Object-oriented components for simulation of adaptive controllers
Simulink的模块库
Simulink模块库一、Continuous:它包括以下七个功能模块:1.Derivative:输入信号微分模块;2.Integrator:输入信号积分模块;3.State-Space:线性状态空间系统模型;4.Transfer-Fcn:线性传递函数模型;5.Transport Delay:输入信号延时一个固定时间再输出;6.Variable Transport Delay:输入信号延时一个可变时间再输出;7.Zero-Pole:以零极点表示的传递函数模型。
二、Discrete它包括以下九个功能模块:1.Discrete Transfer-Fcn:离散传递函数模型;2.Discrete Zero-Pole:以零极点表示的离散传递函数模型;3.Discrete Filter:实现无限脉冲响应(IIR)与有限脉冲响应(FIR)滤波器;4.Discrete State-Space:离散状态空间系统模型;5.First-Order Hold:实现一阶采样和保持器;6.Memory:存储上一个时刻的状态值;7.Unit Delay:一个采样周期的延时;8.Discrete-time Integrator:离散时间积分器;9.-Order Hold:实现零阶采样和保持器。
三、Look-Up Tables(查询表模块库)它包括以下六个功能模块:1.Direct Look-Up Table(n-D):检索n维表,以重新获得标量、向量或2维矩阵2.Interpolation(n-D)using PreLook-Up:执行高精度的常值或线性插值3.Look-Up Table:使用指定的查表方法近似一维函数,即建立输入信号的查询表4.Look-Up Table(2-D): 使用指定的查表方法近似二维函数,即建立两个输入信号的查询表5.Look-Up Table(n-D):执行n个输入定常数、线性或样条插值映射6.PreLook-Up Index Search:在设置的断点处为输入执行检索查找和小数计算四、Math Operations(数学运算模块库)它包括以下25个功能模块:1.Abs:对输入信号求绝对值运算;2.Sum:加减运算,可以加减标量、向量和矩阵;3.Product:对输入信号求积和商运算;4.Dot Product:点积(内积)运算;5.Gain:比例运算,或称为常量增益(输入信号乘以常数);6.Sign:表明输入符号信号或符号函数;7.MinMax:输出输入信号的最小值和最大值(即极值运算);8.Slider Gain:可以用滑动条来改变增益;9.Matrix Gain:矩阵增益,即输入信号乘以矩阵;10.Math Function:包括指数、对数函数、求平方、开根号等常用数学运算函数;11.Rounding Function:取整运算函数;12.Trigonometric Function:三角函数,包括正弦、余弦、正切等;13.Logical Operator:逻辑运算14.Relational Operator:关系运算15.Complex to Magnitude-Angle:由复数输入信号转为幅值和相角输出;16.Magnitude-Angle to Complex:由幅值和相角输入信号合成复数输出;17.Complex to Real-Imag:由复数输入信号转为实部和虚部输出;18.Real-Imag to Complex:由实部和虚部输入信号合成复数输出。
Modeling,Simulat...
Book reviewModeling,Simulation,and Control of Flexible Manufacturing Systems ±A Petri Net Approach;Meng Chu Zhou;Kurapati Venkatesh;Yushun Fan;World Scienti®c,Singapore,19991.IntroductionA ¯exible manufacturing system (FMS)is an automated,mid-volume,mid-va-riety,central computer-controlled manufacturing system.It can be used to produce a variety of products with virtually no time lost for changeover from one product to the next.FMS is a capital-investment intensive and complex system.In order to get the best economic bene®ts,the design,implementation and operation of FMS should be carefully made.A lot of researches have been done regarding the modeling,simulation,scheduling and control of FMS [1±6].From time to time,Petri net (PN)method has also been used as a tool by di erent researcher in studying the problems regarding the modeling,simulation,scheduling and control of FMS.A lot of papers and books have been published in this area [7±14].``Modeling,Simulation,and Control of Flexible Manufacturing Systems ±A PN Approach''is a new book written by Zhou and Venkatesh which is focused on studying FMS using PN as a systematic method and integrated tool.The book's contents can be classi®ed into four parts.The four parts are introduction part (Chapter 1to Chapter 4),PNs application part (Chapter 5to Chapter 8),new research results part (Chapter 9to Chapter 13),and future development trend part (Chapter 14).In the introduction part,the background,motivation and objectives of the book are described in Chapter 1.The brief history of manufacturing systems and PNs is also presented in Chapter 1.The basic de®nitions and problems in FMS design and implementation are introduced in Chapter 2.The authors divide FMS related problems into two major areas ±managerial and technical.In Chapter 4,basic de®nitions,properties,and analysis techniques of PNs are presented,Chapter 4can be used as the fundamentals of PNs for those who are not familiar with PN method.In Chapter 3,the authors presented their approach to studying FMS related prob-lems,the approach uses PNs as an integrated tool and methodology in FMS design and implementation.In Chapter 3,various applications in modeling,analysis,sim-ulation,performance evaluation,discrete event control,planning and scheduling of FMS using PNs are presented.Through reading the introduction part,the readers can obtain basic concepts and methods about FMS and PNs.The readers can also get a clear picture about the relationshipbetween FMS and PNs.Mechatronics 11(2001)947±9500957-4158/01/$-see front matter Ó2001Elsevier Science Ltd.All rights reserved.PII:S 0957-4158(00)00057-X948Book review/Mechatronics11(2001)947±950The second part of the book is about PNs applications.In this part,various applications of using PNs in solving FMS related problems are introduced.FMS modeling is the basis for simulation,analysis,planning and scheduling.In Chapter5, after introduction of several kinds of PNs,a general modeling method of FMS using PNs is given.The systematic bottom-up and top-down modeling method is pre-sented.The presented method is demonstrated by modeling a real FMS cell in New Jersey Institute of Technology.The application of PNs in FMS performance analysis is introduced in Chapter 6.The stochastic PNs and the time distributions are introduced in this Chapter. The analysis of a¯exible workstation performance using the PN tool called SPNP developed at Duke University is given in Section6.4.In Chapter7,the procedures and steps involved for discrete event simulation using PNs are discussed.The use of various modeling techniques such as queuing network models,state-transition models,high-level