2023版高中数学新同步精讲精炼(必修第二册) 第九章 统计 章末测试(提升)(学生版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章统计章末测试(提升)
一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)
1.(2021·四川·成都七中)奥运会跳水比赛中共有7名评委给出某选手原始评分,在评定该选手的成绩时,去掉其中一个最高分和一个最低分,得到5个有效评分,则与7个原始评分(不全相同)相比,一定会变小的数字特征是( )
A.众数B.方差C.中位数D.平均数
2.(2021·云南大理 )在发生某公共卫生事件期间,有专业机构认为该事件在一段事件内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:
甲地:总体平均数为3,中位数为4;
乙地:总体平均数为1,总体方差大于0;
丙地:中位数为2,众数为3;
丁地:总体平均数为2,总体方差为3.
则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的是( )
A.甲地B.乙地C.丙地D.丁地
3.(2021·四川 )2021年是中国共产党成立100周年,某学校团委在7月1日前,开展了“奋斗百年路,启航新征程”党史知识竞赛.团委工作人员将进入决赛的100名学生的分数(满分100分且每人的分值为整数)分成6组:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100]得到如图所示的频率分布直方图,则下列关于这100名学生的分数说法错误的是( )
A.分数的中位数一定落在区间[85,90)
B .分数的众数可能为97
C .分数落在区间[80,85)内的人数为25
D .分数的平均数约为85
4.(2021·四川郫都 )为比较甲,乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场的得分制成如图所示的茎叶图. 有下列结论:
①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;
②甲最近五场比赛得分的平均数低于乙最近五场比赛得分的平均数;
③从最近五场比赛的得分看,乙比甲更稳定;
④从最近五场比赛的得分看,甲比乙更稳定.
其中所有正确结论的序号是( )
A .②③
B .①④
C .①③
D .②④
5.(2021·江西·吉安一中 )若样本12,,
,n a x a x a x +++的平均值是5,方差是3,样本1212,12,,12n x x x +++的平均值是9,标准差是b ,则( )
A .1,a b ==
B .2,a b ==
C .2,3a b ==
D .1,a b ==
6.(2021·广东·广州大学附属中学 )2021年3月,树人中学组织三个年级的学生进行“庆祝中国共产党成立100周年”党史知识竞赛.经统计,得到前200名学生分布的饼状图(如图)和前200名中高一学生排名分布的频率条形图(如图),则下列命题错误..的是( )
A.成绩前200名的200人中,高一人数比高二人数多30人
B.成绩第1-100名的100人中,高一人数不超过一半
C.成绩第1-50名的50人中,高三最多有32人
D.成绩第51-100名的50人中,高二人数比高一的多
7.(2021·浙江丽水·高一期末)新冠肺炎疫情的发生,我国的三大产业均受到不同程度的影响,其中第三产业中的各个行业都面临着很大的营收压力.2020年7月国家统计局发布了我国上半年国内经济数据,如图所示:图1为国内三大产业比重,图2为第三产业中各行业比重.
以下关于我国上半年经济数据的说法正确的是( )
A.第一产业的生产总值与第三产业中“租赁和商务服务业”的生产总值基本持平
B.第一产业的生产总值超过第三产业中“房地产业”的生产总值
C.若“住宿餐饮业”生产总值为7500亿元,则“金融业”生产总值为32500亿元
D.若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元
8.(2021·全国·专题练习 )关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实
验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m名同学每人随机写下一个都小于1的正实数对(),x y;再统计两数能与1构成钝角三角形三边的数对(),x y的个数a;最后再根据统计数a估计π的值,那么可以估计π的值约为( )
A.4a
m
B.
2
a
m
+
C.
2
a m
m
+
D.
42
a m
m
+
二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)
9.(2021·广东·仲元中学 )某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赌,该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图:
用样本估计总体,以下四个选项正确的是( )
A.30~41周岁参保人数最多B.随着年龄的增长人均参保费用越来越少
C.30周岁以上的参保人数约占总参保人数20% D.丁险种最受参保人青睐
10.(2021·广东肇庆·高一期末)已知在一次射击预选赛中,甲、乙两人各射击10次,两人成绩(所中环数越大,成绩越好)的频数分布表分别为:
下面判断正确的是( )
A.甲所中环数的平均数大于乙所中环数的平均数
B.甲所中环数的中位数小于乙所中环数的中位数
C.甲所中环数的方差小于乙所中环数的方差
D.甲所中环数的方差大于乙所中环数的方差
11.(2021·广东中山·高一期末)为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.
