江苏省海门中学平面向量及其应用练习题(有答案) 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、多选题1.题目文件丢失!
2.下列说法中错误的为( )
A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫-+∞ ⎪⎝⎭
B .向量1(2,3)e =-,213,24e ⎛⎫
=-
⎪⎝⎭
不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||a
D .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 3.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =
B .向量a 、b 为不共线的非零向量,则22
()a b a b ⋅=⋅ C .若非零向量a 、b 满足2
2
2
a b
a b +=+,则a 与b 垂直
D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是
2
π 4.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=
D .()
4BC a b ⊥+
5.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b
C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立
D .在ABC 中,
sin sin sin +=+a b c
A B C
6.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )
A .
B .
C .8
D .7.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -=
B .1
()2
AD AB AC =
+
C .8BA BC ⋅=
D .AB AC AB AC +=-
8.在下列结论中,正确的有( )
A .若两个向量相等,则它们的起点和终点分别重合
B .平行向量又称为共线向量
C .两个相等向量的模相等
D .两个相反向量的模相等
9.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()
()
a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥
D .(
)(
)
22
b b a b a a +-=⋅-
10.给出下面四个命题,其中是真命题的是( ) A .0AB
BA B .AB BC AC C .AB AC BC += D .00AB +=
11.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()
m a b ma mb -=- B .()m n a ma na -=-
C .若ma mb =,则a b =
D .若()0ma na a =≠,则m n =
12.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,且满足,3
B a c π
=+=,则
a
c
=( ) A .2
B .3
C .
12 D .
13
13.下列命题中正确的是( ) A .单位向量的模都相等
B .长度不等且方向相反的两个向量不一定是共线向量
C .若a 与b 满足a b >,且a 与b 同向,则a b >
D .两个有共同起点而且相等的向量,其终点必相同 14.下列说法中错误的是( )
A .向量A
B 与CD 是共线向量,则A ,B ,
C ,
D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =
D .温度含零上温度和零下温度,所以温度是向量 15.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模 D .若a b a b -=-,则a 与b 方向相同
二、平面向量及其应用选择题
16.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形
B .直角三角形
C .等腰直角三角形
D .钝角三角形
17.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则
::PAB PAC PBC S S S =△△△( )
A .1∶2∶3
B .1∶2∶1
C .2∶1∶1
D .1∶1∶2
18.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若
lg lg lg sin lg 2a c B -==-,且0,2B π⎛⎫
∈ ⎪⎝⎭
,则ABC 的形状是( )
A .等边三角形
B .锐角三角形
C .等腰直角三角形
D .钝角三角形
19.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形
D .等边三角形
20.若△ABC 中,2
sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形
B .等腰三角形
C .等边三角形
D .等腰直角三角形
21.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=
B .1a b ⋅=
C .a b =
D .0a b ⋅=
22.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )
A .302m
B .203m
C .60m
D .20m
23.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为
( ) A .1:4
B .4:5
C .2:3
D .3:5
24.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ⋅=⋅≠,则a b =