2017年江苏省镇江市七年级上学期数学期中试卷带解析答案

合集下载

2016-2017学年苏教版七年级数学上册期中试卷及答案3

2016-2017学年苏教版七年级数学上册期中试卷及答案3

2016-2017学年第一学期七年级数学期中测试卷题号 1 2 3 4 5 6 7 8 9 10 答案1.计算(-2)2的结果是 A .0 B .-2 C .4 D .-82.下列各数22200923122(3) ,0 ,() , ,(1) ,2 ,(8) , 274---------中,正数有A .2个B .3个C .4个D .5个3.与a -b 互为相反数的是A .a+bB .a -bC .-b -aD .b -a4.下列运算正确的是A .5x -2x=3B .xy 2-x 2y=0C .a 2 +a 2 =a 4D .222211333xy xy xy -= 5.若n 为整数,则2n+1是A .奇数B .偶数C .素数D .合数 6.若n b a 425与327b a m -是同类项,则m 、n 的取值为 A .m=2,n=3 B .m=4,n=2 C .m=3,n=3 D .m=4,n=3 7.已知24a -=,则a 的值为 A .6 B .-2 C .6或-2 D .-6或2 8.有理数a 、b 在数轴上的位置如图示,则A .a+b<0B .a+b>0C .a -b=0D .a -b>0 9.已知x 、y 互为相反数,a 、b 互为倒数,m 的绝对值是3.则22x ym ab m+++的值 为A .12B .10C .9D .11 10.已知a+b=4,c -d=-3,则(b+c)-(d -a)的值为 A .7 B .-7 C .1 D .-1 二、填空题(本题20分,每空2分)11.用代数式表示:比a 的3倍大2的数____________. 12.用科学记数法表示:380500=_____________.班级 学号 姓名 考试号 座位号13.单项式2323a b -的系数是 . 14.如果一个数的平方等于它的绝对值,那么这个数是__________. 15.比较大小:78-______910-. 16.绝对值大于2而小于5的整数之和是_______________.17.当x=-2时,代数式3x+2x 2-1与代数式x 2-3x 的差是__________. 18.已知代数式22a a -值是4,则代数式2136a a +-的值是_____________.19.观察下更算式:1+3=2 2,1+3+5=3 2,1+3+5+7=4 2,1+3+5+7+9=5 2…………,请你猜测1+3+5+……+2n -1=________________.20.在数1、2、3、4、……、2009、2010的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:_____ ___ __ ______. 三、解答题(9大题,共60分) 21.计算(本题24分)(1) 2111943+-+-- (2) 3×(—4)+(—28)÷7(3) 36926521⨯⎪⎭⎫ ⎝⎛-- (4) ()⎪⎭⎫⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-⨯3255.294321(5)2)3(315131511-⨯-⎪⎭⎫ ⎝⎛-÷- (6)24312111[3()(1)]()2342-⨯⨯---+÷-22.化简(本题6分)(1) a 2-3a+8-3a 2+4a -6 (2) )212(44622ab a ab a +-+23.先化简,再求值.(本题12分)(1)(5a 3+3)-(1-2a)+3(3a -a 3),其中a=-1.(2)()22222322x y xy xy x y ⎡⎤-++⎣⎦,其中12x =,y=-2.(3) 已知A= 5x 2+4x –1,B= –x 2–3x+3,C= 8–7x –6x 2,求A –B+C 的值24.(本题6分)回答下列问题:(1)填空:①()223⨯= ② 2223⨯=③2182⎛⎫-⨯ ⎪⎝⎭= ④22182⎛⎫-⨯ ⎪⎝⎭=⑤3122⎛⎫-⨯ ⎪⎝⎭= ⑥33122⎛⎫-⨯ ⎪⎝⎭= (2)想一想:(1)中每组中的两个算式的结果是否相等? (3)猜一猜:当n 为正整数时,()nab 等于什么?(4)试一试:2009200912123⎛⎫⎛⎫⨯- ⎪⎪⎝⎭⎝⎭结果是多少?25.(本题6分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱剩余油量为30升.(假设行驶过程中汽车的耗油量是均匀的.)(1)写出用行驶路程x(千米)来表示剩余油量Q(升)的代数式;(2)当x=300千米时,求剩余油量Q的值;(3)当油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.26.(本题6分)某股民上星期五买进某公司股票1000股,每股20元,下表为本周内每日(1)星期三收盘时,每股是多少元?(2)本周内最高收盘价是每股多少元? 收盘价最低是每股多少元?(3)已知此股民买进和卖出股票时都要付0.15%的手续费和卖出时0.1%的交易税,如果他在星期五以收盘价将股票全部卖出,他的收益情况如何?初一数学期中考试答案11、 3a +2 12、510805.3⨯ 13、 32-14、 0和1 15、 > 16、0 17、—9 18、13 19、2n 20、—1+2+3—4—5+…+2007—2008—2009+2010 三、解答题:21、(1) 211-194-3-++ (2) 72843÷+⨯)(-)(- =(-3-4-11)+(19+2) (1’) =-12+(-4) (2’)=-(3+4+11)+(19+2) (1’) =-16 (2’) =-18+21 (1’) = 3 (1’)(3) 36926521⨯⎪⎭⎫⎝⎛-- (4) ()⎪⎭⎫⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-⨯3255.294321=369236653621⨯-⨯-⨯ (2’) =)253()25(9435-⨯-⨯-⨯)( (2’)=18-30-8 (1’) =)253259435(⨯⨯⨯- (1’) =-20 (1’) =-2 (1’) (5)2)3(315131511-⨯-⎪⎭⎫ ⎝⎛-÷- (6) 24312111[3()(1)]()2342-⨯⨯---+÷- =931)152(56⨯-÷-(2’) =)81(41]1943[211-÷+-⨯⨯- (1’) =3)215(56-⨯ (1’) =)8(41]134[211-⨯+-⨯- (1’) =39- =)8(4131211-⨯+⨯- (1’)=6 (1’) =67)2(611-=-+- (1’)22、(1)原式=(223a a -)+(a a 43+-)+(8-6) (2’) = 222++-a a (1’)(2)原式=)28(4622ab a ab a +-+ (1’) =ab a ab a 284622--+ (1’) =ab a 222+- (1’) 23、(1) 原式=33392135a a a a -++-+ (1’) =(3335a a -)+(a a 92+)+(3-1) (1’) =21123++a a (1’)当a= -1时 21123++a a =2)1(11)1(23+-⨯+-⨯ (2’)=112112-=+-- (1’)(2)原式=]423[22222y x xy xy y x ++- (1’) =y x xy xy y x 22224232--- (1’) =2252xy y x -- (1’)当2,21-==y x 时, 2252xy y x --=22)2()21(5)2()21(2-⨯⨯--⨯⨯- (2’)= -9 (1’) (3)A-B+C=)678()33(145222x x x x x x --++----+ (2’) =22267833145x x x x x x --+-++-+ (2’) =4 (2’)24、(1) ①36 ②36 (两空1分,错一个全扣)③16 ④16 (1’)⑤-1 ⑥-1 (1’)(2) 相等 (1’) (3) nnb a (1’)(4)-1 (1’)25、(1)Q=45-0.1x (2’)(2)当x=300时Q=15 (2’)(3)当x=400时Q=5 >3 ,所以能在汽车报警前回家(2’)26、(1)周三收盘时,股价为20.6元(2’)(2)最高21.6元;最低20.1元。

