薄膜技术讲座之一

合集下载

现代光学薄膜制造技术讲义

现代光学薄膜制造技术讲义
50于是我们将上面膜系的中心波长由800nm改为760nm使得650nm处t50在可见光区波纹太大第二步用传统的短波通膜系理论膜系改成g05lhl116l132hl132h066la0760nm共37这时膜系在650nm波长外t50在700nm至1200nm光被截止在可见光区的400nm630nm的通带区波纹有所改进第三步优化400nm630nm可见区的透过率设在上述波长tmin95tmax100优化后反射截止区不变在400nm630nm95为了今后工艺上的方便膜系中的05l光省略将36116l132hl132h066la优化得到一个36g131h1129l1079h1078h1034l101l099h101l39099hl099h101l101h103l101h116l13h132l132h132l132h132l132h132l132h132l132h132l132h132l132h132l132h132l132h066la这36层膜在400nm630nm95在650nm50在700nm1150nmuv膜设计要截止紫外300nm400nm的uv镜的设计要简单得多一般来说用标准的长波通膜系就可以得到比较好的结果
G|HLHLHLHLHLHLHLHLH |A
nH 为 Ta2O5 n≈2.05
n =1.45
L
在现在的计算程序中,考虑到了色散。λ 0=350nm。
(2)上述膜系在可见光区有激烈的波动。透射光带有颜色。要
在可见光区得到一条平坦, T≥95%的曲线可用薄膜光学中的长波通膜 系,即将上述膜系改为:
G|0.5HLHLHLHLHLHLHLHL0.5H |A
3
是一个严重的缺点。 实验发现,用极值法生产单色滤光片时有很高的定位精度。但同 时我们却发现:在单色滤光片的次峰严重变形,偏离理论值,而这时 用石晶法监控的产品则其次峰要规矩得多。 用石晶控法生产的膜系,膜层的误差没有补偿和传递作用。因此 虽然它在单一波长处误差较大,但从宽波长范围来说,其整体误差较 小。 如果我们要制造一个超宽带的增透膜(450nm~1150nm) (1)如单一波长的光控制造,其产品会经常 出现废品,次品会增 多。 (2)用石英晶控法生产,成品率高是一种好的选择。 (3)如现有设备只有光控时,可使用变波长监控, 切断每层膜的误 差传递。会有比较好的制造效果。 c.膜系设计中的灵敏度误差 膜系制造中的误差,我们已经讲了两个(a)膜层厚度判定方法误 差: (b)膜层厚度补偿误差。现在我们来讲座膜系设计中的灵敏 度误差! 应该说,对于给定的光谱曲线,我们可以设计很多种不同的 膜系来实现。现在的问题是哪种膜系设计好?哪种膜系设计差? 我们必须进行膜系膜层误差分析,摒弃那些对制造误差有非常严 重要求的膜系,最后选取有高成品率有优良光学性能的膜系。为 此我们要做到:

薄膜技术英文课件:1introduction

薄膜技术英文课件:1introduction

Thin film
ρb≤ρtf(有问题)
Mb≤Mtf
small(um )
Large(mm)
17
2. Thin film vs. block material-1
Density Melting point Crystalline size
Bolck
Thin film
ρb≤ρtf(有问题)
Mb≤Mtf
39
Chemical vapor deposition(CVD)
• Thermal decomposition • Reaction on surface of substrate
The process of chemically reacting a volatile compound of a material to be deposited, with other gases, to produce a nonvolatile solid that deposits atomistically on a suitably placed substrate.
• GaN 、GaAs/GaAlAs、a-Si/a-SiC
– Thin film resistor(电阻), thin film capacitor(电容)
electroluminescence
• Ni-Cr low resistance thin film resistor
– Thin-film solar cell
– Piezoelectric(1.压电的) thin film for wave filtering
• ZnO 、AlN
– Sensitive thin fi2
• Optical thin film薄膜

