M 是AB 的中点,MC =MA =5,求△ABC 的面积.。

八年级数学下册 18.2 勾股定理逆定理(第2课时)学案2(无答案) 新人教版

八年级数学下册 18.2 勾股定理逆定理(第2课时)学案2(无答案) 新人教版

勾股定理逆定理班级 姓名【学习目标】1.掌握勾股逆定理的内容.2. 能应用勾股逆定理解决实际问题【学习重难点】会结合勾股定理及直角三角形相关知识解决问题(一)【复习回顾】1.已知△ABC 的三边长a ,b ,c 分别为6,8,10,则△ABC__ ____(•填“是”或“不是”)直角三角形.2.△ABC 中,AB=7,AC =24,BC=25,则∠A=_____ _.3.△ABC 中,BC=n 2-1,AC=2n ,AB=n 2+1(n>1),则∠______=9004.如果三角形的三边长为1.5,2,2.5,那么这个三角形最短边上的高为______.(二)合作探究例2.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?(三)学以致用1.已知两条线段的长为3cm 和4c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.2. 在Rt △ABC 中,∠C=90°,(1)若a=5,b=12,则c= ;(2)b=8,c=17 ,则ABC S =3. 等边三角形的边长为6,则它的高是________4. 在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=____5.已知甲、乙两人从同一处出发,甲往东走了4km ,乙往南走了3km ,这时甲、乙两人相距 千米.6.下列各组数中,以它们为边的三角形不是直角三角形的是( )A .1.5,2,3 B. 7,24,25 C .6,8,10 D. 3,4,5 7.下列命题中是假命题的是( )A. △ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B. △ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C. △ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D. △ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.8.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( )A. 等腰三角形B. 等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形9.一个直角三角形,有两边长分别为6和8,下列说法正确的()A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为1010.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( ) A . 27cm B. 30cm C. 40cm D. 48cm11.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )cm 2A 6B 8C 10D 1212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距()A .25海里 B. 30海里 C. 35海里 D. 40海里13. 如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求A B 的长.14.已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积.F 第11题 北南 A 东第12题15.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36,点P从点A开始沿AB边向B 点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?。

人教版八年级数学下册知识点总结归纳

人教版八年级数学下册知识点总结归纳

八年级数学下册知识点第十八章 勾股定理18.1勾股定理1.勾股定理:命题1:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

18.2勾股定理的逆定理1.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。

,那么这个三角形是直角三角形。

就是说,用三角形全等可以证明勾股定理的逆命题是正确的,它是一个定理,我们把这个定理叫勾股定理的逆命题2.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)3.直角三角形的性质可表示如下: ⇒CD=21AB=BD=A (1)、直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°可表示如下: ⇒BC=21AB ∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90° DD 为AB 的中点4、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD ∙=2⇒ AB AD AC ∙=2CD ⊥AB AB BD BC ∙=25、常用关系式由三角形面积公式可得:AB ∙CD=AC ∙BC6、直角三角形的判定1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

7、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

勾股定理的逆定理

勾股定理的逆定理

解:∵ 2+122=132,∴ 2+BC2=AC2. 5 AB ∴ △ABC 是直角三角形. ∴ BD·CA=BC·BA. ∴ BD=
������������·������������ 60 = (km). ������������ 13 60 13
∴ 修这条公路的最低造价为 ×26000=120000(元).
返回目录 按Esc键退出
7.如图,四边形 ABCD 中,∠ ADC=90° ,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积.
解:连接 AC,如图.
因为∠ADC=90° , 所以△ACD 是直角三角形.
返回目录
按Esc键退出
所以 AC= ������������2 + C������ 2 = 42 + 32 =5(cm). 又因为 AC2+BC2=52+122=132=AB2, 所以 AC2+BC2=AB2. 所以△ACB 是直角三角形. 所以四边形 ABCD 的面积为: S 四边形=S △ACB-S △ADC = AC·BC- AD·CD
返回目录
按Esc键退出
2.勾股定理的逆定理的实际应用 【例 2】 如图,南北向 MN 以西为我国领海,以东为公海.上午 9 时 50 分, 我国反走私艇 A 发现正东方向有一走私艇 C 以 13 海里/时的速度偷偷向我 国领海开来,便立即通知正在 MN 线上巡逻的我国反走私艇 B.已知 A,C 两 艇的距离是 13 海里,A,B 两艇的距离是 5 海里;反走私艇 B 测得离艇 C 的距 离是 12 海里.若走私艇 C 的速度不变,最早会在什么时间进入我国领海?
5.下列真命题中,其逆命题也是真命题的是( A.直角都相等 B.等边三角形是锐角三角形 C.若 a<b<0,则|a|>|b| D.如果 a=b 或 a=-b,那么 a 2=b 2 答案:D