七年级数学上学期期中检测试卷及答案

七年级数学上学期期中检测试卷及答案

七年级数学上学期期中检测试卷及答案2017七年级数学上学期期中检测试卷及答案一年一度的期中考试马上就要开始了,同学们正在进行紧张的复习,根据以往的教学经验,店铺精选了2017七年级数学上学期期中检测试卷给大家,希望对你有所帮助!一、选择题(每小题3分,共36分)1.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是( )A. 15×107B. 0.15×109C. 1.5×108D. 1.5亿2.下列不是有相反意义的量是( )A. 上升5米与下降3米B. 零下5℃与零下1℃C. 高出海拔100米与低于海拔10米D. 亏损100元与收入100元3. 的平方根是( )A. ±4B. 4C. ±2D. 24.①倒数是本身的数是±1;②立方根是本身的数是0.1;③平方等于本身的数0.1;④绝对值是本身的数是0.1,其中是错的有( )个.A. 1B. 2C. 3D. 45.数轴上有两点A、B分别是﹣2, +1,则AB之间的距离是( )A. B. 3 C. D.6.在、﹣、、中最大的数是( )A. B. C. ﹣ D.7.若用a表示的整数部分,则在数轴上与2+a最接近的数所表示的点是( )A. AB. BC. CD. D8.已知下列各数:、、 +1、、0.10101001、0.2 ,其中无理数有( )个.A. 2B. 3C. 4D. 59.由半圆和直角三角形组成的图形,如图,空白部分面积等于(π取3.14,精确到0.1)( )A. 15.0B. 15.1C. 15.2D. 15.310.正整数排列如图:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6按照这样的规律排列,你认为100第一次出现在( )A. 第50行第50个B. 50行第 51个C. 第51行第50个D. 第51行51个11.10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,那么m头大象1天的食物可供100只老鼠吃( )天.A. 500mB. 600mC.D.二、填空题(共6题,每小题3分,共18分)12.﹣3的相反数是.13.下列的代数式:﹣x2y,0,,,,中单项式有个.14 .x的倍与y的平方的和可表示为.15.细胞每分裂一次,1个细胞就变成2个,洋葱根尖细胞每分裂一次间隔的时间为12小时,2个洋葱根尖细胞经3昼夜变成个.16.若棱长为10cm的立方体的体积减少Vcm3而保存立方体形状不变,则棱长应该减少cm.17.若5x2y|m|﹣(m+1)y2﹣3是关于字母x、y的3次3项式,则m= .三、解答(共66分)18.计算:(1)(﹣ + ﹣)×(﹣48)(2)(﹣2)÷ × ﹣(﹣5)(3)﹣﹣(4)﹣32﹣(2.5+ ﹣3 + )19.(1)已知|a﹣2|+|b+1|=0,求代数式(a+ b)2015+b2014的值;(2)如果代数式2y2﹣y+5的值等于﹣2,求代数式5﹣2y2+y的值.20.在数轴上表示下列各数,并用“<”连接,|﹣3|,0,,,(﹣1)2.21.3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.22.王明从甲地到乙地骑自行车共100千米路程,原计划用V千米/时的速度前进,行到一半路程时接到电话有急事,加速到原计划的2倍前进,求王明从甲地到乙地用了多少时间?当V=15千米/时时,求王明所用的时间.23.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图(1)中正方形的面积为5,则此正方形的边长为,我们通过画正方形可求出无理数的线段长度.(1)请在图(2)中画出一个面积为10的正方形,此正方形的边长为;(2)求出图(3)中A,B,C点为顶点的三角形的面积和AB的长度.24.阅读材料:求1+2+22+23+…+22013的值.解:设S=1+2+22+ (22013)将等式两边同时乘以2得:2S=2+22+ (22014)将下式减去上式得:2S﹣S=22014﹣1,即S=1+2+22+…+22013=22014﹣1.请你按照此法计算:(1)1+2+22+…+210(2)1+3+32+33+…+3n(其中n为正整数).参考答案与试题解析一、选择题(每小题3分,共36分)1.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是( )A. 15×107B. 0.15×109C. 1.5×108D. 1.5亿考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将150000000用科学记数法表示为:1.5×108.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.2.下列不是有相反意义的量是( )A. 上升5米与下降3米B. 零下5℃与零下1℃C. 高出海拔100米与低于海拔10米D. 亏损100元与收入100元考点:正数和负数.分析:首先知道正负数的含义,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.解答:解:A、上升5米与下降3米具有相反意义,不符合题意,此选项错误,B、根据零下与零下没有相反意义,符合题意,此选项正确,C、高出海拔100米与低于海拔10米具有相反意义,不符合题意,此选项错误,D、亏损与收入具有相反意义,不符合题意,此选项错误,故选:B.点评:此题主要考查了正数与负数,理解正数与负数的相反意义是解题关键.3. 的平方根是( )A. ±4B. 4C. ±2D. 2考点:平方根;算术平方根.分析:根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.解答:解: =4,± =±2,故选:C.点评:本题考查了平方根,先求算术平方根,再求平方根.4.(3分)(2014秋•余姚市校级期中)①倒数是本身的数是±1;②立方根是本身的数是0.1;③平方等于本身的数0.1;④绝对值是本身的数是0.1,其中是错的有( )个.A. 1B. 2C. 3D. 4考点:立方根;绝对值;倒数;有理数的乘方.分析:根据倒数,立方根,有理数的乘方,绝对值的意义进行判断即可.解答:解:∵倒数是本身的数是±1;立方根是本身的数是0.1,﹣1;平方等于本身的数0.1;绝对值是本身的数是0和正数,∴正确的有①③,共2个,故选B.点评:本题考查了倒数,立方根,有理数的乘方,绝对值的意义的应用,主要考查学生的理解能力和辨析能力,题目比较好,但是也比较容易出错.5.数轴上有两点A、B分别是﹣2, +1,则AB之间的距离是( )A. B. 3 C. D.考点:实数与数轴.分析:根据数轴上点的坐标即可列出算式( +1)﹣( ﹣2),求出即可.解答:解:∵数轴上有两点A、B分别是﹣2, +1,∴A、B两点之间的'距离是( +1)﹣( ﹣2)=3,故选B.点评:本题考查了实数与数轴,两点之间的距离的应用,关键是能根据题意列出算式.6.在、﹣、、中最大的数是( )A. B. C. ﹣ D.考点:实数大小比较.分析:首先利用平方根以及立方根分别化简各数,进而比较得出即可.解答:解:∵ =﹣、﹣ =﹣0.1、 =﹣0.1、 =﹣ =﹣0.04,∴ 最大.故选;A.点评:此题主要考查了实数比较大小,正确化简各数是解题关键.7.若用a表示的整数部分,则在数轴上与2+a最接近的数所表示的点是( )A. AB. BC. CD. D考点:估算无理数的大小;实数与数轴.分析:利用“夹逼法”求得a,然后在数轴上找(2+a).解答:解:∵﹣27<﹣10<﹣8,∴ < ,即﹣3< <﹣2,则a=﹣2,∴2+a=0,故在数轴上与2+a最接近的数所表示的点是B.故选:B.点评:此题主要考查了估计无理数的大小以及实数与数轴,得出a的值是解题关键.8.已知下列各数:、、 +1、、0.10101001、0.2 ,其中无理数有( )个.A. 2B. 3C. 4D. 5考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有: +1, +1共有2个.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.由半圆和直角三角形组成的图形,如图,空白部分面积等于(π取3.14,精确到0.1)( )A. 15.0B. 15.1C. 15.2D. 15.3考点:有理数的混合运算.分析:空白部分面积等于直径为10半圆的面积减去底为8,高为6的直角三角形的面积即可.解答:解:π( )2﹣×6×8=39.25﹣24=15.25≈15.3.故选:D.点评:此题考查有理数的混合运算,掌握基本图形的面积计算方法是解决问题的关键.10.正整数排列如图:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6按照这样的规律排列,你认为100第一次出现在( )A. 