《厚膜与薄膜技术》PPT课件

《厚膜与薄膜技术》PPT课件
参数意义:浆料内颗粒尺寸分布和弥散的度量
测量工具:细度计
测量结果:能得到颗粒
的最大、最小和平均粒径
2021/5/28
超大规模集成电路硅衬底抛光
14
2021/5/28
固体粉末百分比含量
参数意义:有效物质与粘贴成分的质量与浆料总质量 的比值,一般为85%~92%〔质量百分比〕。
测量方法:取少量浆料样品称重,然后放在大约 400℃的炉子里直到所有的有机物烧尽,重新称量样 品。
2021/5/28
提供元器件与膜布线之间以及与更高一级组装的电互连。
提供端接区以连接厚膜电阻。
提供多层电路超导大规体模层集成之电间路硅的衬电底连抛光接。
19
2021/5/28
厚膜导体材料有三种根本类型:
可空气烧结:由不容易形成氧化物的贵金属制成的,主要 的金属是金和银,它们可以是纯态的,也可与钯或与铂存 在于合金化的形式。
印刷后,必须有足够的时间使浆料粘度增加到接近 静止粘度〔流平〕,如果在流平前把浆料置于烘干 工艺的条件下,那么浆料由于温度的升高而变得稀 薄,印出的图形将会丧失线条的清晰度。
浆料粘度的调节:
参加适当的溶剂可以很容易的降低粘度,当浆料罐 已开启屡次或把浆料从丝网返回罐中时,常常需要 这么做。
增加浆料的粘度是很困难的,需要参加更多的不挥
2021/5/28 更为困难。
超大规模集成电路硅衬底抛光
8
2021/5/28
〔2〕金属氧化物材料:一种纯金属例如Cu、Cd与浆料 的混合物
粘贴机理:纯金属在基板外表与氧原子反响形成氧化物, 金属与其氧化物粘接并通过烧结而结合在一起。属于 氧化物键合或分子键合。
特点:与玻璃料相比,这一类浆料改善了粘接性。但烧 结温度较高,一般在950~1000℃下烧结,加速了厚 膜烧结炉的损耗,炉体维护频率高。

薄膜电容器讲座课件

薄膜电容器讲座课件

分类与用途
分类
薄膜电容器按结构可分为箔式和金属化式两种,按有无绝缘介质可分为有极性 电容器和无极性电容器两种。
用途
薄膜电容器广泛应用于电子设备、电力电子、通讯、家电、汽车、航空航天等 领域,如滤波、旁路、耦合、振荡、陷波等。
02
薄膜电容器材料
电介质材料
聚酯薄膜
聚酯薄膜是薄膜电容器最常用的电介质材料,具有较高的绝缘电 阻、良好的温度和频率稳定性。
风电变流器
在风力发电系统中,薄膜 电容器为变流器提供稳定 的直流电压支撑,确保风 能的高效利用。
轨道交通
在轨道交通的供电系统和 电机控制中,薄膜电容器 提供了可靠的电力保障。
新能源领域
光伏系统
在光伏逆变器中,薄膜电容器起到滤波、去耦和储能的作用,提 高光伏系统的效率和稳定性。
新能源汽车
在电动汽车和混合动力汽车中,薄膜电容器广泛应用于电池管理系 统、电机驱动和车载电子设备中。
机械性能参数
尺寸与重量
电容器的大小和重量,对于特定应用场景下安装和便携性有重要影响 。
机械强度
衡量电容器承受外力作用的能力,如振动、冲击等。薄膜电容器的机 械强度较高,能够承受较大的外力作用。
端子与连接
电容器端子的类型和连接方式,影响其可维护性和可靠性。薄膜电容 器的端子设计应便于连接和拆卸。
寿命与可靠性
技术发展趋势
材料创新
新型材料如聚丙烯、聚 酯等具有更高的介电常 数和电气性能,有助于 提高薄膜电容器的性能 和缩小体积。
制造工艺改进
先进的制造工艺如真空 镀膜、激光切割等能够 提高产品一致性和降低 成本,同时实现更精细 的金属化设计。
集成化与模块化
将薄膜电容器与其他电 子元件集成在一起,形 成模块化产品,能够简 化电路设计并提高可靠 性。