下面推断合理的是( )
A.这200名学生阅读量的平均数可能是26本;
B.这200名学生阅读量的75%分位数在区间[30,40)内;
C.这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;
D .这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.
12.(2021·广东·广州市培正中学 )在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:
甲地:中位数为2,极差为5;
乙地:总体平均数为2,众数为2;
丙地:总体平均数为1,总体方差大于0;
丁地:总体平均数为2,总体方差为3.
则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有( )
A .甲地
B .乙地
C .丙地
D .丁地
三、填空题(每题5分,共20分)
13.(2021·江苏·扬中市第二高级中学高一期末)已知样本数据1x ,2x ,⋯,2020x 的平均数与方差分别是m 和n ,若2(1i i y x i =-+=,2,⋯,2020),且样本数据的1y ,2y ,⋯,2020y 平均数与方差分别是n 和m ,则
222122020x x x ++⋯+=__.
14.(2021·北京·清华附中模拟预测)下图是国家统计局发布的2020年2月至2021年2月全国居民消费价格涨跌幅折线图.
说明:(1)在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2021年2月与2020年2月相比较:环比是指本期统计数据与上期统计数据相比较,例如2020年4月与2020年3月相比较.
(2)同比增长率=100%-⨯本期数同期数,同期数环比增长率=100%-⨯本期数上期数上期数
. 给出下列四个结论:
①2020年11月居民消费价格低于2019年同期;
②2020年3月至7月居民的消费价格持续增长;
③2020年3月的消费价格低于2020年4月的消费价格;
④2020年7月的消费价格低于2020年3月的消费价格.
其中所正确结论的序号是____________.
15.(2021·辽宁沈阳 )设某组数据均落在区间[]10,60内,共分为[)[)[)[)[]10,20,20,30,30,40,40,50,50,60五组,对应频率分别为12345,,,,.p p p p p 已知依据该组数据所绘制的频率分布直方图为轴对称图形,给出下列四个条件:
①130.1,0.4p p ==;
②252p p =;
③14250.3p p p p +=+=;
④12345242p p p p p .
其中能确定该组数据频率分布的条件有__________.
16.(2021·河北·大名县第一中学高一月考)某班40名学生,在一次考试中统计所得平均分为80分,方差为70,后来发现有两名同学的成绩有损,甲实得80分错记为60分,乙实得70分错记为90分,则更正后的方差为______.
四、解答题(17题10分,其余每题12分,共70分)
17.(2021·安徽·淮北一中 )某次数学考试后,抽取了20名同学的成绩作为样本绘制了频率分布直方图如下:
(1)求频率分布直方图中a 的值;
(2)求20位同学成绩的平均分;
(3)估计样本数据的第一四分位数和第80百分位数(保留三位有效数字).
18.(2021·江西·赣州市赣县第三中学 )2021年3月18日,位于孝感市孝南区长兴工业园内的湖北福益康医疗科技有限公司正式落地投产,这是孝感市第一家获批的具有省级医疗器械生产许可证资质的企业,也是我市首家“一次性使用医用口罩、医用外科口罩”生产企业。
在暑期新冠肺炎疫情反弹期间,该公司加班加点生产口罩、防护服,消毒水等防疫物品,保障抗疫一线医疗物资供应,在社会上赢得一片赞誉.在加大生产的同时,该公司狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽
取了100个,将其质量指标值分成以下六组:[40)50,
,[50)60,,[60)70,,…,[90]100,,得到如下频率分布直方图.
(1)求出直方图中m的值;
(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(同一组中的数据用该组区间中点值作代表,中位数精确到0.01);
(3)现规定:质量指标值小于70的口罩为二等品,质量指标值不小于70的口罩为一等品.利用分层抽样的方法从该企业所抽取的100个口罩中抽出5个口罩,其中一等品和二等品分别有多少个.
19.(2021·湖北·华中师大一附中高一期末)从某小区抽100户居民进行月用电量调查,发现他们的月用电量都在50~350(度)之间,在进行适当分组(每组为左闭右开区间),并列出频率分分布表、画频率分布直方图后,将频率分布方图的全部6个矩形上方线段的中点自左右的顺序依次相连,再删掉这6个矩形,就得到了如图所示的“频率分布折线图”.