第50行第50个B. 50行第51个C. 第51行第50个D. 第51行51个考点:规律型:数字的变化类.分析:由排列的数可知:第几行就有几个数字,从第二行开始开头的数字都是所在的行数减去1,在第50行出现的数字是从49﹣98,从第51行出现的数字是从50﹣100,由此得出答案即可.解答:解:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6…第50行49 50 (98)第51行50 51 (100)所以100第一次出现在第51行51个.故选:D.点评:此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.11.10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,那么m头大象1天的食物可供100只老鼠吃( )天.A. 500mB. 600mC.D.考点:列代数式.专题:应用题.分析:根据已知10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,可求出那么m头大象1天的食品可供100只老鼠吃多少天.解答:解:m÷100=600m(天).故选:B.点评:本题考查列代数式,理解题意,先求出一头大象吃的相当于多少只老鼠一天吃的,最后求出结果.二、填空题(共6题,每小题3分,共18分)12.﹣3的相反数是 3 .考点:相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.13.下列的代数式:﹣x2y,0,,,,中单项式有 3 个.考点:单项式.分析:根据单项式的概念求解即可.解答:解:单项式有::﹣x2y,0,,共3个.故答案为:3.点评:本题考查了单项式的概念:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.14.x的倍与y的平方的和可表示为.考点:列代数式.分析:先求x的倍,再加上y的平方即可.解答:解:x的倍与y的平方的和可表示为 x+y2.故答案为: x+y2.点评:此题考查列代数式,理解题意,搞清数量关系是解决问题的关键.15.细胞每分裂一次,1个细胞就变成2个,洋葱根尖细胞每分裂一次间隔的时间为12小时,2个洋葱根尖细胞经3昼夜变成128 个.考点:有理数的乘方.专题:计算题.分析:根据题意列出算式计算,即可得到结果.解答:解:根据题意得:2×26=128(个),故答案为:128点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.16.若棱长为10cm的立方体的体积减少Vcm3而保存立方体形状不变,则棱长应该减少(10﹣ ) cm.考点:立方根.专题:计算题.分析:根据题意列出算式,计算即可.解答:解:根据题意得:10﹣,则棱长应该减少(10﹣ )cm.故答案为:10﹣点评:此题考查了立方根,熟练掌握立方根的定义是解本题的关键.17.若5x2y|m|﹣(m+1)y2﹣3是关于字母x、y的3次3项式,则m= 1 .考点:多项式.分析:直接利用多项式的定义得出|m|=1,m+1≠0,进而求出即可.解答:解:∵5x2y|m|﹣(m+1)y2﹣3是关于字母x、y的3次3项式,∴|m|=1,m+1≠0,解得:m=1.故答案为:1.点评:此题主要考查了多项式的定义,得出关于m的等式是解题关键.三、解答(共66分)18.计算:(1)(﹣ + ﹣)×(﹣48)(2)(﹣2)÷ × ﹣(﹣5)(3)﹣﹣(4)﹣32﹣(2.5+ ﹣3 + )考点:实数的运算.分析: (1)直接利用有理数乘法运算法则求出即可;(2)利用绝对值以及乘方运算法则化简求出即可;(3)分别利用平方根、立方根的性质化简各数,进而求出;(4)利用有理数混合运算法则求出即可.解答:解:(1)(﹣ + ﹣)×(﹣48)=16﹣8+4=12;(2)(﹣2)÷ × ﹣(﹣5)=2×32× +5=405 ;(3)﹣﹣=﹣ +=;(4)﹣32﹣(2.5+ ﹣3 + )=﹣9﹣1=﹣10.点评:此题主要考查了立方根以及平方根和绝对值的性质以及有理数混合运算,正确掌握相关性质是解题关键.19.(1)已知|a﹣2|+|b+1|=0,求代数式(a+b)2015+b2014的值;(2)如果代数式2y2﹣y+5的值等于﹣2,求代数式5﹣2y2+y的值.考点:代数式求值;非负数的性质:绝对值.分析:(1)根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解;(2)根据代数式2y2﹣y+5的值等于﹣2,即可求得2y2﹣y的值为﹣7,5﹣2y2+y可以变形为:5﹣(2y2﹣y),代入即可求解.解答: (1)解:∵|a﹣2|+|b+1|=0,∴ ,解得:a=2,b=﹣1,∴原式(a+b)2015+b2014=(2﹣1)2015+(﹣1)2014=1+1=2(2)∵2y2﹣y+5=﹣2,∴2y2﹣y=﹣7,∵5﹣2y2+y=5﹣(2y2﹣y)=5﹣(﹣7)=12.点评:此题主要考查了学生运用整体思想求代数式值的掌握.(1)解题关键是:若非负数的和为0,则非负数为0;(2)解题关键是:将5﹣2y2+y可以变形为:5﹣(2y2﹣y).20.在数轴上表示下列各数,并用“<”连接,|﹣3|,0,,,(﹣1)2.考点:实数大小比较;实数与数轴.分析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.解答:解:|﹣3|=3, =﹣2,(﹣1)2=1,如图所示:用“<”连接为: <0< <(﹣1)2<|﹣3|.点评:本题考查了有理数大小比较,利用了数轴上的点表示的数右边的总比左边的大.21.3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.考点:实数的运算.分析:分别利用立方根以及平方根和绝对值的性质得出x,y,z 的值进而求出即可.解答:解:∵3是2x﹣1的平方根,∴2x﹣1=9,解得:x=5,∵y是8的立方根,∴y=2,∵z是绝对值为9的数,∴z=±9,∴2x+y﹣5z=20+2﹣5×9=﹣33或2x+y﹣5z=20+2+5×9=57.点评:此题主要考查了立方根以及平方根和绝对值的性质,正确掌握相关性质是解题关键.22.王明从甲地到乙地骑自行车共100千米路程,原计划用V千米/时的速度前进,行到一半路程时接到电话有急事,加速到原计划的2倍前进,求王明从甲地到乙地用了多少时间?当V=15千米/时时,求王明所用的时间.考点:代数式求值;列代数式.分析:根据路程=速度×时间的变形公式即可表示王明从甲地到乙地用的时间;将V=15代入即可.解答:解:由时间= ,可得:(时),∴王明从甲地到乙地用了小时;当V=15千米/时时,= (小时),所以当V=15千米/时时,王明所用的时间为5小时.点评:此题考查了代数式求值,解题关键是:熟练掌握公式:路程=速度×时间.23.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图(1)中正方形的面积为5,则此正方形的边长为,我们通过画正方形可求出无理数的线段长度.(1)请在图(2)中画出一个面积为10的正方形,此正方形的边长为;(2)求出图(3)中A,B,C点为顶点的三角形的面积和AB的长度.考点:算术平方根;三角形的面积.分析: (1)根据面积得出边长即可;(2)利用矩形的面积减去三个三角形的面积即为三角形ABC的面积,再根据勾股定理求AB即可.解答:解:(1)如图,正方形的边长为 ;(2)S=2×3﹣×1×2﹣×1×3﹣×1×2=6﹣1﹣1.5﹣1=2.5,画如下图可得,正方形ABCD的面积为2.5×2=5,因此AB的边长为 .点评:本题考查了算术平方根,以及三角形的面积、勾股定理,是基础题比较简单.24.阅读材料:求1+2+22+23+…+22013的值.解:设S=1+2+22+ (22013)将等式两边同时乘以2得:2S=2+22+ (22014)将下式减去上式得:2S﹣S=22014﹣1,即S=1+2+22+…+22013=22014﹣1.请你按照此法计算:(1)1+2+22+…+210(2)1+3+32+33+…+3n(其中n为正整数).考点:有理数的混合运算.专题:阅读型.分析: (1)设原式=S,两边乘以2变形后,相减求出S即可;(2)设原式=S,两边乘以3变形后,相减求出S即可.解答:解:(1)设S=1+2+22+ (210)两边乘以2得:2S=2+22+ (211)两式相减得:2S﹣S=S=211﹣1,则原式=211﹣1;(2)设S=1+3+32+33+…+3n,两边乘以3得:3S=3+32+33+…+3n+1,两式相减得:3S﹣S=3n+1﹣1,即S= ,则原式= .点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.下载全文。