PNs,object-oriented models for simulations are brie¯y explained.A software package that is used to simulate PN models is introduced.Several CASE tools for PNs simulations are brie¯y intro-duced.In Chapter8,PNs application in studying the di erent e ects between push and pull paradigms is shown.The presented application method is useful for the selection of suitable management paradigm for manufacturing systems.A manufacturing system is modeled considering both push and pull paradigms in Section8.3which is used as a practical example.The general procedures for performance evaluation of FMS with pull paradigm are given in Section8.4.The third part of the book is mainly the research results of the authors in the area of PNs applications.In Chapter9,an augmented-timed PN is put forward. The proposed method is used to model the manufacturing systems with break-down handling.It is demonstrated using a¯exible assembly system in Section9.3. In Chapter10,a new class of PNs called Real-time PN is proposed.The pro-posed PN method is used to model and control the discrete event control sys-tems.The comparison of the proposed method and ladder logic diagrams is given in Chapter11.Due to the signi®cant advantages of Object-oriented method,it has been used in PNs to de®ne a new kind of PNs.In Chapter12,the authors propose an Object-oriented design methodology for the development of FMS control software.The OMT and PNs are integrated in order to developreusable, modi®able,and extendible control software.The proposed methodology is used in a FMS.The OMT is used to®nd the static relationshipamong di erent objects.The PN models are formulated to study the performance of the FMS.In Chapter12,the scheduling methods of FMS using PNs are introduced.Some examples are presented for automated manufacturing system and semiconductor test facility.In the last Chapter,the future research directions of PNs are pointed out.The contents include CASE tool environment,scheduling of large production system,su-pervisory control,multi-lifecycle engineering and benchmark studies.Book review/Mechatronics11(2001)947±950949 mentsAs a monograph in PNs and its applications in FMS,the book is abundant in contents.Besides the rich knowledge of PNs,the book covers almost every aspects regarding FMS design and analysis,such as modeling,simulation,performance evaluation,planning and scheduling,break down handling,real-time control,con-trol software development,etc.So,the reader can obtain much knowledge in PN, FMS,discrete event system control,system simulation,scheduling,as well as in software development.The book is a very good book in the combinations of PNs theory and prac-tical applications.Throughout the book,the integrated style is demonstrated.It is very well suited for the graduate students and beginners who are interested in using PN methods in studying their speci®c problems.The book is especially suited for the researchers working in the areas of FMS,CIMS,advanced man-ufacturing technologies.The feedback messages from our graduate students show that compared with other books about PNs,this book is more interested and easy to learn.It is easy to get a clear picture about what is PNs method and how it can be used in the FMS design and analysis.So,the book is a very good textbook for the graduate students whose majors are manufacturing systems, industrial engineering,factory automation,enterprise management,and computer applications.Both PNs and FMS are complex and research intensive areas.Due to the deep understanding for PNs,FMS,and the writing skills of the authors,the book has good advantages in describing complex problems and theories in a very easy read and understandable fashion.The easy understanding and abundant contents enable the book to be a good reference book both for the students and researchers. Through reading the book,the readers can also learn the new research results in PNs and its applications in FMS that do not contained in other books.Because the most new results given in the book are the study achievements of the authors,the readers can better know not only the results,but also the background,history,and research methodology of the related areas.This would helpthe researchers who are going to do the study to know the state-of-art of relevant areas,thus the researchers can begin the study in less preparing time and to get new results more earlier.As compared to other books,the organization of the book is very application oriented.The aims are to present new research results in FMS applications using PNs method,the organization of the book is cohesive to the topics.A lot of live examples have reinforced the presented methods.These advantages make the book to be a very good practical guide for the students and beginners to start their re-search in the related areas.The history and reference of related research given in this book provides the reader a good way to better know PNs methods and its applications in FMS.It is especially suited for the Ph.D.candidates who are determined to choose PNs as their thesis topics.950Book review/Mechatronics11(2001)947±9503.ConclusionsDue to the signi®cant importance of PNs and its applications,PNs have become a common