薄膜物理与技术课件

薄膜物理与技术课件

薄膜的性质进入20世纪以来.薄膜技术无论在学术上还是在实际应用中都取得了丰硕的成果。

其中特别应该指出的是下述三个方面。

第一是以防反射膜、干涉滤波器等为代表的光学薄膜的研究开发及其应用。

这种薄膜在学术上有重要意义,同时,具有十分广泛的实用性,对此人们寄予了很大的希望。

第二是在集成电路(IC、LSI)等电子工业中的应用。

一个显著成果是外延薄膜生长。

特别是随着电路的小型化,薄膜实际的体积接近于零这一特点就显得更加重要了。

第三是对材料科学的贡献。

薄膜技术本身属于非平衡过程,与通常的材料的热平衡制备法相比,薄膜材料的非平衡特征非常明显。

虽然这种非平衡过程也有缺点,但可以制备普通相图中不存在的物质。

这些都是很突出的优点。

在研究物性时,发现物体的大小会对物性产生影响。

这种效应称为尺寸效应。

在粉末、微粒子等状态中也发现有这种效应。

对于薄膜来说.在厚度这一特定方向上,尺寸很小,而且在厚度方向上由于表面、界面的存在,使物质的连续性发生中断,由此对薄膜性质产生各种各样的影响。

★熔点降低★干涉效应★表面散射★平面磁化各向异性★表面能级★量子尺寸效应★熔点降低在此考虑半径为的固体球。

考虑此球与其外侧相(液体)的界面能,求块体(buk)材料熔点和小球熔点之间的关系。

r m T s T 设:固-液相间的界面能为固体的熔解热为熔解过程中熵的变化固体的密度为σLS∆ρ当质量为的物质熔化变为液体.球的表面积产生的变化,其热力学平衡关系式如下:dW dA 0s LdW T SdW dA σ-∆-=对于体材料:m LdW T SdW -∆=将,代入上式,得到m S L T ∆=2dA dW rρ=20m s m T T T Lr σρ-=>半径越小,越低。

m sT T >s T以Pb 为例:233 erg/cmσ= 1.1 kcal/mol L =311.3 g/cm ρ=当时,710cm r -=150 K m s T T -=当时,610cm r -=15 Km s T T -=尽管上述讨论是固体-液体系统,对于固体-气体系统仍有所谓薄膜越薄熔点越低的结论。

《薄膜技术》PPT课件

《薄膜技术》PPT课件

– 在较高温度下:kS>>hG
N GS 0
v
NT N Si
hGY
质量转移控制
– 在较低温度下:kS<<hG 表面反应控制
N GS N G 0
v
NT N Si
kSY
在高温段〔质量转移
控制〕生长速率受温 度影响小,便于控制 〔可为±10°C〕
– 3〕生长速率与衬底取向的关系 v<110>>v<100>>v<111> ?
– 1〕掺杂浓度受汽相中的掺杂剂分气压控制
Nf
Pf 0
NSi (NSi/H)PG0
– 2〕生长速率和温度的影响 为什么温度升高会使浓度降低?
Silicon Vapor Phase Epitaxy Reactors
Exhaust
RF heating
Horizontal reactor
Gas inlet RF heating
2) Dissociation of reactants by electric fields
3) Film precursors are formed
4) Adsorption of precursors
RF field
RF generator Electrode PECVD reactor
7) Desorption of by-products
By-products
8) By-product removal
Exhaust
5) Precursor diffusion
into substrate
6) Surface reactions Continuous film

1薄膜技术绪论1

1薄膜技术绪论1

薄膜科学的应用
1. 耐磨及表面防护涂层
高现温在电科绝学缘技涂术层对机械部件提出了综合性能要求往往超出了 单一材高料温可电以绝达缘到的涂性层能根范据围其。化在学用成涂分层的方不法同制备,出可材分料为组许 合多,种则类可。以如有石效墨地发导挥体各表种面材上料的的氮优化点硼,或同氧时化避免铝各、自氟的化局铜 限涂性层。,到400℃仍有良好的电绝缘性能。金属导线上的 搪耐瓷磨到和7防00护℃涂,层磷技酸术盐可为以基有的效无地机降低粘各结类剂部涂件层的到机1械00磨0℃损,、 化等学离腐子蚀喷及涂高氧温化氧化铝倾涂向层,在从13而0延0℃长,使都用仍寿保命持。 着良好的电 绝涂缘层性材能料。涉及氧化物、碳化物、氮化物、硼化物陶瓷及金
工具的表面,提高工具的使用寿命
物理性质
天然金刚石
CVD金刚石薄膜
硬度/GPa
100①
90~100
杨氏模量/GPa
1200①
接近天然金刚石
温度热导率/W(cm·K)-1
20①
10~20

纵波声速/km·s-1
18①

密度/g·cm-3
3.6
2.8~3.5

折射率(590nm)
2.41
2.4

禁带宽度/eV
薄膜科学的应用
(2)热学性质的应用
利用其极高的热导率。室温下,金刚石的热导率是铜 的5倍。本身又是极好的绝缘材料。因此,金刚石薄膜可 用于高功率光电子元件、激光器、集成电路芯片的散热器 材料。
(3)电学性质的应用
利用其高载流子迁移率、宽禁带宽度、高击穿场强、 高热导率和高饱和运动速度等优点。使之成为制造高温、 高压、高功率和高频强辐射条件下工作的电子器件的绝好 材料。