江苏省镇江市句容市2016-2017学年七年级上学期期中数学试卷及参考答案

江苏省镇江市句容市2016-2017学年七年级上学期期中数学试卷及参考答案
江苏省镇江市句容市2016-2017学年七年级上学期期中数学试卷
一、填空题
1. ﹣2016的相反数是________,倒数是________ 2. 单项式﹣3xy3的系数是________,次数是________. 3. 江苏省的面积约为102 600km2 , 这个数据用科学记数法可表示为________ km2 . 4. 化简(x+y)﹣(x﹣y)的结果是________. 5. 若2x3yn+1与﹣5xm﹣2y2是同类项,则m+n=________. 6. 比较两个数的大小:﹣ ________﹣ . 7. 如图是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2,则输出结果为________.
示)
二、选择题
13. 某天的温度上升了5℃记作+5℃,则﹣2℃的意义是( ) A . 上升了2℃ B . 没有变化 C . 下降了﹣2℃ D . 下降了2℃ 14. 下列各数:﹣5, ,4.11212121212…,0, ,3.14,其中无理数有( ) A . 1个 B . 2个 C . 3个 D . 4个 15. 如图,在数轴上表示到原点的距离为3个单位的点有( )
A . D点 B . A点 C . A点和D点 D . B点和C点
16. 下面各组数中,相等的一组是( )
2
2
3
3
3
A . ﹣22与(﹣2)2 B . 与( )3 C . ﹣|﹣2|与﹣(﹣2) D . (﹣3)3与﹣33
17. 下列说法中正确的是( ) A . 如果两个数的绝对值相等,那么这两个数相等 B . 有理数分为正数和负数 C . 互为相反数的两个数的绝对值相等 D . 最小的 整数是0 18. 下列代数式:a,﹣ab,m+n,x2+y2 , ﹣1, ab2c,其中单项式共有( ) A . 6个 B . 5个 C . 4个 D . 3个 19. 下面的计算正确的是( )