background and basic method for the students and researchers to do re-search in modeling,planning and scheduling,performance analysis,discrete event system control,and shop-¯oor control software development.The book under re-view provides us a good approach to learn as well as to begin the research in PNs and its application in manufacturing systems.The integrated and application oriented style of book enables the book to be a very good book both for graduate students and researchers.The easy understanding and step-by-step deeper introduction of the contents makes it to be a good textbook for the graduate students.It is suited to the graduated students whose majors are manufacturing system,industrial engineering, enterprise management,computer application,and automation.References[1]Talavage J,Hannam RG.Flexible manufacturing systems in practice:application,design,andsimulation.New York:Marcel Dekker Inc.;1988.[2]Tetzla UAW.Optimal design of¯exible manufacturing systems.New York:Springer;1990.[3]Jha NK,editor.Handbook of¯exible manufacturing systems.San Diego:Academic Press,1991.[4]Carrie C.Simulation of manufacturing.New York:John Wiley&Sons;1988.[5]Gupta YP,Goyal S.Flexibility of manufacturing systems:concepts and measurements.EuropeanJournal of Operational Research1989;43:119±35.[6]Carter MF.Designing¯exibility into automated manufacturing systems.In:Stecke KE,Suri R,editors.Proceedings of the Second ORSA/TIMS Conference on FMS:Operations Research Models and Applications.New York:Elsevier;1986.p.107±18.[7]David R,Alla H.Petri nets and grafcet.New York:Prentice Hall;1992.[8]Zhou MC,DiCesare F.Petri net synthesis for discrete event control of manufacturing systems.Norwell,MA:Kluwer Academic Publishers;1993.[9]Desrochers AA,Al-Jaar RY.Applications of petri nets in manufacturing systems.New York:IEEEPress;1995.[10]Zhou MC,editor.Petri nets in¯exible and agile automation.Boston:Kluwer Academic Publishers,1995.[11]Lin C.Stochastic petri nets and system performance evaluations.Beijing:Tsinghua University Press;1999.[12]Peterson JL.Petri net theory and the modeling of systems.Englewood Cli s,NJ:Prentice-Hall;1981.[13]Resig W.Petri nets.New York:Springer;1985.[14]Jensen K.Coloured Petri Nets.Berlin:Springer;1992.Yushun FanDepartment of Automation,Tsinghua UniversityBeijing100084,People's Republic of ChinaE-mail address:*****************。
一类不确定对象的扩张状态观测器
一类不确定对象的扩张状态观测器一、本文概述在当今复杂的工程和科学领域,对系统状态进行准确观测和估计是至关重要的。
当涉及到一类具有不确定性的对象时,传统的状态观测器设计方法可能无法满足性能要求。
针对这一问题,本文提出了一种新颖的扩张状态观测器(Extended State Observer, ESO)设计方法,专门用于处理一类具有不确定性的对象。
本文的核心思想是将对象的不确定性视为一个额外的状态,并将其纳入到观测器的设计中。
通过这种方式,观测器不仅能够估计对象的内部状态,还能够实时估计和补偿不确定性。
这一方法的关键在于设计一个适当的扩张状态观测器,使其能够在存在不确定性的情况下仍然保持良好的性能。
本文的结构安排如下:我们将介绍一类不确定对象的数学模型,并讨论其特性。
接着,我们将详细阐述所提出的扩张状态观测器的设计原理和步骤。
我们将通过仿真实验验证所提出方法的有效性和鲁棒性。
我们将总结全文并提出未来可能的研究方向。
本文的研究成果有望为处理不确定性对象的状态观测问题提供新的思路和方法,对于提高系统的性能和可靠性具有重要意义。
二、不确定对象建模与分析在现代控制理论中,不确定对象的建模与分析是确保系统稳定性和性能的关键步骤。
不确定对象通常指的是那些存在参数变化或外部扰动的系统,这些不确定性因素可能会对系统的行为产生显著影响。
为了有效地设计一个扩张状态观测器,首先需要对这些不确定因素进行准确的建模。
在建模过程中,我们通常采用数学方法来描述系统的动态特性和不确定性。
这包括使用状态空间表示法来定义系统的状态变量和方程,以及引入适当的不确定性模型,如摄动理论或概率模型,来描述系统参数的不确定性。
通过对这些不确定性进行量化,我们可以更好地理解和预测系统在不同操作条件下的行为。
分析不确定对象时,我们的目标是确定系统在各种不确定性条件下的稳定性和性能。
这通常涉及到对系统方程进行线性化处理,并应用如Lyapunov稳定性理论等方法来评估系统稳定性。
sentaurus sde语法详解
sentaurus sde语法详解Sentaurus SDE是一种用于半导体器件仿真的软件工具,在电路和设备级别上提供了准确和稳定的仿真结果。
本文将详细介绍Sentaurus SDE的语法和使用方法。
首先,Sentaurus SDE使用一种基于命令行的界面来实现仿真。
用户可以通过输入特定的命令来执行不同的任务,例如建立模型、运行仿真和分析结果等。
Sentaurus SDE的语法十分丰富和灵活,可以支持多种不同类型的半导体器件仿真。
以下是一些常用的语法元素:1. 设备建模:Sentaurus SDE使用一套丰富的语法来建立器件模型。
用户可以定义材料、掺杂、结构和物理参数等。
例如,使用"Doping"关键字来定义掺杂参数,使用"Structure"关键字来定义器件结构。
2. 边界条件:用户可以通过设置边界条件来模拟器件的工作环境。
例如,可以定义电压源、电流源或恒定电场等。
使用"Boundary"关键字和相应的语法来定义边界条件。
3. 物理模型:Sentaurus SDE支持多种物理模型,用于描述器件内部的物理行为。
例如,可以使用Drift-Diffusion模型来描述电流输运,使用Shockley-Read-Hall 模型来描述载流子复合等。
4. 网格和网格细化:在仿真过程中,Sentaurus SDE使用网格来离散器件空间。
用户可以定义网格尺寸、细化策略和边界条件等,以获得理想的仿真结果。
5. 结果分析:完成仿真后,用户可以使用Sentaurus SDE的语法来分析仿真结果。
例如,可以绘制电势分布图、流线图或载流子分布图等。
使用"Plot"关键字和相应的语法来执行结果分析。
总结:Sentaurus SDE是一种强大的半导体器件仿真工具,具有丰富的语法和灵活的使用方式。
通过学习和熟悉Sentaurus SDE的语法,用户可以轻松建立模型、运行仿真并分析结果。
Autodesk Nastran 2023 参考手册说明书
FILESPEC ............................................................................................................................................................ 13
DISPFILE ............................................................................................................................................................. 11
File Management Directives – Output File Specifications: .............................................................................. 5
BULKDATAFILE .................................................................................................................................................... 7
OPT++ An object-oriented class library for nonlinear optimization
SAND94-8225 Unlimited Release Printed March 1994
OPT++: An Object-Oriented Class Library for Nonlinear Optimization
J. C. Meza
Albuqueque. New Mexico 87185 and Livermore California 94551 Department of Energy for the United States
Contents
Introduction Object-Oriented
2.1
7 Programming
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401 Available to the public from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd. Springfield, VA 22161