18.2勾股定理逆定理教案、说课稿、反思--唐艳文

18.2勾股定理逆定理教案、说课稿、反思--唐艳文

18.2勾股定理的逆定理(1)教案主备人:唐艳文审核人:授课时间:教学内容:18.2勾股定理的逆定理(1)教学时数:第1课时教学目标:1.知识与技能:(1)、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

(2)、探究勾股定理的逆定理的证明方法。

(3)、理解原命题、逆命题、逆定理的概念及关系。

2、过程与方法:经直角三角形判别条件的探究过程体会命题、定理的胡逆性,渗透合情推理得数学意识。

教学重点:掌握勾股定理的逆定理及简单应用。

教学难点:勾股定理的逆定理的证明。

教学课型与教学方法:新授课。

方法:先学后教、适当点拨教学资源的利用及教学准备:多媒体课件、优秀教案、检测题教学过程:一、情境引入:勾股定理的内容是_____________________________________。

古埃及人曾用下面的方法得到直角:用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

按照这种做法真能得到一个直角三角形吗?二、先学后教出示学习目标:1.理解并掌握勾股定理的逆定理;2.利用勾股定理的逆定理判定一个三角形是否直角三角形.3. 知道什么叫做原命题、逆命题、互逆命题、互逆定理。

自学指导:请同学们看课本73至74页内容及例1思考以下问题:(时间5分钟)1、如何借助尺规画出以已知的三条线段为边的三角形。

2、写出命题2的已知、求证。

3、(1)如何构造△A ′B ′C ′(2)如何证明:△ABC ≌△A ′B ′C ′(3)如何证明 ∠C=9004、什么叫做原命题、逆命题、互逆命题、互逆定理。

5、自学检测:画一画下面的三组数分别是一个三角形的三边长a ,b ,c :5cm ,12cm ,13cm ;(男同学) 6cm ,8cm ,10cm (女同学)。

思考:(1)画出图形,它们都是直角三角吗?(2)这三组数都满足a 2 + b 2 = c 2吗?你猜想到了什么?命题2:勾股定理的逆命题:如果三角形的三边长a 、b 、c 满足a 2 + b 2 = c 2那么这个三角形是直角三角形。

八年级数学勾股定理的逆定理课件-应用

八年级数学勾股定理的逆定理课件-应用

人教版
第2课时勾股定理的逆定 理(二) —— 应用
(2)在图2中,画一个三边长分别为3,2, 13的三角形,一共可以画 16 个这样的三角形. 解析:如图2,一共可以画16个这样的三角形.
图2
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
10.在某小区在社区工作人员及社区居民的共同努力之下,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
8.如图,明明在距离水面高度为5 m的岸边C处,用绳子拉船 靠岸,开始时绳子BC的长为13 m.若明明收绳6 m后,船到 达D处,则船向岸边A处移动了多少米?
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
解:∵开始时绳子BC的长为13 m,明明收绳6 m后,船到达D处,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
知识点 勾股定理逆定理的应用 【例题】如图,甲船以5海里/时的速度离开港口O沿南偏东 30°方向航行,乙船同时同地沿某方向以12海里/时的速度 航行.已知它们离开港口2小时后分别到达B,A两点,且AB =26海里.你知道乙船是沿哪个方向航行的吗?
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
第十七章 勾股定理
17.2 勾股定理的逆定理 第2课时勾股定理的逆定理(二) —— 应用
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册