2017七年级数学上册期中测试题及答案

2017七年级数学上册期中测试题及答案

七年级上册数学其中考试卷(人教版)2017.10(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) A .-2 B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与15.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A.70° B .90° C .105°D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69° B .111° C .141° D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A B C D 第第8题图A .110B .158C .168二、填空题(本大题共8个小题;每小题3分,共24 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] . 22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21. 24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…… (1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.(本小题满分8分)6 2 224 2 0 4 88 4 446 (43)共94元如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元. 2012~2013学年度第一学期七年级期末考试数学试题参考答案及评分说明说明: 1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分. 一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B . 二、填空题(每题3分,共24分) 13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9) ………………………………………………………3分 =-1+ 47…………………………………………………………………………5分=43……………………………………………………………………………6分22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ………………………………………………3分 解得:x =80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x ………………………………………………3分 =12--x ………………………………………………………………4分AE DBFC把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD -∠DOE =90°-15°=75° …………………………………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =1.5x cm ,CF =12CD =2x cm . ……………………………………………3分 ∴EF =AC -AE -CF =2.5x cm . ………………………………………………………4分∵EF =10cm ,∴2.5x =10,解得:x =4. ………………………………………………………………6分∴AB =12cm ,CD =16cm . ……………………………………………………………8分 28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元. ………………………1分由题意得:30x +45(x +4)=1755 ……………………………………………3分解得:x =21则x +4=25. ……………………………………………………………………4分 答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分 根据题意,得21y +25(105-y )=2447.………………………………………………7分 解之得:y =44.5 (不符合题意) . ……………………………………………………8分 所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元 则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。

七年级上册数学期中考试卷及答案解析

七年级上册数学期中考试卷及答案解析

七年级上册数学期中考试卷及答案解析2017年七年级上册数学期中考试卷及答案解析畏难只有输,爱拼才会赢,输赢一念间。

2017年七年级数学期中考试你拼搏了吗?以下是店铺为你整理的2017年七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.13.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a24.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×1025.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.56.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.27.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A.120元B.100元C.80元D.60元8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= .13.若∠1=35°21′,则∠1的余角是.14.如果x=6是方程2x+3a=6x的解,那么a的值是.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=度.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为.三、细心解一解(每小题6分,满分18分)17.计算: .18.解方程:4x﹣6=2(3x﹣1)19.一个角的余角比它的补角的大15°,求这个角的度数.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐人;3张桌子拼在一起可坐人;n张桌子拼在一起可坐人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.2017年七年级上册数学期中考试卷答案与解析一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为8﹣(﹣2)=10℃.故选:C.2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.3.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a2【考点】合并同类项.【分析】分别根据合并同类项法则求出判断即可.【解答】解:A、3x+2y无法计算,故此选项错误;B、4x﹣3x=x,故此选项错误;C、ab﹣2ab=﹣ab,故此选项正确;D、2a+a=3a,故此选项错误.故选:C.4.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35800=3.58×104,故选:B.5.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.5【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故选:B.6.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.2【考点】两点间的距离.【分析】首先根据AC=6,CB=3,求出AB的长度是多少;然后用它除以2,求出AO的长度是多少;最后用AC的长度减去AO的长度,求出OC的长等于多少即可.【解答】解:∵AC=6,CB=3,∴AB=6+3=9,∵O是线段AB的中点,∴AO=9÷2=4.5,∴OC=AC﹣AO=6﹣4.5=1.5.故选:C.7.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的.进价为( )A.120元B.100元C.80元D.60元【考点】一元一次方程的应用.【分析】设这种商品每件的进价为x元,等量关系为:售价=进价+利润,根据这两个等量关系,可列出方程,再求解.【解答】解:设这种商品每件的进价为x元,则:x+20=200×0.5,解得:x=80.答:这件商品的进价为80元,故选B.8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“创”相对的字.【解答】解:结合展开图可知,与“创”相对的字是“明”.故选B.9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°【考点】方向角.【分析】根据方向角,可得∠1,∠2,根据角的和差,可得答案.【解答】解:如图,由题意,得∠1=54°,∠2=15°.由余角的性质,得∠3=90°﹣∠1=90°﹣54°=36°.由角的和差,得∠AOB=∠3+∠4+∠2=36°+90°+15°=141°,故选:D.10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R【考点】数轴.【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选:B.二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于﹣1 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是1,a=﹣1,那么a2017=﹣1,故答案为:﹣1.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= 16 .【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得x﹣3=1,2y﹣1=3,解得x=4,y=2.xy=24=16,故答案为:16.13.若∠1=35°21′,则∠1的余角是54°39′.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和为90度计算即可.【解答】解:根据定义,∠1的余角度数是90°﹣35°21′=54°39′.故答案为54°39′.14.如果x=6是方程2x+3a=6x的解,那么a的值是8 .【考点】一元一次方程的解.【分析】将x=6代入方程得到关于a的一元一次方程,从而可求得a的值.【解答】解:当x=6时,原方程变形为:12+3a=36,移项得:3a=36﹣12,解得:a=8.故答案为:8.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=180 度.【考点】角的计算.【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为180°.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为﹣2 .【考点】有理数的混合运算.【分析】根据*的含义,以及有理数的混合运算的运算方法,求出(﹣3)*7的值为多少即可.【解答】解:(﹣3)*7=5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2故答案为:﹣2.三、细心解一解(每小题6分,满分18分)17.计算: .【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=10+8× ﹣2×5=10+2﹣10=2.18.解方程:4x﹣6=2(3x﹣1)【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:4x﹣6=6x﹣2,移项得:4x﹣6x=6﹣2,合并得:﹣2x=4,解得:x=﹣2.19.一个角的余角比它的补角的大15°,求这个角的度数.【考点】余角和补角.【分析】设这个角为x°,则它的余角为(90°﹣x),补角为,再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),补角为,依题意,得:(90°﹣x)﹣=15°,解得x=40°.答:这个角是40°.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?【考点】正数和负数.【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知,正数为超过的次数,负数为不足的次数.【解答】解:(1)这8名男生的达标的百分数是×100%=62.5%;(2)这8名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56个.21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.【考点】整式的加减—化简求值;整式的加减.【分析】(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把代入上式计算.【解答】解:(1)3A﹣2B+2,=3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当时,3A﹣2B+2= .22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.【考点】比较线段的长短.【分析】由已知条件可知,BC=AC+BD﹣AB,又因为E、F分别是线段AB、CD的中点,故EF=BC+ (AB+CD)可求.【解答】解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+ (AB+CD)=2+ ×4=4cm.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐8 人;3张桌子拼在一起可坐10 人;n张桌子拼在一起可坐2n+4 人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.【考点】规律型:图形的变化类.【分析】(1)根据图形查出2张桌子,3张桌子可坐的人数,然后得出每多一张桌子可多坐2人的规律,然后解答;(2)求出每一张大桌子可坐的人数与可拼成的大桌子数,然后相乘计算即可.【解答】解:(1)由图可知,2张桌子拼在一起可坐8人,3张桌子拼在一起可坐10人,…依此类推,每多一张桌子可多坐2人,所以,n张桌子拼在一起可坐2n+4;故答案为:8,10,2n+4;(2)当n=5时,2n+4=2×5+4=14(人),可拼成的大桌子数,45÷5=9,14×9=116(人);24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.【考点】角的计算;角平分线的定义.【分析】设∠DOE=x,则∠BOE=2x,用含x求出∠COE的表达式,然后根据∠COE=α列出方程即可求出∠BOE的度数.【解答】解:设∠DOE=x,则∠BOE=2x,∵∠BOD=∠BOE+∠EOD∴∠BOD=3x∴∠AOD=180°﹣∠BOD=180°﹣3x∵OC平分∠AOD∴∠COD= ∠AOD=90°﹣ x∵∠COE=∠COD+∠DOE=90°﹣x+x=90°﹣∴90°﹣=α∴x=180°﹣2α,即∠DOE=180°﹣2α∴∠BOE=360°﹣4α25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n ﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×2×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.。

江苏省镇江市七年级上学期数学期中考试试卷

江苏省镇江市七年级上学期数学期中考试试卷
16-1、
17-1、
18-1、
19-1、
20-1、
三、 解答题(本大题共5小题,共50分) (共5题;共50分)
21-1、
22-1、
22-2、
23-1、
23-2、
23-3、
24-1、
24-2、
24-3、
25-1、
25-2、
19. (2分) 两个实数在数轴上对应点的位置如图所示,则a________ b.(填“>”、“<”或“=”)
20. (2分) (2019七上·辽阳月考) 已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:
按照上述规律排下去,那么第10行从左边数第5个数等于________.
三、 解答题(本大题共5小题,共50分) (共5题;共50分)
(1) 点A对应的数是________,点B对应的数是________.
(2) 动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.
①用含t的代数式表示点P对应的数是________,点Q对应的数是________;
②当点P和点Q间的距离为8个单位长度时,求t的值.
参考答案
一、 选择题(本大题共10小题,每小题3分,共30分) (共10题;共30分)
1-1、
2-1、
3、答案:略
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、 填空题(本大题共10小题,每小题2分,共20分) (共10题;共20分)
11-1、
12-1、
13-1、
14-1、
15-1、

