三角-反三角函数公式大全
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
2
)=
1
cos
sinA
A
=
1
sin
A
cos
A
和差化积
sina+sinb=2sin
abab
aba
cos
sina-sinb=2cossin
2222
b
a
cosa+cosb = 2cos
bab
aba
cosa-cosb = -2sinsin
cos
2222
b
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
a]
b
1+sin(a) =(sin
a
2
+cos
a
2
2
)
1-sin(a) = (sin
a-cosa)
2
22
其他非重点三角函数
1
csc(a) =
sin
双曲函数
a
1
sec(a) =
cos
a
sinh(a)=
a
e
-
2
-a
e
cosh(a)=
a
e
2
-a
e
tg h(a)=
sinh(
cosh(
a)
a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosα
tan(2kπ+α)= tanαcot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinαcos(π+α)=-cosα
tan(π+α)= tanαcot(π+α)= cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinαcos(-α)= cosα
tan(A-B) =
tanAtanB
1tanAtanB
cot(A+B) =
倍角公式
cotAcotB-
cotBcotA
1
cot(A-B) =
cotAcotB
cotBcotA
1
tan2A =
1
2tanA
tan
2
A
Sin2A=2SinA?CosA
Cos2A = Cos
2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
3
sin3A = 3sinA-4(sinA)
cos3A = 4(cosA)
3-3cosA
tan3a = tana·tan(+a)·tan(-a)
33
半角公式
sin(
A
2
)=
1cosA
2
cos(
A
2
)=
1cosA
2
tan(
A
2
)=
1
1
cos
cos
A
A
cot(
A
2
)=
1
1
cos
cos
A
A
tan(
ctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsinB
积化和差
sinasinb = -
1
2
[cos(a+b)-cos(a-b)]cosacosb =
1
2
[cos(a+b)+cos(a-b)]
sinacosb =
诱导公式
1
2
[sin(a+b)+sin(a-b)]cosasinb =
1
2
[sin(a+b)-sin(a-b)]
sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos(-a) = sina
22
sin(+a) = cosacos(+a) = -sinasin(-πa) = sinacos(π-a) = -cosa
22
sin(π+a)-s=inacos(π+a)-=cosatgA=tanA =
tan(-α)=-tanαcot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinαcos(π-α)=-cosα
tan(π-α)= -tanαcot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin
cos
a
a
万能公式
sina=
2tan
(tan
a
2
a
2
)
2
cosa=
1
1
(tan
(tan
a
2
a
2
)
)
2
2
tana=
1
2tan
(tan
a
2
a
2
2
1)
其它公式
a?sina+b?cosa=(a2b)×sin(a+c)[其中tanc=
2
b
a
]
a?sin(a-)b?cos(a) =(ab)
22×cos(a-c)[其中tan(cቤተ መጻሕፍቲ ባይዱ=
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB
tan(A+B) =
tanA
tanB
1-tanAtanB
2
)=
1
cos
sinA
A
=
1
sin
A
cos
A
和差化积
sina+sinb=2sin
abab
aba
cos
sina-sinb=2cossin
2222
b
a
cosa+cosb = 2cos
bab
aba
cosa-cosb = -2sinsin
cos
2222
b
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
a]
b
1+sin(a) =(sin
a
2
+cos
a
2
2
)
1-sin(a) = (sin
a-cosa)
2
22
其他非重点三角函数
1
csc(a) =
sin
双曲函数
a
1
sec(a) =
cos
a
sinh(a)=
a
e
-
2
-a
e
cosh(a)=
a
e
2
-a
e
tg h(a)=
sinh(
cosh(
a)
a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosα
tan(2kπ+α)= tanαcot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinαcos(π+α)=-cosα
tan(π+α)= tanαcot(π+α)= cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinαcos(-α)= cosα
tan(A-B) =
tanAtanB
1tanAtanB
cot(A+B) =
倍角公式
cotAcotB-
cotBcotA
1
cot(A-B) =
cotAcotB
cotBcotA
1
tan2A =
1
2tanA
tan
2
A
Sin2A=2SinA?CosA
Cos2A = Cos
2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
3
sin3A = 3sinA-4(sinA)
cos3A = 4(cosA)
3-3cosA
tan3a = tana·tan(+a)·tan(-a)
33
半角公式
sin(
A
2
)=
1cosA
2
cos(
A
2
)=
1cosA
2
tan(
A
2
)=
1
1
cos
cos
A
A
cot(
A
2
)=
1
1
cos
cos
A
A
tan(
ctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsinB
积化和差
sinasinb = -
1
2
[cos(a+b)-cos(a-b)]cosacosb =
1
2
[cos(a+b)+cos(a-b)]
sinacosb =
诱导公式
1
2
[sin(a+b)+sin(a-b)]cosasinb =
1
2
[sin(a+b)-sin(a-b)]
sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos(-a) = sina
22
sin(+a) = cosacos(+a) = -sinasin(-πa) = sinacos(π-a) = -cosa
22
sin(π+a)-s=inacos(π+a)-=cosatgA=tanA =
tan(-α)=-tanαcot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinαcos(π-α)=-cosα
tan(π-α)= -tanαcot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin
cos
a
a
万能公式
sina=
2tan
(tan
a
2
a
2
)
2
cosa=
1
1
(tan
(tan
a
2
a
2
)
)
2
2
tana=
1
2tan
(tan
a
2
a
2
2
1)
其它公式
a?sina+b?cosa=(a2b)×sin(a+c)[其中tanc=
2
b
a
]
a?sin(a-)b?cos(a) =(ab)
22×cos(a-c)[其中tan(cቤተ መጻሕፍቲ ባይዱ=
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB
tan(A+B) =
tanA
tanB
1-tanAtanB