人教版初二数学下册:勾股定理的逆定理(基础)知识讲解

人教版初二数学下册:勾股定理的逆定理(基础)知识讲解

勾股定理的逆定理(基础)【学习目标】1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围. 【要点梳理】【高清课堂 勾股定理逆定理 知识要点】 要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形. (2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题. 要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;【典型例题】类型一、原命题与逆命题1、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚.2.原命题:对顶角相等.3.原命题:线段垂直平分线上的点,到这条线段两端点的距离相等. 4.原命题:角平分线上的点,到这个角的两边距离相等. 【答案与解析】1. 逆命题:有四只脚的是猫(不正确)2. 逆命题:相等的角是对顶角(不正确)3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.•(正确)4. 逆命题:到角两边距离相等的点,在这个角的角平分线上.(正确)【总结升华】掌握原命题与逆命题的关系. 原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误. 举一反三:【变式】下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等; ③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c ,,满足222a b c +=,那么这个三角形是直角三角形. 【答案】①④提示:①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c ,,满足222a b c +=”也是正确的. 类型二、勾股定理的逆定理2、判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25; (2)a =43,b =1,c =34; (3)22a m n =-,22b m n =+,2c mn =(0m n >>);【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【答案与解析】解:(1)∵ 2222724625a b +=+=,2225625c ==,∴ 222a b c +=.∴ 由线段a b c ,,组成的三角形是直角三角形.(2)∵ a b c >>,222239251141616b c ⎛⎫+=+=+=⎪⎝⎭,2241639a ⎛⎫== ⎪⎝⎭, ∴ 222b c a +≠.∴ 由线段a b c ,,组成的三角形不是直角三角形.(3)∵ 0m n >>,∴ 222m n mn +>,2222m n m n +>-.∵2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++,22224224()2b m n m m n n =+=++,∴ 222a cb +=.∴ 由线段a b c ,,组成的三角形是直角三角形.【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证2c 与22a b +是否具有相等关系,再根据结果判断是否为直角三角形. 举一反三:【变式1】判断以线段a b c ,,为边的△ABC 是不是直角三角形,其中a =b =2c =.【答案】解:由于a c b >>,因此a 为最大边,只需看2a 是否等于22b c +即可.∵ 227a ==,223b ==,2224c ==,∴ 222a b c =+,∴ 以线段a b c ,,为边能构成以a 为斜边的直角三角形. 【变式2】(2014春•永州校级期中)下列四组数:①5,12,13;②7,24,25;③1,2,4;④5,6,8.其中可以为直角三角形三边长的有 .(把所有你认为正确的序号都写上)【答案】①②;解:①∵52+122=132,能构成直角三角形;②72+242=252,能构成直角三角形; ③12+22≠42,不能构成直角三角形;④52+62≠82,不能构成直角三角形.所以①②.故答案为:①②.3、(2015春•大石桥市校级期末)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【思路点拨】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【答案与解析】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【总结升华】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.