江苏省镇江市2016-2017学年七年级(上)期中数学试卷(解析版)

江苏省镇江市2016-2017学年七年级(上)期中数学试卷(解析版)

2016-2017学年江苏省镇江市七年级(上)期中数学试卷一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分)1.﹣的倒数为;﹣2的相反数是.2.若|a|=4,则a=;若a2=9,则a=.3.比较大小:﹣52,﹣﹣.4.单项式的系数是,次数是.5.﹣3x m y2与5x3y n是同类项,则m=,n=.6.10月19日凌晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为393000米的“太空之吻”,其中“393000米”用科学记数法可表示为米.7.小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟).她至少要用分钟才能让奶奶喝上热牛奶.8.按照图所示的操作步骤,若输入x的值为3,则输出y的值为.9.已知x+2y=3,则代数式2x+4y﹣5的值为.10.已知有理数a、b满足(a﹣2)2+|b+3|=0,那么代数式b a的值是.11.如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是.12.如图图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是.二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)13.向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km14.下列一组数:﹣8,2.7,3,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数有()个.A.0 B.1 C.2 D.315.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1是多项式C.﹣πxy2的系数是﹣πD.x与π是同类项16.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)217.现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.18.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±419.已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣120.若x为有理数,x﹣|x|表示的数是()A.正数B.非正数C.负数D.非负数三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明)21.计算:(1)23﹣17﹣(﹣7)+(﹣16)(2)﹣5+6÷(﹣2)×(3)(﹣36)×(﹣+)(4)﹣12﹣(﹣10)×2+(﹣4)2.22.化简(1)3x2+2x﹣5x2+3x(2)4(m2+n)+2(n﹣2m2)23.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=1.24.画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.﹣(﹣1),﹣|﹣2|,﹣3,(﹣2)2.25.某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:﹣4﹣20+1+2+3与标准质量的误差(单位:克)袋数533423(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?26.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是元;如果小红家每月用水20吨,则水费是元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?27.一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A 记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→C(,),C→(+1,);(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(﹣2,﹣1),(﹣2,﹣2),请在图中标出P的位置.(4)在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?2016-2017学年江苏省镇江市七年级(上)期中数学试卷参考答案与试题解析一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分)1.﹣的倒数为﹣2;﹣2的相反数是2.【考点】倒数;相反数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的倒数为﹣2;﹣2的相反数是2.故答案为:﹣2;2.2.若|a|=4,则a=±4;若a2=9,则a=±3.【考点】有理数的乘方;绝对值.【分析】利用绝对值的代数意义,以及平方根定义计算即可得到结果.【解答】解:若|a|=4,则a=±4;若a2=9,则a=±3,故答案为:±4,±33.比较大小:﹣5<2,﹣>﹣.【考点】有理数大小比较.【分析】根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.【解答】解:﹣5<2,∵<,∴﹣>﹣.故答案为:<,>.4.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.5.﹣3x m y2与5x3y n是同类项,则m=3,n=2.【考点】同类项.【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求解.【解答】解:根据题意得:m=3,n=2.故答案是:3,2.6.10月19日凌晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为393000米的“太空之吻”,其中“393000米”用科学记数法可表示为 3.93×105米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将393000米用科学记数法表示为:3.93×105米.故答案为:3.93×105.7.小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟).她至少要用6分钟才能让奶奶喝上热牛奶.【考点】推理与论证.【分析】烧开水需要4.5分钟,在烧水的同时可以洗杯子,这样可以节约2分钟,再冲奶粉即可.【解答】解:∵烧开水需要4.5分钟,在烧水的同时可以洗杯子,这样可以节约2分钟,∴让奶奶喝上热牛奶的时间=4.5+1.5=6(分钟).故答案为:6.8.按照图所示的操作步骤,若输入x的值为3,则输出y的值为18.【考点】有理数的混合运算.【分析】首先用输入x的值减去6,再求出所得的差的平方是多少;然后用所得的结果乘2,求出输出y的值为多少即可.【解答】解:(3﹣6)2×2=9×2=18故答案为:18.9.已知x+2y=3,则代数式2x+4y﹣5的值为1.【考点】代数式求值.【分析】观察所求代数式可知,可以将已知整体代入求代数式的值.【解答】解:∵x+2y=3,∴2x+4y﹣5=2(x+2y)﹣5,=2×3﹣5,=1.故本题答案为:1.10.已知有理数a、b满足(a﹣2)2+|b+3|=0,那么代数式b a的值是9.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由题意可知:a=2,b=﹣3,然后代入求值即可.【解答】解:由题意可知:a=2,b=﹣3,∴b a=(﹣3)2=9故答案为911.如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是±π.【考点】数轴.【分析】根据直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,得出AA′之间的距离,即可求出答案.【解答】解:∵直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,∴AA′之间的距离为圆的周长=π,∴A点对应的数是±π.故答案是:±π.12.如图图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是32.【考点】规律型:图形的变化类.【分析】仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式,即可求解.【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3(3﹣1)=8个黑色正方形,图④中有2+3(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,∴当n=11时,3n﹣1=32.故答案为:32二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)13.向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,向东记为正,可得答案.【解答】解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.14.下列一组数:﹣8,2.7,3,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数有()个.A.0 B.1 C.2 D.3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数是,0.080080008…(相邻两个8之间依次增加一个0),故选C15.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1是多项式C.﹣πxy2的系数是﹣πD.x与π是同类项【考点】同类项;多项式.【分析】根据多项式的次数、项,单项式的系数,同类项,可得答案.【解答】解:A、2x2﹣3xy﹣1是二次三项式,故A正确;B、﹣x+1是多项式,故B正确;C、﹣πxy2的系数是﹣π,故C正确;D、x与π不是同类项,故D错误;故选:D.16.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【考点】列代数式.【分析】因为a的3倍为3a,与b的差是3a﹣b,所以再把它们的差平方即可.【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选B.17.现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.【考点】有理数的乘方.【分析】根据新运算,结合有理数的乘方,即可解答.【解答】解:※3==,故选:A.18.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±4【考点】数轴.【分析】根据绝对值的意义得:到原点的距离为4的点有4或﹣4,即可得到A表示的数.【解答】解:∵|4|=4,|﹣4|=4,则点A所表示的数是±4.故选D.19.已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣1【考点】绝对值;有理数的加法.【分析】先根据绝对值的性质,求出x、y的值,然后根据x•y<0,进一步确定x、y的值,再代值求解即可.【解答】解:∵|x|=3,|y|=2,x•y<0,∴x=3时,y=﹣2,则x+y=3﹣2=1;x=﹣3时,y=2,则x+y=﹣3+2=﹣1.故选B.20.若x为有理数,x﹣|x|表示的数是()A.正数B.非正数C.负数D.非负数【考点】绝对值.【分析】先根据绝对值的定义化简丨x丨,再合并同类项.【解答】解:(1)若x≥0时,x﹣丨x丨=x﹣x=0;(2)若x<0时,x﹣丨x丨=x+x=2x<0;由(1)(2)可得x﹣丨x丨表示的数是非正数.故选B.三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明)21.计算:(1)23﹣17﹣(﹣7)+(﹣16)(2)﹣5+6÷(﹣2)×(3)(﹣36)×(﹣+)(4)﹣12﹣(﹣10)×2+(﹣4)2.【考点】有理数的混合运算.【分析】(1)(2)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(3)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=6+7﹣16=13﹣16=﹣3(2)﹣5+6÷(﹣2)×=﹣5﹣3×=﹣5﹣1=﹣6(3)(﹣36)×(﹣+)=(﹣36)×﹣(﹣36)×+(﹣36)×=﹣18+20﹣21=﹣19(4)﹣12﹣(﹣10)×2+(﹣4)2=﹣1+40+16=5522.化简(1)3x2+2x﹣5x2+3x(2)4(m2+n)+2(n﹣2m2)【考点】整式的加减.【分析】(1)利用合并同类项法则即可求解;(2)首先利用分配律计算,然后去括号、合并同类项即可.【解答】解:(1)原式=3x2﹣5x2+2x+3x=﹣2x2+5x;(2)原式=(4m2+4n)+(2n﹣4m2)=4m2+4n+2n﹣4m2=6n.23.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=1时,原式=44+22﹣1=65.24.画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.﹣(﹣1),﹣|﹣2|,﹣3,(﹣2)2.【考点】有理数大小比较;数轴;绝对值.【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣3<﹣|﹣2|<﹣(﹣1)<(﹣2)2.25.某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:﹣4﹣20+1+2+3与标准质量的误差(单位:克)袋数533423(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?【考点】正数和负数.【分析】(1)找到最大和最小值相减即可求解;(2)找到所给数值中,绝对值小于或等于2的食品的袋数占总袋数的多少即可;(3)总质量=标准质量×抽取的袋数+超过(或短缺的)质量,把相关数值代入计算即可.【解答】解:(1)3﹣(﹣4)=7(克).答:它们的质量相差最大7克.(2)5+3=8(袋),(20﹣8)÷20×100%=12÷20×100%=60%.答:这批样品中有8袋质量不合格,这20袋食品的合格率是60%.(3)500×20+(﹣4×5﹣2×3+0×3+1×4+2×2+3×3)=10000﹣9=9991(克).答:这次抽样检测的总质量是9991克.26.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是16元;如果小红家每月用水20吨,则水费是45元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?【考点】列代数式.【分析】(1)每月用水8吨时,水费为:16元;超过10吨,超过部分每吨水收费2.5元,于是可得:每月用水20吨时,水费为:2.5(20﹣10)+20=45元,(2)分类讨论:①如果每月用水x≤10吨,水费为:(2x)元,②如果每月用水x>10吨,水费为:2.5(x﹣10)+20元;【解答】解:(1)每月用水8吨时,水费为:8×2=16元,每月用水20吨时,水费为:2.5(20﹣10)+20=45元;(2)①如果每月用水x≤10吨,水费为:(2x)元②如果每月用水x>10吨,水费为:2.5(x﹣10)+20=2.5x﹣5元;故答案为:(1)16,45.27.一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动.它从A 处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A 记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(3,4),B→C(2,0),C→D(+1,﹣2);(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(﹣2,﹣1),(﹣2,﹣2),请在图中标出P的位置.(4)在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?【考点】正数和负数.【分析】(1)根据规定:第一个数表示左右方向,第二个数表示上下方向,结合图形解答;(2)根据网格图形列式计算即可得解;(3)根据点的坐标的规定在图形中找出所到达的位置即可得解;(4)先根据路线求出所走过的路程,然后乘以1.5计算即可得解.【解答】解:(1)A→C(3,4),B→C(2,0),C→D(+1,﹣2).故答案为3,4,2,0,D,﹣2;(2)(4+2)+(1+2)+2=6+3+2=11;(3)如图,P在A往右1个单位的格点上;(4)(2+1)+(3+2)+(2+1)+(2+2)=3+5+3+4=15,15×1.5=22.5焦耳.2017年5月3日。