薄膜基础知识行业培训材料PPT课件

薄膜基础知识行业培训材料PPT课件
16
涂PVDC(2um厚)后透过性数据对比
材料
膜厚,um 透氧量,ml/m2.24h
BOPP
18
K-OPP
20
K-OPP(二面) 22
OPA
15
K-OPA
17
PETP
12
K-PETP
14
2300 225 25 40 16 77 17
透湿 量,g/m2.24h(65%R.H)
7 5 4 240 12 20 12
图3
27
镀铝层厚度与透湿度关系
透湿率,g/cm2.24h
15 12
9 6 3 0
0
PET12 um OPP25 um LDPE25 um
20
40
60
80
镀铝层厚度.nm
图4
28
常用于热封层的材料
• LDPE • CPP • PX
29
常用于热封层的材料
➢ LDPE薄膜的特点:
• 是薄膜中价格最便宜的 • LDPE薄膜软化温度为80 -90 ℃,熔点为110-
薄膜知识
➢软包装薄膜的要求
• 卫生性:无毒、无臭、无味 • 保护性:扩张强度、冲击强度、阻隔性、
耐热耐寒性 • 加要工性:易成型、热封、开口性好、抗
静电好 • 简便性:易计数、搬运、处理 • 商品性:可印刷美观,便于展销 • 经济性:价格合理
1
薄膜知识
➢ 各种膜的分类 • 流延膜 (cast film) • 吹胀膜 (inflation film)
12常用于印刷层的材料共挤boppmb400matoppmb400是bopp的双面都挤了一层pepp的共聚物使之双面都具有热封性matopp是在bopp上挤pe或pp的共聚物时通过雾化效果而使之具有一种特殊观感的bopp带涂层的bopp即在bopp膜涂布上pvdc或cn等材料使之具有热封性同时提高其印刷适性和阻隔性进化心理学综合了进化生物学的各种理论和当代心理学的研究法则主张用进化论的视野来看待和研究人格问题为人格心理学核心概念的建构提供了一个系统的框架

BOPET薄膜的生产工艺和应用

BOPET薄膜的生产工艺和应用

有关聚酯的技术讲座一、什么是PET(聚酯树脂)?什么是BOPET?聚酯树脂是一种高分子聚合物,它是通过化学合成的方法,将低分子的单体在一定的温度、压力和某种催化剂的作用下聚合而成的高分子化合物。

所谓高分子是指其分子量相对非常高,例如:水的分子量是18,而聚酯的分子量约在20000左右。

那么,又为什么称之为聚酯树脂呢?大家知道,自然界有天然树脂如松香、天然纤维如棉花和天然橡胶。

我们人类通过化学合成的方法则可以制得合成树脂(如PET、PE、PP 、PA 、PS)、合成纤维(涤纶、锦纶、聚丙烯腈)和合成橡胶(硅橡胶、氟橡胶、氯丁橡胶),它们通称为三大合成材料。

聚酯就是合成树脂中的一种.。

那么,聚酯这个名称是怎么定义的呢?我们先来看看聚酯树脂的分子化学结构式:从其分子结构式可以看出,在其大分子结构的两端存在两个羟基(-OH),中间一个芳环,他们通过酯键()彼此互相连接而成为一个长链的大分子。

因其大分子的主链中含有酯基,所以取名为聚酯。

当然,其全称应该是聚对苯二甲酸乙二醇酯。

其实,聚酯是一个家族,除PET之外,还有PEN、PBT、PPT、PETG 等。

因为PET的产量最大、应用面最广,它在聚酯家族中最具有代表性,故通常所谓的聚酯实际上就是聚对苯二甲酸乙二醇酯,简称PET。

聚酯树脂(俗称聚酯切片)经过干燥、熔融挤出、铸片和双向拉伸定向、牵引、收卷等工艺过程而制得到薄膜,就是双向拉伸聚酯薄膜,简称为BOPET薄膜(BO表示双向定向)。