复合材料厚板结构三维有效弹性常数计算模块化程序
o to r pc a ior p tr l a tma ial o e ti k c mp st a n t tu t r sw ih a e fr d r t i n s t ymae i s uo t l frt c o o i lmi a e s cu e h c r o me h o o a c y h h e r
b eidc l tc ig sq e c .I i a pidt h tt n ls n c mp s e slrwigc n e t g yp ro ial sa kn e u n e t s p l otegai a ayi o o o i oa n o n ci y e c s t n
g n r td, a d h sr i a ay i r s ls f t e t c u e un e d sg l a i g r o t ie e eae n t e ta n n l ss e ut o h sr t r s u d r e in o d n a e b an d. T he c mp rs n o h f t ee e t n l ss e u t n t e e t e u t n iae t a t e r g a o a o f t e i e lm n a ay i r s l i ni a d h t s r s l i d c ts h t h p o r m c n a ef ciey c lu ae t e 3D fe tv lsi o sa t ft ik c mp st a n t t cu e n mp o e fe tv l a c lt h ef cie ea tc c n tn s o h c o o ie l mi ae sr tr s a d i r v u t e e ce c n ei b l y o mo ei g o o o i t c u e . h f in y a d r l i t f3 i a i D d ln n c mp st sr t r s e u
基于等几何分析的移动可变形组件拓扑优化方法及应用
优化算法设计与实现
遗传算法
利用遗传算法的全局搜索能力和并行计算优势,实现 高效优化。
粒子群优化算法
通过模拟鸟群、鱼群等生物群体的行为规律来进行优 化搜索。
模拟退火算法
通过引入随机因素和冷却机制,在搜索过程中避免陷 入局部最优解,提高搜索效率。
04
应用案例与分析
航空发动机叶片设计案例
总结词
高效、精准、低成本
研究方法
首先,采用等几何分析方法对移动可变形组件进行精确建模;其次,结合拓扑 优化算法,提出一种新的移动可变形组件拓扑优化模型;最后,通过数值实验 验证所提方法的可行性和优越性。
02
基于等几何分析的拓扑优 化方法
等几何分析基本理论
等几何分析(Isogeometric Analysis,简称IGA)是一种新型的 数值分析方法,将计算机图形学与计 算机科学相结合,通过非均匀B样条 (NURBS)等几何基函数对物理问 题进行表示和分析。
研究不足与展望
虽然该方法在处理移动可变形组件的 形状和拓扑优化问题上取得了一定的 成果,但是在某些复杂的情况下,该 方法可能会出现收敛速度较慢或者求 解精度不高等问题,需要进一步完善 和改进。
在实际应用中,需要考虑的因素很多 ,包括材料属性、边界条件、载荷条 件等等,这些因素对移动可变形组件 的形状和拓扑优化有着重要的影响, 需要进一步研究和探讨。
02
约束包括体积约束、位移约束、应力约束等,目标是最小化结
构质量、最大化刚度等。
通过建立数学模型,可以运用数值优化方法求解拓扑优化问题
03
,得到最优解。
优化算法设计与实现
全局优化算法用于求解大规模、复杂结构的拓扑优化问 题,如遗传算法、模拟退火算法等。
面向对象有限元并行计算框架PANDA求解器的服务构件化设计与集成
Absr c t a t:Ac odig t h c mmo e t r t tma y tu t r l fn t ee n o r ms ne d t u e c r n o te o n f au e ha n sr cu a ie l me tpr g a e o s i n me c lmeho s t ov y tm o mu a,c mp n n — a e e in frn u r a t d o s l e s se fr l i o o e tb s d d sg o ume c ls l i g i r p s d t i r a ov n sp o o e o
方 面 的 选择 .
关键 词 : 并行 计 算框 架 ; A D P N A;有 限元 ; 件 开发 ; 件化软 件设 计 ;求解器服 务 ;构件 集成 软 构
中图分 类号 : P 1 ;0 4 T 3 1 22 文献 标志码 :A
Co p n n - a e e i n a nt g a i n o o v r s r i e o m o e tb s d d sg nd i e r to fs l e e v c f
a he e c iv d. At r s n , P p e e t ANDA fa wo k a p o i e b nd n ume c l ovng r me r c n r v d a u a t n i r a s l i meh d f r fn t to s o ie i ee n p lc to s l me ta p iai n . Ke wo d y r s: p r l l c mp t t n fa e r a a l o u a i r m wo k; P e o ANDA ; fn t ee n ; s f r d v lp n ; i ie l me t ot e wa e eo me t c mp n n - a e ot r e in; s le e ie; o o e ti t ga in o o e tb s d s fwa e d sg ov rs r c ;c mp n n n e to v r
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
有限元在粘弹性细棒动力学参数反演中的应用
( 西北 工业 大 学 航 海学 院 ,西安 7 1 0 0 7 2)
摘 要: 粘 弹性材料 具有 良好 的阻尼性能 , 在 工程振动 与噪声处理上 的应用 非常广泛 。利用粘 弹性材料进行 阻尼 结构 设计 并预 测其动力学特性 , 需要知道准确的动力学参数 。回顾粘 弹性材 料动力学参数测试的经典方法, 并着 重介 绍共振法 测试 技术 。研究共振法测试 中细棒的动力学响应与动力学参数 间的关 系, 在此基础上 , 基 于共振法 测试 数据 和有 限元 仿真 , 提 出一种反演粘弹性材料动力学参数 的新 方法 。首先根 据幅值 比反演 出损耗因子, 再根 据共 振频 率反 演 出储能模 量 。通 过具体算例 验证可 知 , 反演得 出的动力学 参数的相对 误差均在 4% 以内, 该反演方 法不仅结 果收 敛、 准确可靠且反演速度快 , 为在连续频率 范围内的动力学参数反演奠定基础 。 关键 词: 振动与波 ; 粘弹性 ; 动力学参 数; 共振法 ; 有限元;参数估 计 中图分类号: T B5 2 3 ; O2 4 1 . 8 2 文献标识码 : A D OI 编码 : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 6 - 1 3 3 5 . 2 0 1 3 . 0 6 . 0 1 6
7 2
有 限元 在粘 弹性 细棒 动力 学参 数反演 中的应用
2 0 1 3 年l。 1 3 5 5 ( 2 0 1 3 ) 0 6 — 0 0 7 2 - 0 4
有 限元在粘弹性细棒 动力学参数反演 中的应用
余 虎 ,侯 宏 ,孙 亮 ,曹 文
v i s c o e l a s t i c s l e n d e r b a r s wa s p r e s e n t e d ,i n wh i c h t h e me a s  ̄e d r e s p o n s e o f l o n g i t u d i n a l v i b r a t i o n wa s a s y mp t o t i c a l l y
GSM0710中文版
杭州波导软件有限公司
3.4. 过程和状态..................................................................................................................... 20 3.4.1. 建立 DLC 链路 ........................................................................................ 20 3.4.2. 释放 DLC 链路 ........................................................................................ 20 3.4.3. 信息传输 .................................................................................................. 21 3.4.4. 帧变量...................................................................................................... 21 3.4.5. 超时的考虑 .............................................................................................. 22 3.4.6. 多路控制通道 .......................................................................................... 22 3.4.6.1. 控制消息格式........................................................................................... 22 3.4.6.2. 控制消息类型参数 ................................................................................... 23 3.4.7. 电源控制与唤醒机制 .............................................................................. 32 3.4.8. 流控.......................................................................................................... 32 3.5. 集成层 Convergence Layer ............................................................................................ 34 3.5.1. 类型 1-未结构化的字节流...................................................................... 34 3.5.2. 类型 2-带参数的未结构化的字节流...................................................... 34 3.5.3. 类型 3-不可中断的帧数据...................................................................... 