举一反三:【变式】如图所示,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD 中点,试判断EC与EB的位置关系,并写出推理过程.【答案】 解:EC ⊥EB .过点C 作CF ⊥AB 于F ,则四边形AFCD 是矩形,在Rt △BCF 中,可得CF =22. 则AD =CF =22,故DE =AE =12AD =2. 在Rt △ABE 和Rt △DCE 中,2226EB AE AB =+=,2223EC DE CD =+=.∴ 229EB EC +=.∵ BC =3,∴ 222EB EC BC +=. ∴ ∠CEB =90°,∴ EB ⊥EC . 类型三、勾股定理逆定理的实际应用4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【思路点拨】我们可以根据题意画出如图所示的图形,可以看到,由于“远航”号的航向已知,如果求出两艘轮船所成的角,就能知道“海天”号的航向了. 【答案与解析】解:根据题意可画出上图,PQ =16×1.5=24,PR =12×1.5=18,QR =30, 在△PQR 中,22222418576324900PQ PR +=+=+=,∴ 222PQ PR QR +=.∴△PQR是直角三角形且∠RPQ=90°.又∵“远航”号沿东北方向航行,可知∠QPN=45°,∴∠RPN=45°.由此可知“海天”号沿西北方向航行.也可沿东南方向航行.【总结升华】根据勾股定理的逆定理,可判断一个角是不是90°,这里需注意与东北方向成90°角的有两个方向,即西北方向或东南方向.附录资料:菱形(基础)=【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】【高清课堂特殊的平行四边形(菱形)知识要点】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF ⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式1】(2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.【答案】50;解:在菱形ABCD中,AB∥CD,∴∠CDO=∠AED=50°,CD=CB,∠BCO=∠DCO,∴在△BCO和△DCO中,,∴△BCO ≌△DCO (SAS ), ∴∠CBO=∠CDO=50°.【高清课堂 特殊的平行四边形(菱形) 例1】【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ). A.21 B.4 C.1 D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1. 类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可. 【答案与解析】解:四边形DECF 是菱形,理由如下: ∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形. ∵ CD 平分∠ACB ,∴ ∠1=∠2 ∵ DF ∥BC , ∴ ∠2=∠3, ∴ ∠1=∠3. ∴ CF =DF ,∴ 四边形DECF 是菱形. 【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形. 举一反三:【变式】如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.【答案】解:四边形AEDF是菱形,理由如下:∵ EF垂直平分AD,∴△AOF与△DOF关于直线EF成轴对称.∴∠ODF=∠OAF,又∵ AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴ AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴ EO=OF又∵AEDF的对角线AD、EF互相垂直平分.∴AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.∴ EF AG.∴四边形AEFG是平行四边形.又∵ AE=AG,∴四边形AEFG是菱形.方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴ AG=FG.∴ AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)ABCD中,AB∥CD,AB=CD∵ E、F分别为AB、CD的中点∴ DF=12DC,BE=12AB∴ DF∥BE.DF=BE∴四边形DEBF为平行四边形∴ DE∥BF(2)证明:∵ AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形又∵ F为边CD的中点.∴ BF=12DC=DF又∵四边形DEBF为平行四边形∴四边形DEBF是菱形类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.。