七年级数学上学期期中试卷(含解析) 苏科版7

七年级数学上学期期中试卷(含解析) 苏科版7

2016-2017学年江苏省镇江市丹徒区七年级(上)期中数学试卷一、填空(本大题共12小题,每小题2分,共24分.)1.﹣2016的相反数是,倒数是.2.单项式﹣3xy3的系数是,次数是.3.江苏省的面积约为102 600km2,这个数据用科学记数法可表示为km2.4.化简(x+y)﹣(x﹣y)的结果是.5.若2x3y n+1与﹣5x m﹣2y2是同类项,则m+n= .6.比较两个数的大小:﹣﹣.7.如图是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2,则输出结果为.8.若a﹣2b=3,则9﹣2a+4b的值为.9.若x2=9,则x= .10.下列一组是按规律排列的数:1,2,4,8,16,…,第2016个数是.11.定义一种关于“⊙”的新运算,观察下列式子:1⊙3=1×4+3=7; 3⊙(﹣1)=3×4+(﹣1)=11;5⊙4=5×4+4=24; 4⊙(﹣3)=4×4+(﹣3)=13.请你想一想:5⊙(﹣6)= .12.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)二、选择题(本大题共8小题,每小题2分,共16分.)13.某天的温度上升了5℃记作+5℃,则﹣2℃的意义是()A.上升了2℃B.没有变化 C.下降了﹣2℃D.下降了2℃14.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个15.如图,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点16.下面各组数中,相等的一组是()A.﹣22与(﹣2)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣3317.下列说法中正确的是()A.如果两个数的绝对值相等,那么这两个数相等B.有理数分为正数和负数C.互为相反数的两个数的绝对值相等D.最小的整数是018.下列代数式:a,﹣ab,m+n,x2+y2,﹣1, ab2c,其中单项式共有()A.6个B.5个C.4个D.3个19.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b20.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d) D.ab﹣cd三、计算或化简(共34分)21.计算(1)2﹣(﹣18)+(﹣7)﹣15(2)(﹣48)÷8﹣(﹣25)×(﹣6)(3)﹣14﹣|2﹣5|+6×(﹣)(4)﹣36×(﹣﹣)÷(﹣2)22.化简:(1)x2y﹣3x2y﹣6xy+5xy+2x2y(2)(2x﹣7y)﹣(4x﹣10y)(3)5a2+3ab+2(a﹣ab)﹣(5a2+ab﹣b2)23.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.四、解答题(共26分)24.如图,在边长为a cm的正方形内,截去两个以正方形的边长a cm为直径的半圆,(结果保留π)(1)图中阴影部分的周长为cm.(2)图中阴影部分的面积为cm2.(3)当a=4时,求出阴影部分的面积.25.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,x(x ≥20)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.(1)在A超市购买羽毛球拍和羽毛球的费用为,在B超市购买羽毛球拍和羽毛球的费用为.(用含x的代数式表示)(2)该活动中心决定只在一家超市购买10副球拍和 100个羽毛球,你认为在哪家超市购买划算?为什么?26.记M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…,M(n)=(1)填空:M(5)= ,M(50)是一个数(填“正”或“负”)(2)计算:①2M(6)+M(7);②4M(7)+2M(8);(3)直接写出2016M(n)+1008M(n+1)的值为.27.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M ,N ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).2016-2017学年江苏省镇江市丹徒区七年级(上)期中数学试卷参考答案与试题解析一、填空(本大题共12小题,每小题2分,共24分.)1.﹣2016的相反数是2016 ,倒数是﹣.【考点】倒数;相反数.【分析】根据相反数、倒数的定义进行填空即可.【解答】解:﹣2016的相反数是2016,倒数是﹣,故答案为2016,﹣.2.单项式﹣3xy3的系数是﹣3 ,次数是 4 .【考点】单项式.【分析】根据单项式系数和次数的概念求解.【解答】解:单项式﹣3xy3的系数为﹣3,次数为4.故答案为:﹣3,4.3.江苏省的面积约为102 600km2,这个数据用科学记数法可表示为 1.026×105km2.【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:102 600=1.026×105km2.4.化简(x+y)﹣(x﹣y)的结果是2y .【考点】整式的加减.【分析】直接运用去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣,进行计算.【解答】解:(x+y)﹣(x﹣y)=x+y﹣x+y=2y.5.若2x3y n+1与﹣5x m﹣2y2是同类项,则m+n= 6 .【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【解答】解:由题意,得m﹣2=3,n+1=2.解得m=5,n=1.m+n=5+1=6,故答案为:6.6.比较两个数的大小:﹣<﹣.【考点】有理数大小比较.【分析】根据有理数大小比较的方法,两个负数,绝对值大的其值反而小,判断出两个数的大小关系即可.【解答】解:|﹣|=,|﹣|=,∵,∴﹣.故答案为:<.7.如图是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2,则输出结果为 6.5 .【考点】代数式求值.【分析】把x与y的值代入数值转换机中计算即可确定出输出结果.【解答】解:把x=3,y=﹣2代入数值转换机中得:[32+(﹣2)2]÷2=(9+4)÷2=13÷2=6.5.故答案为:6.5.8.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.9.若x2=9,则x= ±3 .【考点】平方根.【分析】由于左边为一个平方式,所以可用直接开平方法进行求解.【解答】解:∵x2=9∴x=±3.10.下列一组是按规律排列的数:1,2,4,8,16,…,第2016个数是22015.【考点】规律型:数字的变化类.【分析】根据第1个数1=20,第2个数2=21,第3个数4=22可知第n个数为2n﹣1,据此可得.【解答】解:第1个数1=20,第2个数2=21,第3个数4=22,…∴第2016个数是22015,故答案为:22015.11.定义一种关于“⊙”的新运算,观察下列式子:1⊙3=1×4+3=7; 3⊙(﹣1)=3×4+(﹣1)=11;5⊙4=5×4+4=24; 4⊙(﹣3)=4×4+(﹣3)=13.请你想一想:5⊙(﹣6)= 14 .【考点】有理数的混合运算.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=5×4﹣6=20﹣6=14,故答案为:1412.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有3n+1 个三角形(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有(3n+1)个三角形.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.故答案为:3n+1.二、选择题(本大题共8小题,每小题2分,共16分.)13.某天的温度上升了5℃记作+5℃,则﹣2℃的意义是()A.上升了2℃B.没有变化 C.下降了﹣2℃D.下降了2℃【考点】正数和负数.【分析】根据温度上升记为正,即可得出温度下降记为负,此题得解.【解答】解:∵温度上升了5℃记作+5℃,∴﹣2℃表示温度下降了2℃.故选D.14.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义得到无理数有,共1个.【解答】解:无理数有,共1个,故选A.15.如图,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点【考点】数轴.【分析】距离原点3个单位的点可能在原点的右边(3,即D点),也可能在原点的左边(﹣3,即A点).【解答】解:由数轴与题意可得,在数轴上表示到原点的距离为3个单位的点有A点和D 点.故选C.16.下面各组数中,相等的一组是()A.﹣22与(﹣2)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方,以及绝对值的含义和求法,求出每个选项中的两个数各是多少,判断出各组数中,相等的一组是哪个即可.【解答】解:∵﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,∴选项A不正确;∵=,()3=,∴≠()3,∴选项B不正确;∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|≠﹣(﹣2),∴选项C不正确;∵(﹣3)3=﹣27,﹣33=﹣27,∴(﹣3)3=﹣33,∴选项D正确.故选:D.17.下列说法中正确的是()A.如果两个数的绝对值相等,那么这两个数相等B.有理数分为正数和负数C.互为相反数的两个数的绝对值相等D.最小的整数是0【考点】绝对值;相反数.【分析】利用绝对值的代数意义,相反数定义,以及有理数的分类判断即可.【解答】解:A、如果两个数的绝对值相等,那么这两个数相等或互为相反数,错误;B、有理数分为正数、负数和0,错误;C、互为相反数的两个数的绝对值相等,正确;D、没有最小的整数,错误,故选C18.下列代数式:a,﹣ab,m+n,x2+y2,﹣1, ab2c,其中单项式共有()A.6个B.5个C.4个D.3个【考点】单项式.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以确定单项式的个数.【解答】解:a,﹣ab,m+n,x2+y2,﹣1, ab2c,其中单项式共有a,﹣ab,﹣1, ab2c共4个,故选C.19.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【考点】去括号与添括号;合并同类项.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.20.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d) D.ab﹣cd【考点】整式的加减.【分析】把图形补成一个大矩形,则很容易表达出阴影部分面积.【解答】解:把图形补成一个大矩形,则阴影部分面积=ab﹣(a﹣c)(b﹣d)=ab﹣[ab﹣ad ﹣c(b﹣d)]=ab﹣ab+ad+c(b﹣d)=ad+c(b﹣d).故选C.三、计算或化简(共34分)21.计算(1)2﹣(﹣18)+(﹣7)﹣15(2)(﹣48)÷8﹣(﹣25)×(﹣6)(3)﹣14﹣|2﹣5|+6×(﹣)(4)﹣36×(﹣﹣)÷(﹣2)【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数加法法则计算即可;(2)先算乘除,再算减法即可;(3)先算乘方与绝对值,再算乘法,最后算加减;(4)先利用分配律计算,再计算除法即可.【解答】解:(1)原式=2+18﹣7﹣15=﹣2;(2)原式=﹣6﹣150=﹣156;(3)原式=﹣1﹣3﹣2=﹣6;(4)原式=(﹣9+4+3)÷(﹣2)=(﹣2)÷(﹣2)=1.22.化简:(1)x2y﹣3x2y﹣6xy+5xy+2x2y(2)(2x﹣7y)﹣(4x﹣10y)(3)5a2+3ab+2(a﹣ab)﹣(5a2+ab﹣b2)【考点】整式的加减.【分析】(1)直接合并同类项即可;(2)、(3)先去括号,再合并同类项即可.【解答】解:(1)原式=(1﹣3+2)x2y﹣(6﹣5)xy=﹣xy;(2)原式=2x﹣7y﹣4x+10y=3y﹣2x;(3)原式=5a2+3ab+2a﹣2ab﹣5a2﹣ab+b2=2a+b2.23.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=ab2﹣1+7a2b﹣2+2ab2+2﹣2a2b=ab2+5a2b﹣1,∵(a+2)2+|b﹣3|=0,∴a+2=0,b﹣3=0,即a=﹣2,b=3,则原式=﹣42+60﹣1=17.四、解答题(共26分)24.如图,在边长为a cm的正方形内,截去两个以正方形的边长a cm为直径的半圆,(结果保留π)(1)图中阴影部分的周长为πa+2a cm.(2)图中阴影部分的面积为a2﹣a2cm2.(3)当a=4时,求出阴影部分的面积.【考点】代数式求值;列代数式.【分析】(1)根据阴影部分的周长=正方形两条边的长度+一个圆的周长.(2)阴影部分的面积=正方形的面积﹣圆的面积;(3)当a=4时,代入(2)中代数式计算即可.【解答】解:(1)由图可知,阴影部分的周长为一个圆的周长与正方形两条边长的和,则阴影部分的周长=πa+2a(cm);故答案为:πa+2a;(2)由图可知,阴影部分的面积=正方形的面积﹣圆的面积,即阴影部分的面积=a2﹣π()2=a2﹣a2.故答案为:a2﹣a2;(3)当a=4时,阴影部分的面积=42﹣×42=16﹣4π(cm2).25.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,x(x ≥20)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.(1)在A超市购买羽毛球拍和羽毛球的费用为270+2.7x ,在B超市购买羽毛球拍和羽毛球的费用为30x+240 .(用含x的代数式表示)(2)该活动中心决定只在一家超市购买10副球拍和 100个羽毛球,你认为在哪家超市购买划算?为什么?【考点】一元一次方程的应用.【分析】(1)根据购买费用=单价×数量建立关系就可以表示出在两个超市购买羽毛球拍和羽毛球的费用;(2)把x=10分别代入两个代数式可得答案.【解答】解:(1)在A超市购买羽毛球拍和羽毛球的费用为:10×30×0.9+3×0.9×x=270+2.7x,在B超市购买羽毛球拍和羽毛球的费用:10×30+3(10x﹣20)=30x+240,故答案为:270+2.7x;30x+240;(2)当x=10时,270+2.7×10=540,30x+240=30×10+240=540,答:A、B花费一样多.26.记M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…,M(n)=(1)填空:M(5)= ﹣32 ,M(50)是一个正数(填“正”或“负”)(2)计算:①2M(6)+M(7);②4M(7)+2M(8);(3)直接写出2016M(n)+1008M(n+1)的值为0 .【考点】规律型:数字的变化类.【分析】(1)根据M(n)=代入n=5、50,即可求出M(5)、M(50)的值;(2)根据M(n)=代入数值即可得出2M(6)+M(7)和4M(7)+2M(8)的值;(3)根据2016÷1008=2结合M(n)=即可求出2016M(n)+1008M的值.(n+1)【解答】解:(1)∵M(n)=,∴M(5)=(﹣2)5=﹣32;M(50)=(﹣2)50=(﹣1)50×250=250.故答案为:﹣32;正.(2)①2M(6)+M(7)=2×(﹣2)6+(﹣2)7=27﹣27=0;②4M(7)+2M(8)=4×(﹣2)7+2×(﹣2)8=﹣29+29=0.(3)∵2016÷1008=2,∴2016M(n)+1008M(n+1)=1008×(2M(n)+M(n+1))=1008×[﹣(﹣2)n+1+(﹣2)n+1]=0.故答案为:0.27.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是4或﹣2 ,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M ﹣1008.5 ,N 1006.5 ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P n﹣,Q n+(用含m,n的式子表示这两个数).【考点】一元一次方程的应用;数轴.【分析】(1)分点在A的左边和右边两种情况解答;利用两点之间的距离计算方法直接计算得出答案即可;(2)A点与C点重合,得出对称点位﹣1,然后根据两点之间的距离列式计算即可得解;(3)根据(2)的计算方法,然后分别列式计算即可得解.【解答】解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B,C两点之间的距离为﹣﹣(﹣3)=;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣)]=;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n﹣,Q=n+.故答案为:4或﹣2,;,﹣1008.5,1006.5;n﹣,n+.。