36 3.5.4. 类型 4-可中断的帧数据.......................................................................... 36 3.6. DLCI 值 ........................................................................................................................... 37 3.7. 系统参数......................................................................................................................... 37 3.7.1. 确认时间 T1 ............................................................................................ 37 3.7.2. 帧的最大长度 N1 .................................................................................... 38 3.7.3. 最大重发次数 N2 .................................................................................... 38 3.7.4. 窗口大小 k ............................................................................................... 38 3.7.5. 控制通道的响应时间 T2 ........................................................................ 38 3.7.6. 唤醒流程的响应时间 T3 ........................................................................ 38 3.8. 启动和关闭 MUX .......................................................................................................... 38 4. Error Recovery Mode ................................................................................................................. 39
器件仿真工具(DESSIS)的模型分析
E E
0 g
Fermi g
0 δ Eg,0和△Eg 随所选用的禁带变窄效应
模型的不同而不同。DESSIS中共有四种:
Bennett模型
Slotboom模型
OldSlotboom模型
delAlamo模型
四种能带变窄模型的函数对比图
四种模型在1×1015cm-3~1×1021cm-3浓度范围 内的最大差距约为0.1 eV,相应的本征载流子浓度最 大差距约为10.5%。 一般情况下选择OldSlotboom模型。
dop
下图描绘了电子和空穴迁移率在300 K温度时随浓 度的退化曲线,可以看出三种模型下迁移率随浓度的 退化只有在1×1019cm-3以上的掺杂浓度时偏差较大, 因此只有在计算源漏掺杂区域(20次方量级)的电阻
值的时候,不同模型下的计算结果才会有较大差异,
而计算阱电阻(17次方量级)的时候差异较小。
高场饱和引起的迁移率退化(主要与电场强度有关) ;
表面声子及表面粗糙度引起的迁移率退化(主要与表
面横向电场有关系);
DESSIS中以上各种迁移率退化模型可以任意组 合,而最终的迁移率值按照下式计算得到。
1 1 1 1
low
1
2
m 1
m(6.26)
1
f (low , F )
传输方程模型、 能带模型(还包括玻耳兹曼统计模型或费米统计模型的 选择) 迁移率模型、 载流子产生-复合模型。
本章内容
传输方程模型
能带模型
迁移率模型
雪崩离化模型 复合模型
本章内容
面向对象仿真技术研究与实现
面向对象仿真技术研究与实现在现代科技的发展中,仿真技术已经成为了许多领域中不可或缺的一环,同时面向对象仿真技术也逐渐成为了人们的关注重点。
随着人工智能、自学习系统、机器人技术等领域的发展,仿真技术将在不断壮大的基础上进一步为我们带来更加繁荣的未来。
本文将就面向对象仿真技术的研究和实现进行深入探讨。
一、面向对象仿真技术的概述面向对象仿真技术(Object-Oriented Simulations,以下简称OOS)是基于面向对象编程思想而产生的一种仿真技术。
目前OOS被广泛应用于机器人技术、人工智能、虚拟现实、系统分析等领域。
OOS凭借其良好的灵活性、易维护性、易扩展性以及直观的视觉呈现方式,已经成为了目前十分受欢迎的仿真技术之一。
OOS技术主要包括以下方面的内容:1. 建模:通过面向对象的方法,将现实世界中的元素抽象为对象,从而在计算机上建立相应的模型。
2. 运动规律描述:对于建立的对象模型,在计算机中设定其运动规律,也就是模拟对象的运动轨迹。
3. 交互与反馈:OOS在交互与反馈方面做得十分到位,能够对仿真系统进行有效的监测和交互,从而增强其动态性与真实性。
4. 数据处理:OOS在数据处理方面的应用比较广泛,能够有效地对仿真数据进行处理、分析和管理。
5. 可视化:OOS技术凭借着其良好的可视化效果,能够为用户提供直观而感性的视觉体验。
二、构建OOS模型的关键技术1. 面向对象编程思想的运用面向对象编程思想(Object-Oriented Programming,以下简称OOP)是OOS技术的基础,它可以通过封装、继承、多态等特性来描述仿真对象及其运动规律。
OOP编程思想对于对象复用性、维护性、扩展性和可读性方面的优势显而易见。
2. 物理特性的表达OOS模型的构建需要将仿真对象在计算机上以合适的方程式进行表达。
比如对于机器人的运动轨迹,可以通过描述机器人的物理特性来表达其运动轨迹。
又比如对于人物的行走模型,可以通过模拟人体的物理特征来表达其运动模型。
nastran万向节一维模拟设置方法
nastran万向节一维模拟设置方法Nastran是一款广泛应用于工程领域的有限元分析软件,它可以用于模拟和分析各种结构的力学行为。
在Nastran中,万向节一维模拟是一种常见的设置方法,它可以模拟和分析物体在空间中的运动。
万向节是一种用于连接两个旋转轴的装置,它可以实现物体在不同轴向上的旋转运动。
在一维模拟中,我们可以使用Nastran来模拟和分析万向节的性能。
在进行Nastran万向节一维模拟设置之前,我们首先需要确定模拟的目标和需求。
例如,我们可能需要分析万向节在不同载荷和转速下的动力学响应,或者评估万向节在不同工作条件下的可靠性。
根据具体的需求,我们可以选择不同的模拟设置方法。
接下来,我们需要创建Nastran模型并定义万向节的几何形状和材料属性。
在Nastran中,我们可以使用节点、单元和材料等元素来描述物体的几何形状和物理特性。
通过设置节点和单元的坐标和连接关系,我们可以定义万向节的几何形状。
同时,我们还需要输入万向节的材料属性,如弹性模量和密度等。
在模型创建和属性定义完成后,我们需要定义加载和约束条件。
加载条件是指作用于万向节的外部力或力矩,可以是静态加载或动态加载。
约束条件是指限制万向节运动的条件,如固定轴向或限制旋转角度等。
这些加载和约束条件的设置将直接影响到模拟结果的准确性和可靠性。
完成加载和约束条件的设置后,我们可以进行模拟计算并分析结果。
在Nastran中,模拟计算可以通过求解有限元方程来获得物体的力学响应。
通过分析结果,我们可以评估万向节的性能和可靠性,并根据需要进行优化设计或改进。
在Nastran万向节一维模拟设置过程中,我们需要注意以下几点。
首先,确保模型的几何形状和材料属性的准确性和合理性,以保证模拟结果的可靠性。
其次,合理选择加载和约束条件,以模拟实际工况下的物体运动。
最后,对模拟结果进行分析和解读时,要注意排除误差和歧义,确保结果的准确性和可靠性。
Nastran万向节一维模拟设置是一种常见的工程应用方法,它可以用于模拟和分析万向节在不同工况下的运动行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The35th IEEE Conference on Decision and Control CDC'96,Kobe,Japan,December11-13,1996.Object-Oriented Componentsfor Simulation of Adaptive ControllersMattias Grundelius Sven Erik Mattsson Karl J.ÅströmDepartment of Automatic Control,Lund Institute of TechnologyBox118,S-22100LUND,SwedenE-mail:mattias@control.lth.se svenerik@control.lth.se kja@control.lth.seAbstractThe ideas of object orientation are convenient to describe complex technical systems.This paper de-scribes how an adaptive controller is conveniently structured in this way.This approach isflexible and safe.It also permits reuse and easy modification of models through the mechanisms of inheritance and specifications.The particular implementation is based on the language Omola and the interactive simulation environment OmSim.1.IntroductionA basic aim of object-oriented modeling is to support reuse so a model component can be used as a part in different applications to solve a variety of problems.A user can make the model simply by combining com-ponents,if there are good model libraries available. This paper presents an object-oriented approach to definition of adaptive controllers.The modeling language used is Omola[1,8,7].It supports object-oriented structuring concepts.Mod-els can be decomposed hierarchically with well-defined interfaces that describe interaction.All model components are represented as classes.Inher-itance and specialization support easy modification. Omola supports behavioural descriptions in terms of