(1)请画出频率分布直方图,并求出频率分布折线图x 的值;
(2)请结合频率分布直方图,求月用电量落在区间[)50,200(度)内的用户的月用电量的中均数;
(3)已知在原始数据中,月用电量落在区间[)50,200(度)内的用户的月用电量的平均数为140(度),方差为1600,所有这100户的月川电量的平均数为188(度),方差为5200,且月用电最落在区间[)50,200(度)内的用户数的频率恰好与频率分布直方图中的数据相同,求月用电量在区间[)200,350(度)内的用户用电量的标准差.
(参考数据:214196=,226676=,
2725184=,24816003904+=,2140160021200+=,2188520040544+=)
20.(2021·广东南海·高一期末)在一个文艺比赛中,10名专业评委和10名观众代表各组成一个评委小组.给参赛选手甲,乙打分如下:(用小组A ,小组B 代表两个打分组)
小组A :
甲:7.5 7.5 7.8 7.8 8.0 8.0 8.2 8.3 8.4 9.5
乙:7.0 7.8 7.8 7.8 8.0 8.0 8.3 8.3 8.5 8.5
小组B :
甲:7.4 7.5 7.5 7.6 8.0 8.0 8.2 8.9 9.0 9.0
乙:6.9 7.5 7.6 7.8 7.8 8.0 8.0 8.5 9.0 9.9
(1)选择一个可以度量打分相似性的量,并对每组评委的打分计算度量值,根据这个值判断小组A 与小组B 那个更专业?
(2)根据(1)的判断结果,计算专业评委打分的参赛选手甲、乙的平均分;
(3)若用专业评委打分的数据.选手的最终得分为去掉一个最低分和一个最高分之后.剩下8个评委评分的平均分.那么,这两位选手的最后得分是多少?若直接用10位评委评分的平均数作为选手的得分,两位选手的排名有变化吗?你认为哪种评分办法更好?(只判断不说明).(以上计算结果保留两位小数)
21.(2021·安徽省舒城中学 )随机抽取100名学生,测得他们的身高(单位:cm ),按照区间[)160165,,[)165170,,[)170175,,[)175,180,[]180,185分组,得到样本身高的频率分布直方图如图所示.
(1)求频率分布直方图中x 的值及身高在170cm 及以上的学生人数;
(2)估计该校100名生学身高的75%分位数.
(3)若一个总体划分为两层,通过按样本量比例分配分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x ,21S ;n ,y ,2
2S .记总的样本平均数为w ,样本方差为2S ,证明: ①m n w x y m n m n
=+++; ②()(){}
22222121S m S x w n S y w m n ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦+.
22.(2021·广东中山)随着社会的进步、科技的发展,人民对自己生活的环境要求越来越高,尤其是居住环境的环保和绿化受到每一位市民的关注,因此,2019年6月25日,生活垃圾分类制度入法,提倡每位居民做好垃圾分类储存、分类投放,方便工作人员依分类搬运,提高垃圾的资源价值和经济价值,力争物尽其用.某市环卫局在A 、B 两个小区分别随机抽取6户,进行生活垃圾分类调研工作,依据住户情况对近期
一周(7天)进行生活垃圾分类占用时间统计如下表:
(1)分别计算A、B小区每周进行生活垃圾分类所用时间的平均值和方差;
(2)如果两个小区住户均按照1000户计算,小区的垃圾也要按照垃圾分类搬运,市环卫局与两个小区物业及住户协商,初步实施下列方案:
①A小区方案:号召住户生活垃圾分类“从我做起”,为了利国利民,每200位住户至少需要一名工作人员进行检查和纠错生活垃圾分类,每位工作人员月工资按照3000元(按照28天计算标准)计算,则每位住户每月至少需要承担的生活垃圾分类费是多少?
②B小区方案:为了方便住户,住户只需要将垃圾堆放在垃圾点,物业让专职人员进行生活垃圾分类,一位专职工作人员对生活垃圾分类的效果相当于4位普通居民对生活垃圾分类效果,每位专职工作人员(每天工作8小时)月工资按照4000元(按照28天计算标准)计算,则每位住户每月至少需要承担的生活垃圾分类费是多少?
③市环卫局与两个小区物业及住户协商分别试行一个月,根据实施情况,试分析哪个方案惠民力度大,值得进行推广?。