最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案

最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案

《勾股定理的逆定理》教案1【教学设计说明】本课使学生在动手操作的基础上和合作交流的良好氛围中,让学生充分观察、动手实践,营造轻松愉快的学习氛围,以此激发学生的学习兴趣.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的.【教材分析】勾股定理是我国古代数学的一项伟大成就,被广泛的应用于数学和实际生产生活的各个方面.勾股定理的逆定理是在学生研究了勾股定理的基础上进一步学习的内容,它是初中数学教学内容中的一个重要定理,是对直角三角形的再认识,也是判断一个三角形是否是直角三角形的重要方法,体现了数形结合的思想,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔.通过本节内容的学习,进一步加深学生对“性质与判定”之间的辩证统一关系的认识,同时也完善了学生的知识结构,为后续的学习打下基础.【学情分析】尽管学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键.在前面知识的学习过程中,学生已经经历了的自主探究、动手实践、合作学习等过程,具有了一定参与数学活动的经验和数学思考,具备了一定的进行数学活动的能力.【教学目标】1.了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.2.探索勾股定理的逆定理,并能运用它们解决一些简单的实际问题.3.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.4.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程.通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用.【教学重点】勾股定理的逆定理及其运用.【教学难点】勾股定理的逆定理的证明.【课时设计】两课时.【教学策略】本节课主要通过创设问题情境,引导学生动手实践、自主学习、合作交流、采用发现法、探究法、练习法为辅的教学方法.【教学过程设计】(一)复习引入(1)勾股定理的内容是什么?(2)求以线段a、b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=5,b=12;③a=8,b=15.(3)上述(2)中三角形的边a,b,c有什么关系______,分别以上述a,b,c为边的三角形的形状会是什么样的呢?通过此情景引发学生的质疑、兴趣,师揭示课题,提出教学目标并板书课题.答案:(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a +b =c .(2)①c=5;②c=13;③c=17;(3)a +b =c ;直角三角形.【设计意图】在复习旧知的基础上,通过调换命题的条件和结论,巧妙地过渡到本节课的课题.(二)探索新知实验观察:1.拼一拼:同学们拿出准备好的木条,用三根木条作为三角形的边a ,b ,c 拼成一个三角形,要求如下:(1)a =3cm ,b =4cm ,c =5cm ;(2)a =5cm ,b =12cm ,c =13cm ;(3)a =8cm ,b =15c m ,c =17cm.2.量一量:用你的量角器分别测量一下上述各三角形的最大角的度数,并说出此三角形的形状.3.猜一猜:由上面几个例子你发现了什么吗?请以命题的形式说出你的观点.学生思考并回答:命题2与勾股定理的题设和结论有何关系?师生共同归纳:原命题与逆命题的定义.4.说一说:说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两直线平行,内错角相等.(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应边相等答案:2.90;直角三角形.3.命题2:如果三角形的三边长分别为a ,b ,c ,满足a +b =c ,那么这个三角形是直角三角形.4.(1)内错角相等,两直线平行.成立(2)如果两个实数的平方相等,那么这两个实数相等.不成立(3)如果两个实数的绝对值相等,那么这两个实数相等.不成立(4)对应边相等的两个三角形是全等三角形.成立【设计意图】通过“拼一拼”“量一量”“猜一猜”“说一说”等活动感知勾股定理的逆定理.比较勾股定理与命题2的题设与结论,认知原命题与逆命题的互逆性,凸显命题的形成过程,自然地得出勾股定理的逆命题.5.验一验:师:那勾股定理的逆命题是否正确?我们怎么验证呢?师生行为:让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.222222222师生共同得出:把命题转化成已知求证的形式.已知:如图,在△ABC 中,AB =c ,AC =b ,BC =a ,且a +b =c ,求证:∠C =90.222 师:△ABC 的三边长a ,b ,c 满足a +b =c .如果△ABC 是直角三角形,它应与直角边是a ,b 的直角三角形全等,实际情况是这样吗?我们作一个Rt △A 'B 'C ',使B 'C '=a ,A 'C '=b ,∠C '=90(如下图)Rt △A B C 会与△ABC 全等吗?'''222生:我们所作的Rt △A 'B 'C ',A 'B '=a +b ,又因为c =a +b ,所以A 'B '=c ,2222222∠C =∠C '=90.△ABC 即A 'B '=c .△ABC 和△A 'B 'C '三边对应相等,所以两个三角形全等,为直角三角形.即勾股定理的逆命题是正确的.师:很好,当我们证明了勾股定理的逆命题是正确的,那么命题就成为一个定理.勾股定理和勾股定理的逆定理称为互为逆定理.师生共同归纳出勾股定理的逆定理:如果三角形的三边长分别为a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形.学生明确利用勾股定理的逆定理求角要注意的事项:(1).条件:须知道三角形三边长a 、b 、c 满足a +b =c ,往往要通过计算.结论:∠C =90(最长边c 所对的角).(2).书写格式:∵如图在△ABC 中,AC +BC =AC .∴∠C =90.222 222【设计意图】经历定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点.