differential-algebraic equations(DAE),differential equations and difference equations.The behavioural descriptions may also contain discrete event ele-ments.The primitives for describing discrete events allow implementation of high level descriptions as Petri nets and Grafcet.An interactive environment called OmSim supports modeling and simulation[2]. Omola and OmSim has been used in applications to model and simulate power networks,power genera-tion,process systems,towed sonar arrays etc.The paper givesfirst an introduction to Omola.A modularized approach to adaptive control is then presented and the internals of the model components are described.An application is given in[6].2.Introduction to OmolaTo introduce Omola,we will discuss definition of model components whose behaviour is given as a continuous time transfer functionG(s)b0s n+b1s n−1+⋅⋅⋅+b nA transfer function can be parameterized in severalways.Another form isf1s n−1+⋅⋅⋅+f nG(s) d+(2)q n+a1q n−1+⋅⋅⋅+a nwhere q is the forward shift operator.We can reuse SISOShell and add a behaviour:DSISO ISA SISOshell WITHCLOCK ISAN InputEvent;x TYPE DISCRETE Column[n];y0TYPE DISCRETE Real;WHEN CLOCK DOnew(x):=-trans(A[2..n+1)*x[1]+[x[2..n];zeros(min(n,1),1)]+trans(F)*u;new(y0):=x[1]+d*new(u);END;y=y0;END;The input terminal CLOCK defines the sampling in-stants.It allows synchronization with other compo-nents.The event body‘WHEN CLOCK DO actions END’defines what happens each time the event CLOCK istriggered.The construct‘new(x)’refers to the valueof x immediately after the event,while‘x’refers tothe value immediately before the event.It is alsonecessary to define the values of x and y0betweenthe sampling instances.Here it is natural to let themkeep their values constant between the sampling in-stances,i.e.,to assume zero-order hold.This is de-clared by the keyword DISCRETE.The values of dis-crete variables can only be changed as an effect ofafired discrete event.Note that different events areallowed to set same variables.An event may trigger many events.When this hap-pens the actions are merged and sorted.An eventdefinition need not explicitly define every single ele-ment of the state update.A continuity assumption isused to deduce equations such as‘new(v):=v’forall variables that are not assigned explicitly in theevent definitions,and that cannot be deduced fromthe continuous time part equations.This means thatmost event actions can be defined in terms of vari-ables that are local in the same model component asthe event definition.The global effect of the event is deduced automatically from the connections of the structured model.Continuous time relations such as‘y=y0’are as-sumed to give constraints on continuous time vari-ables.This means that‘y=y0’actually implies ‘y:=y0’and that y can be deduced to be a discrete time variable.OmSim handles this automatically in an efficient way.We could have avoided the introduc-tion of y0by redefining y as a discrete time variable.3.ModularizationIn the object-oriented modeling approach wefirst identify the model components and define their inter-faces.The behaviour of each component type is then described.The behavior of a component can either be given as equations or as interconnected components. Our modeling approach is thus hierarchical.An adaptive controller can be built in many ways. See e.g.the textbook[3].Here we will focus on an indirect self-tuning regulator.The object diagram in Fig.1identifies the key components of an adaptive controller and their interactions.3.1Process ModelThe modules Estimation and Design must agree on model structure.To be specific,the following single-input,single-output model is usedA(q)y(t) B(q)u(t)(3)where y is the output and u the input of the process. Estimation estimates process parameters and trans-fers them to Design.A terminal class defined asModelPars ISA RecordTerminal WITHA,B ISA DiscrRowTerm;Update ISAN EventTerminal;END;Figure1An indirect self-tuning regulator.supports a mailbox scheme for passing parameters. When Estimation has new estimates available it puts them in A and B and triggers Update.A connection between two simple terminals T1and T2mean that their values should be equal,T1=T2. The model compilation procedure deduces the com-putational causality automatically.There is also a class ZeroSumTerminal which is used for terminals that should sum to zero.For a composite terminal, i.e.,a terminal that is a subclass of RecordTerminal, a connection means that the components are con-nected.A connection also propagates information on dimen-sionality of simple terminals.For example,assume that the model parameter terminals of Estimation and Design are called MP.It is sufficient to define the dimensions of A andB of Estimation.MP ex-plicitly.A connection between Estimation.MP and Design.MP then implicitly defines the dimensions of Design.MP.A and Design.MP.B.OmSim will auto-matically deduce the regulator order,if Design is provided with relations between model order and regulator order.3.2Control structureDesign and Controller must agree on control struc-ture and parameters used.A general linear,discrete time controller can be described byR(q)u(t) T(q)u c(t)−S(q)y(t)(4) where R,S and T are polynomials.To allow passing of controller parameters,we intro-duce the terminal classControllerPars ISA RecordTerminal WITHR,S,T ISA DiscrRowTerm;Update ISAN EventTerminal;END;Controller includes the sampling clock.It is sup-posed to make measured values and calculated con-trol value available to Estimation: ProcessDataTerminal ISA RecordTerminal WITH u,y ISA SimpleTerminal;Update ISAN EventTerminal;END;3.3The modulesThe controller(4)is a MISO system which can be implemented as a simple extension of the SISO sys-tem described in Section2.Multiple inputs are read-ily handled by an observability canonical realization. We will here focus on the design and estimation mod-ules.4.The Design ModuleAs an example of a design module let us discuss minimum-degree pole placement[3,pp.92–102]. 