双向拉伸定向的塑料薄膜还有:BOPP、BOPA、BOPEN等。

二、聚酯树脂的合成路线简介叮叮小文库欢迎有需要的朋友下载!! 21)酯交换法(DMT 法)DMT 法是以对苯二甲酸二甲酯与乙二醇先进行酯交换反应,生成对苯二甲酸双羟乙酯(BHET ),再经缩聚反应生成具有一定分子量的PET 树脂。

上述酯交换反应是在催化剂醋酸盐存在和加热条件下进行的。

乙二醇与对苯二甲酸二甲酯的甲氧基-OCH 3进行酯交换,由原来的对苯二甲酸二甲酯变成了对苯二甲酸双羟乙酯(BHET),被取代的甲氧基与乙二醇的氢原子结合生成甲醇。

薄膜技术培训

薄膜技术培训

缺点: 缺点:
泵内油蒸气的回流会直接造成真空系统的污染。 泵内油蒸气的回流会直接造成真空系统的污染。
应用领域: 应用领域:
真空镀膜、真空炉、电子、化工、航空、航天、冶金、 真空镀膜、真空炉、电子、化工、航空、航天、冶金、 材料、生物医药、原子能、 材料、生物医药、原子能、宇宙探测等高科技领域
四、涡轮分子泵
五、低温泵
影响因素: 影响因素:1、低温温度; 低温温度; 吸附物质的表面积; 2、吸附物质的表面积; 被吸附气体的种类。 3、被吸附气体的种类。 极限真空度: 之间。 极限真空度:10-1~10-8Pa之间。 之间 经常被用来吸附物质表面的气体; 经常被用来吸附物质表面的气体; 金属表面; 1、金属表面; 2、高沸点气体分子冷凝覆盖了的低温表面; 高沸点气体分子冷凝覆盖了的低温表面; 具有很大比表面的吸附材料。 3、具有很大比表面的吸附材料。 低温吸附泵的运转成本较高, 低温吸附泵的运转成本较高,但它作为获得无油高真空 环境的一种手段, 环境的一种手段,既可以只配以旋片泵等低真空泵种作为唯 一的高真空泵使用,又可以与其他高真空泵种, 一的高真空泵使用,又可以与其他高真空泵种,如涡轮分子 泵等联合使用。 泵等联合使用。
1 Pa
1
7.5
10
10-2
1 Torr
133.32
103
1333.2
1.3332 1.3332 ×10-3 10-3
1 μmHg
0.13332
10-3 7.5 ×10-4 7.5 ×10-1 760
1 7.5 ×10-1 7.5 ×102 760×103 735.56 ×103 25.4×漏) 磁力驱动罗茨真空泵(无泄漏)系列
1944 年德国人发明,适应在 10 ~ 1000Pa 压力范围内工作。

《薄膜CVD技术》PPT课件

《薄膜CVD技术》PPT课件
艺作用
是一种近于电中性的半导体材料; 与Si的界面上的界面态少;
有独特机理的表面钝化作用: a)表面离子沾污的静电屏蔽
30
b)提高器件的耐压水平
利用SIPOS膜的微弱导电性,p+区所加的负电位传 到n区的表面;与SiO2膜中的正电荷作用相反, 这种负电位使Si表面附近的电子浓度减少,从 而使耗尽区的表面电场被削弱。
Metal
Film deposited with PECVD creates pinch-off at the entrance to a gap resulting in a void in the gap fill.
1) Ion-induced deposition of film precursors Cap
物,并沉积在衬底表面(或原子迁移到晶格 位置)
5)反应副产物分子从衬底表面解吸 6)副产物分子由衬底表面外扩散到主气流
中,然后排出沉积区
10.1.2. Grove模型 和质量附面层模型 Grove模型 : F1=hG(CG-CS) F2=kSCS G=F/m =[kShG/(kS+hG)](CT/ m)Y
之一。
24
25
氮化硅有结晶化形和无定形两种 在器件中常希望无定形氮化硅(?)
用反应溅射法等物理方法和低温CVD法 可以制备无定形氮化硅膜,但以CVD为好。
(?)
常用PECVD法: 3SiH2Cl2+7NH3——Si3N4+3NH4Cl+HCl+6H2
用SiH2Cl2比用SiH4生长的膜致密。
26
8
CVD原理的特点?
10.2. CVD反应室
气相沉积的反应控制模式主要为质量输运 控制和表面反应控制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄膜技术讲座之一,二、薄膜的基本概念
评论:0 条查看:994 次sunlx999发表于2006-10-10 17:15
一、软包装之薄膜的定义
在国家包装通用术语(GB4122—83)中,软包装的定义为:软包装是指在充填或取出内装物后,容器形状可发生变化的包装。