(三)例题讲解例1:判断由线段a,b,c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;;(2)a=13,b=15,c=14.学生根据勾股逆定理来解决此类已知三边,判断三角形形状的问题.通过思考,归纳出解题思路.师生共同归纳:像15,17,8,能够成为直角三角形三条边长的三个正整数,称为勾股数.答案:(1) 152+82=225+64=289172=289∴152+82=172∴这个三角形是直角三角形(2) 132+142=169+196=365152=225∴13+14≠15222∴这个三角形不是直角三角形【设计意图】进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点.例2.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NQ远航号海天号R21P E海岸线解:根据题意画图,如图所示:PQ=16⨯1.5=24,PR=12⨯1.5=18,QR=30242+182=302,即PQ2+PR2=QR2∴∠QPR=90由”远航“号沿东北方向航行可知,∠QPS=45.所以∠RPS=45 ,即?海天”号沿西北方向航行.【设计意图】以例2为理解勾股定理逆定理的应用.(四)拓展提高1.下面以∠A 、∠B 、∠C 的对应边分别为a ,b ,c 的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a =15b =20c =25;(2)a =13b =10c =20;(3)a =1b =2c =3;(4)a :b :c =3:4:5 .2.△ABC 中,∠A ,∠B ,∠C 所对应边的长分别为a ,b ,c ,且c =a -b ,则下列说法正确的是().A .∠C 是钝角B .∠C 是直角C .∠A 是直角D .∠B 是直角3.满足下列条件的△ABC ,不是直角三角形的是().A .AC +BC =AB B .a ∶b ∶c =5∶12∶13C .∠C =∠A +∠BD .∠A ∶∠B ∶∠C =3∶4∶54.一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?222222C13D ACD 4512BA 3B参考答案:1、(1)是;∠C.(2)不是.(3)是;∠B.(4)是;∠C.2、C3、D4、解析:∵AB 2+AD 2=32+42=25BD 2=52=25∴AB 2+AD 2=BD 2∴∠A =90∵BD 2+BC 2=52+122=169CD 2=132=169∴BD 2+BC 2=CD 2∴∠CBD =90∴这个零件符合要求.【设计意图】及时反馈教学效果,查漏补缺,对学有困难的同学给予鼓励和帮助.(五)知识小结你能谈谈学习这节内容的收获和体会吗?【设计意图】通过归纳总结,使学生优化概念,内化知识.(六)课后作业1.下列三条线段能组成直角三角形的是().A .6,8,9B .5,6,12C .5,3,2D .10,7,82.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为().A .2,4,8B .4,8,10C .6,8,10D .8,10,123.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a -b )=c ,则().2A .∠A 为直角B .∠C 为直角C .∠B 为直角D .不是直角三角形4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().A .12.5B .12C .152D .925.请你写一组勾股数:_________________.6.若一个三角形的三边分别为5、4、3,则它的面积为.27.已知a -5+(b -12)+c -13=0,则以a ,b ,c 为边的三角形是_____________.8.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为_______cm .9.已知:在∆ABC 中,AB =13cm,BC =10cm,BC 边上的中线AD =12cm.求AC .10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?2答案:1.C 2.C 3.A 4.B5.3,4,5答案不唯一6.67.直角三角形.解:由题意可得a=5,b=12,c=13.∵52+122=169,132=169.∴52+122=132即a 2+b 2=c 2所以三角形是直角三角形8.1209.∵AD 2+BD 2=52+122=169AB 2=132=169即AD 2+BD 2=AB 2∴△ABD 是直角三角形∴在Rt △ACD 中,AC=52+122=1311⨯120=12海里,BC =⨯50=5海里1010∵AC 2+BC 2=52+122=16910.由题意得,AC =AB 2=132=169即AC 2+BC 2=AB 2∴△ABC 是直角三角形∴乙巡逻艇向北偏西40 方向航行,即∠ABC =50 ∴∠BAC =40 ,即甲巡逻艇向北偏东50 方向航行.答:甲巡逻艇向北偏东50 方向航行.【板书设计】【教学反思】这节课的学习,我采用了体验探究的教学方式.在课堂教学中,首先由教师创设情境,提出问题;再让学生通过“拼一拼”“量一量”“猜一猜”“说一说”等活动猜想出一般性的结论;然后由去验证结论,使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民.作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者.因此,课堂教学过程的设计,也必须体现出学生的主体性.。

勾股定理的逆定理说课稿

勾股定理的逆定理说课稿

18.2勾股定理的逆定理说课稿一、教材分析 :(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算渗透与他人交流、合作的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探索二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

接下来就是利用这个数学模型,从理论上证明这个定理。

从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。

使学生确实在学习过程中享受到自我创造的快乐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档