4.1Minimum-degree pole placementLet the process model be(3),where the polynomial B is factored as B+B−with B+being monic.Let the desired closed loop response be specified byA m(q)y(t)B m(q)B−(q)u(t)(5) where deg A m deg A and deg B m deg B+.The controller is(4)where R R′B+and S is the solution to the Diophantine equationAR ′+B−S AoA m(6)where A0is a given polynomial with deg A0 deg A−deg B+−1.Form T A0B m.There are some interesting special cases.•All zeros cancelled.It is natural to choose B mA m(1)q d0where d0 deg A−deg B.ThenB− b0,B+ B/b0and T A m(1)q d0/b0.The closed-loop polynomial becomes B+A0A m.This approach requires that all process zerosare stable and well damped.•No zeros cancelled.Take B+ 1,B− B andB m βB,whereβ A m(1)/B(1).The closed-loop characteristic polynomial is A0A m.4.2ImplementationThe interface of the design module consists of one terminal MP for obtaining estimated parameters and one terminal CP to pass on calculated controller parameters:DesignShell ISA Model WITHMP ISA ModelPars;CP ISA ControllerPars;END;An implementation of a minimum degree controller with no cancellation of zeros is given byMDNZC_Design ISA DesignShell WITHdegAo TYPE Integer:=MP.A.n-2;CP.R.n:=MP.A.n-1;CP.S.n:=MP.A.n-1; CP.T.n:=degAo+1;Ao ISA RowPar WITH n:=degAo+1;END;Am ISA RowPar WITH n:=MP.A.n;END;nRS TYPE Integer:=CP.R.n+CP.S.n;RS TYPE DISCRETE Row[nRS];Am1,B1TYPE DISCRETE Real;WHEN MP.Update DOnew(RS):=diophant(MP.A,MP.B,mult(Am,Ao));new(CP.R):=new(RS[1..CP.R.n]);new(CP.S):=new(RS[CP.R.n+1..nRS]);new(Am1):=Am*ones(MP.A.n,1)new(B1):=B*ones(MP.B.n,1);new(CP.T):=new(Am1/B1)*Ao;schedule(CP.Update,0);END;END;The function‘diophant(MP.A,MP.B,mult(Am,Ao))’returns a solution to(6).The numerical routine is based on[4].The call schedule(E,delay_time) implies that the event E should be triggered at a time delay_time after this event.In this case the delay time is zero,which mean that CP.Update is triggered immediately after the controller parameters have been calculated.To obtain a synchronization with the receiver of the parameters,the code should look like %...WHEN MP.Update CAUSE CP.Update DO%as above,but no schedule statement END;%...However,in this case Design needs no synchroniza-tion,since the informationflow is unidirectional.The design procedure does not refer to any quantities in the receiving controller.5.The Estimation Module Recursive least square is a simple estimation proce-dure(see e.g.,[3,p.53]).5.1Recursive least square estimation Recursive least squares estimation with exponential forgetting is given by the equationsK(t) P(t−1)ϕ(t)/(λ+ϕT(t)P(t−1)ϕ(t)θ(t) θ(t−1)+K(t)(η(t)−ϕT(t)θ(t−1))P(t) (I−K(t)ϕT(t))P(t−1)/λFor a model model of the form(3)we haveϕT(t) [−y(t−1)...−y(t−n a)u(t−d)...u(t−d−n b)]η(t) y(t)θT(t) [a1...a n a b0...b n b] where d deg A−deg B.The variablesη,ϕandθhave other interpretations for other models.How-ever,the same estimation algorithm can be used.It is thus useful to decompose the module into two parts,one that implements the estimation algorithm and another part that forms the regression vector,super-vises the estimation and handles starts and stops.It is then possible to obtain more sophisticated al-gorithms by adding regression filters and other fea-tures.5.2ImplementationThe interface of the estimation module consists of one terminal P for the process values and one termi-nal MP to pass on the estimated model parameters.It should be easy to exchange the modules.Inheri-tance and redefinition support this requirement.For this purpose we first define a shell model,which specifies terminals,components and their connec-tions.Let us call it EstimationShell .This is con-veniently done using a graphical editor in OmSim to draw an object diagram.See Fig.2.The component EstCont is of the class EstContShell and the compo-nent EstAlg is of the class EstAlgShell .These two shell models define terminals.The terminals con-necting EstCont and EstAlg is of the classEstComTerminal ISA RecordTerminal WITH eta,e ISA DiscreteTerminal;phi,theta ISA DiscrVectorTerm;Newphi,Newtheta ISA EventTerminal;END;It handles communication between the estimation al-gorithm and the control module,which are assumed to collaborate in the following way1.When EstimationShell.P.Update is fired ex-ternally this indicates that new measurements are available in EstimationShell.P .2.EstCont sets phi (ϕ)and eta (η)and triggers Newphi .3.EstAlg calculates a new parameter estimate theta (θ)and the prediction