用纸、铝箔、纤维、塑料薄膜以及它们的复合物所制成的各种袋、盒、套、包封等均为软包装。

一般将厚度在0.25mm以下的片状塑料称为薄膜。

塑料薄膜透明、柔韧,具有良好的耐水性、防潮性和阻气性、机械强度较好,化学性质稳定,耐油脂,易于印刷精美图文,可以热封制袋。

它能满足各种物品的包装要求,是用于包装易存、易放的方便食品,生活用品,超级市场的小包装商品的理想材料。

以塑料薄膜为主的软包装印刷在包装印刷中占有重要地位。

据统计,从1980年以来,世界上一些先进国家的塑料包装占整个包装印刷的32.5%~44%。

一般来说,因为单一薄膜材料对内装物的保护性不够理想,所以多采用将两种以上的薄膜复合为一层的复合薄膜,以满足食品保鲜、无菌包装技术的要求。

复合薄膜的外层材料多选用不易划伤、磨毛,光学性能优良,印刷性能良好的材科,如:纸、玻璃纸、拉伸聚丙烯、聚酯等;中间层是阻隔性聚合物,如:铝箔、蒸镀铝、聚俯二氮乙烯电里层材料多选用无毒、无味的聚乙烯等热塑性树脂。

二、塑料阻透性技术介绍
1、塑料的阻透性?
塑料制品(容器、薄膜)对小分子气体、液体、水蒸汽及气味的屏蔽能力。

2、透过系数?
塑料阻透能力大小的指标。

EVA:乙烯-乙酸乙烯脂共聚物
TIE:钛,树脂粘合剂
AC:聚乙烯亚胺 AC:乙醇:水 =1:6:3
PU:聚氨脂 PU:固化剂:丙酮 = 7:1:45
PVA:聚乙烯醇
其中:高阻透材料:EVOH、PVDC、PAN、MXD6;
中阻透材料:PA、PEN、PET
5、塑料阻透方式?
层状共混成型阻透和复合成型阻透两种
层状共混为BOPA、BOPET等;
复合成型阻透又分为:
干式复合阻透和熔融共挤复合阻透
干式复合阻透典型为纸、CPP、BOPP、PET、铝铂、或镀铝膜的经层压后复合成型,如奶包装屋顶盒、枕型袋等,
共挤复合阻透为多种塑料材料熔融共挤复合而成。

6、多层复合材料的阻透性公式:
1/P = T1/P1 + T2/P2 +T3/P3 。

式中:T1、T2-----各复合层厚度
P1、P2-----各透过系数
P:复合材料的总透过系数,层数越多、越厚,阻透性好,总的阻透性好。

7、多层共挤出复合的方式?
1]、一般性树脂与一般性树脂复合------适应于阻透性不强的酱油、醋等包装。

常用的树脂有:
LDPE、HDPE、LLDPE、PP、PS、PVC等。

2]、一般性树脂与中等阻透树脂的复合 ****
外层为一般性树脂,内层为中等阻透性树脂,3层—7层复合阻透。

LLDPE,LDPE,HDPE,PP,PS,PVC,+ PA,PET、EVA等
3]、中等性阻透树脂与中等性阻透树脂的复合*****
MXD6,PA6,PEN,PET,EVA,PA666,相容性好不需要黏结树脂,通常为2-3层结构的复合成型。

4]、一般性树脂与高阻透树脂的复合成型********
一般外层为:LDPE,HDPE,PP,PS,LLDPE,等
内层为:EVOH,MXD6,PVDC等,需要加黏结树脂。

5]、中等阻透性树脂与高阻透性树脂的复合成型
中等树脂为:PET,PA,EVA等
高阻透树脂:EVOH,MXD6,PVDC,PAN等不需要加黏结树脂。

8、国内外较普遍的阻透复合方式?
国外: PE//TIE//EVOH//TIE//PE
PE(EVA)//TIE/PA/EVOH/PA/TIE/PE
国内: PP/TIE/PA/TIE/PP,
LLDPE/TIE/PA/TIE/LDPE,
MLLDPE/TIE/EVOH/TIE/MLLDPE,
MLLDPE/TIE/PA/TIE/MLLDPE等等。

9、常用塑料原材料的选用。

相关文档
最新文档