error e and trig-gers Newtheta .4.EstCont sets MP.A and MP.B and triggers MP.Update to indicate that new parameter es-timates areavailable.Figure 2An object diagram for the estimation module.A recursive least squares module given byRLS_Algorithm ISA EstAlgShell WITH lambda ISA Parameter;nPar TYPE Integer :=EC.theta.n:th0ISA VectorPar WITH n :=nPar;END;P0ISA SqMatrixPar WITH n :=nPar;END;P TYPE DISCRETE Matrix[nPar,nPar];K TYPE DISCRETE Column[nPar];WHEN Init DOnew(EC.theta):=th0;new(P):=P0;schedule(EC.Newtheta,0);END;WHEN EC.Newphi DO new(K):=P*EC.phi/(lambda +trans(EC.phi)*P*EC.phi);new(EC.e):=EC.eta -trans(EC.phi)*EC.theta;new(EC.theta):=EC.theta +new(K*EC.e);new(P):=(P -new(K)*trans(EC.phi)*P)/lambda;schedule(EC.Newtheta,0);END;END;A simple estimation controller is given bySISO_EstCont ISA EstContShell WITH degA,degB TYPE Integer;nPar TYPE Integer :=degA +degB +1;MP.A.n :=degA+1;MP.B.n :=degB+1;EC.theta.n :=nPar;EC.phi.n :=nPar;WHEN P.Update DOnew(EC.eta):=P.y;schedule(EC.Newphi,0);END;WHEN EC.Newtheta DOnew(EC.phi):=[-P.y;EC.phi[1..degA-1];P.u;EC.phi[degA+1..nPar-1]];new(MP.A):=[1,trans(EC.theta[1..degA])];new(MP.B):=trans(EC.theta[degA+1..nPar]);schedule(MP.Update,0);END;END;A recursive least square estimator is given bySISO_RLS_Estimation ISA EstimationShell WITH EstCont ISA SISO_EstCont;EstAlg ISA RLS_Algorithm;END;The class specifications for EstCont and EstAlg over-writes those inherited from EstimationShell ,but all other attributes such as the connection remain unchanged.Inheritance can be viewed as a kind of parameterization where every attribute can be ex-changed by a part with a compatible interface.6.The Self-Tuning RegulatorIt is convenient to define a shell model,which spec-ifies components and their connections.See Fig.3.Estimation is of class EstimationShell and Design is a DesignShell .The complete implementation is used for RST_Controller ,since this class in itself is general.For example,an indirect self-tuning regulator based on minimum-degree pole placement with no zero can-cellation,and and recursive least square algorithm for parameter estimation is defined asISTR_MDNZC_RLS ISA ISTR_Shell WITH Design ISA MDNZC_Design;Estimation ISA SISO_RLS_Estimation;END;A self-tuning regulator has a number of parameters,such as model order and polynomials A m and A 0.To improve the interface and facilitate use,we may de-fine them as parameters of the self-tuning regulator class and express the corresponding parameters of the Design and Estimation in terms of these.7.ConclusionsThis paper has discussed use of object-oriented mod-eling for definition of components of adaptive con-trollers.The approach makes it easy to test and evaluate new designs and applications of adaptive controllers.Omola allows specification of components in a natural way.The compilation procedure trans-forms the description to a representation which is ef-ficient for numerical solution.The description is also a sound basis for generating code for real controllers.However,this is not supported by OmSim today.In-heritance and specialization make it easy to modify or exchange a eful shells are easily developed.The components have been used to sim-ulate adaptive controllers for systems with backlash [5,6].It is also used in the course Adaptive Control,see URL:http://www.control.lth.se/~kursar .OmSim is available via anonymous FTPfromFigure 3An object diagram for an indirect self-tuning controller.URL:ftp://ftp.control.lth.se/pub/cace .Cur-rently there are versions for Sun workstations and HP workstations as well as for PC’s running the Linux operating system For information on Omola and access to OmSim see WWW at URL:http://www.control.lth.se/~cace .AcknowledgementsThe work has been supported by the Swedish Na-tional Board for Industrial and Technical Develop-ment.under contract 9304688-3and the Swedish Re-search Council for Engineering Sciences under con-tract 95-956.8.References[1]M.A NDERSSON .Object-Oriented Modeling andSimulation of Hybrid Systems .PhD thesis ISRN LUTFD2/TFRT--1043--SE,December 1994.[2]M.A NDERSSON ,S.E.M ATTSSON ,D.B R ¨UCK,AND T.S CHÖNTHAL .“OmSim—An integrated environ-ment for object-oriented modelling and simula-tion.”In Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design,CACSD’94,pp.285–290,Tucson,Ari-zona,March 1994.[3]K.J.ÅSTRÖM AND B.W ITTENMARK .AdaptiveControl .Addison Wesley,second edition,1995.[4]J.E KER AND K.J.ÅSTRÖM .“A C ++classfor polynomial operations.”Report ISRN LUTFD2/TFRT--7541--SE,December 1995.[5]M.G RUNDELIUS .“Adaptive control of sys-tems with backlash.”Master thesis ISRN LUTFD2/TFRT--5549--SE,January 1996.In Swedish.[6]M.G RUNDELIUS AND D.A NGELI .“Adaptive con-trol of systems with backlash acting on the in-put.”In Proceedings of the 35th IEEE Confer-ence on Decision and Control ,Kobe,Japan,De-cember 1996.[7]S. E.M ATTSSON ,M.A NDERSSON ,AND K.J.ÅSTRÖM .“Modeling and simulation of behav-ioral systems.”In Proceedings of the 32nd IEEE Conference on Decision and Control ,volume 4,pp.3636–3641,San Antonio,Texas,December 1993.[8]S. E.M ATTSSON ,M.A NDERSSON ,AND K.J.ÅSTRÖM .“Object-oriented modelling and simula-tion.”In L INKENS ,Ed.,CAD for Control Systems ,chapter 2,pp.31–69.Marcel Dekker Inc,New York,1993.。