2017七年级数学上册期中测试题及答案

2017七年级数学上册期中测试题及答案

七年级上册数学其中考试卷(人教版)(试卷共4页,考试时间为90分钟,满分120分)题号 一二三总分2122232425262728得分一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) 题号 123456789101112答案1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与15.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69° B .111° C .141° D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A B C D 6 2 224 20 4 884 446 m10 ……AB C第8题图 北O AB第8题图A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] . 22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21. 24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…… (1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.(本小题满分8分)共43元共94元 CB E D如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元. 2012~2013学年度第一学期七年级期末考试数学试题参考答案及评分说明说明: 1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分. 一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B . 二、填空题(每题3分,共24分) 13.31-;14.21-;15.2;16.58°28′;17.×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9) ………………………………………………………3分 =-1+ 47…………………………………………………………………………5分=43……………………………………………………………………………6分22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ο ………………………………………………3分 解得:x =80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x ………………………………………………3分 =12--x ………………………………………………………………4分AE DBFC把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分 ∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD -∠DOE =90°-15°=75° …………………………………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =,CF =12CD =2x cm . ……………………………………………3分 ∴EF =AC -AE -CF =. ………………………………………………………4分∵EF =10cm ,∴=10,解得:x =4. ………………………………………………………………6分∴AB =12cm ,CD =16cm . ……………………………………………………………8分 28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元. ………………………1分由题意得:30x +45(x +4)=1755 ……………………………………………3分解得:x =21则x +4=25. ……………………………………………………………………4分 答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分 根据题意,得21y +25(105-y )=2447.………………………………………………7分 解之得:y = (不符合题意) . ……………………………………………………8分所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元 则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。

2017学年第一学期七年级数学期中试卷

2017学年第一学期七年级数学期中试卷

2017学年第一学期期中考试七年级数学学科 2017.11考生须知:1.本卷评价内容范围是《数学》七年级上册1.1~4.2,满分100分.2.考试时间90分钟,试卷共4页,答卷纸共3页.答题时不准使用计算器,解答题请在 答题卷答题区域作答,不得超出答题区域边框线.一、选择题(本题有8小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.实数-3的相反数是( ▲ )A .3B .-3C .31D .31- 2.实数16的平方根是( ▲ )A . 4B . -4C .±4D . 16 3.静静家冰箱冷冻室的温度为-3℃,调高5℃后的温度为( ▲ )A .0℃B .1℃C .2℃D .8℃4.据统计部门报告,国庆假期杭州旅游人数创新高,高达1200万.这个数据用科学记数法表示为( ▲ )人.A .4101200⨯ B .7102.1⨯ C . 3102.1⨯ D .81012.0⨯ 5.在数1-,π,4,71中是无理数...的是( ▲ ) A .1- B .πC .4D .71 6.某种细菌,在培养过程中每过1小时便由一个分裂为两个. 经过5小时,这种细菌由一个可以分裂为( ▲ )A. 8个B. 16个C. 32个D. 64个 7.下列计算正确的是( ▲ )A .39±=B .283-=-C .36412585= D .8)1()2(23=-⨯- 8.一个正方形的面积是11,估计它的边长大小在( ▲ )A .1与2之间B .2与3之间C .3与4之间D .4与5之间(第6题图)9. 已知n -10是最小的正整数,则实数n 的值是( ▲ )A .12B .10C .3D .910.若数a 、b 在数轴上(如图所示),则下列各式中一定成立的是( ▲ ) A . a+b<0 B .-a>bC . a-b>a+bD . |a |+|b |>|a+b |二、填空题(本题有8小题,每小题3分,共24分) 11.21-的倒数是 ▲ . 12.计算:2-= ▲ .13.“x 的3倍与6的差”用代数式表示为 ▲ . 14.一个立方体魔方的体积为643cm ,则棱长是 ▲ cm . 15.绝对值不大于2的整数有 ▲ 个.16.如图是一个数值转换机,若输入数x =-2,则输出结果是 ▲ .17.数轴上,在原点的左侧,并且与表示5的点的距离为3的点所表示的数是 ▲ . 18.将三条具有公共原点的数轴按如图方式放置,动点P 从原点O 出发,沿O→A→B→C→D→E→F→G→H …的方式运动.若第1步到达点A ,其对应的数字为1;第4步到达点D ,其对应的数字为1-;第8步到达点H ,其对应的数字为2;则第2016步到达的点所对应的数字为 ▲ .三、解答题:(本题有6小题,共46分) 19.(本题12分)计算下列各题:(1)()2--6 (2)()2-52-20÷⎪⎭⎫⎝⎛⨯ H G P -3-3-3333-2-2-2222F E D -1-1-1111C B OA (第18题)(第16题图)ab(3))3291()3(2-⨯- (4)()162-32+ (3≈1.73,结果精确到0.1)20.(本题6分)以下是数学乐园中的“实数家族”,请给该“实数家族”分家吧.21.(本题6分)在数轴上精确..地表示下列各数,并用“<”把它们连接起来. -1, 2, 0, 2.5∴ ▲ < ▲ < ▲ < ▲ .22.(本题6分)温州市第八中学校图书馆平均每天借出图书50册.如果某天借出52册,就记作+2;如果某天借出40册,就记作-10.上星期图书馆借出图书记录如下:(1) 上星期五借出图书多少册?(2) 上星期二比上星期三多借出图书多少册? (3) 上星期总共借出图书多少册?4, 0 , 722-, 3, π- , 2.101101110…(每两个0之间依次多一个1)_ 分数_ 整数_ 实数家族_ 无理数家族_ 有理数家族23.(本题6分)阅读下面的解题过程: 计算:⎪⎭⎫⎝⎛+÷⎪⎭⎫ ⎝⎛72-32143-61421-方法一:原式=141-3421-21-65421-72143-3261421-=⨯=⎪⎭⎫⎝⎛÷⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛方法二:原式的倒数为()14-1228-97-42-72-32143-61421-72-32143-61=++=⨯⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛+ 故原式=141-通过阅读以上解题过程,选择你认为合适的方法计算下题:⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛52-61101-32301-24. (本题10分)已知A 、B 在数轴上分别表示a 、b . (1)对照数轴填写下表:a 6 -6 -2 -2.5 b3 0 5 -2.5 A 、B 两点的距离(2)当A 点表示的数为x ,B 点表示的数为5,则A ,B 两点距离可表示为____________. (3)找出所有符合条件的整数点P ,使它到表示3和-3的两点的距离之和为6,并求所有这些整数的和.(4)若点C 表示的数x 为整数,当x =______________时,41-+-x x 取得的值最小.。

2017年江苏省镇江市七年级(上)期中数学试卷与参考答案PDF

2017年江苏省镇江市七年级(上)期中数学试卷与参考答案PDF

2016-2017学年江苏省镇江市七年级(上)期中数学试卷一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分)1.(2分)﹣的倒数为;﹣2的相反数是.2.(2分)若|a|=4,则a=;若a2=9,则a=.3.(2分)比较大小:﹣52,﹣﹣.4.(2分)单项式的系数是,次数是.5.(2分)﹣3x m y2与5x3y n是同类项,则m=,n=.6.(2分)10月19日凌晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为393000米的“太空之吻”,其中“393000米”用科学记数法可表示为米.7.(2分)小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟).她至少要用分钟才能让奶奶喝上热牛奶.8.(2分)按照图所示的操作步骤,若输入x的值为3,则输出y的值为.9.(2分)已知x+2y=3,则代数式2x+4y﹣5的值为.10.(2分)已知有理数a、b满足(a﹣2)2+|b+3|=0,那么代数式b a的值是.11.(2分)如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是.12.(2分)如图图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是.二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)13.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km14.(3分)下列一组数:﹣8,2.7,3,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数有()个.A.0 B.1 C.2 D.315.(3分)下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1是多项式C.﹣πx y2的系数是﹣πD.x与π是同类项16.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)217.(3分)现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.18.(3分)数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±419.(3分)已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣120.(3分)若x为有理数,x﹣|x|表示的数是()A.正数B.非正数C.负数D.非负数三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明)21.(20分)计算:(1)23﹣17﹣(﹣7)+(﹣16)(2)﹣5+6÷(﹣2)×(3)(﹣36)×(﹣+)(4)﹣12﹣(﹣10)×2+(﹣4)2.22.(10分)化简(1)3x2+2x﹣5x2+3x(2)4(m2+n)+2(n﹣2m2)23.(8分)先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=1.24.(8分)画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.﹣(﹣1),﹣|﹣2|,﹣3,(﹣2)2.25.(8分)某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?26.(8分)为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是元;如果小红家每月用水20吨,则水费是元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?27.(10分)一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B 到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→C(,),C→(+1,);(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(﹣2,﹣1),(﹣2,﹣2),请在图中标出P的位置.(4)在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?2016-2017学年江苏省镇江市七年级(上)期中数学试卷参考答案与试题解析一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分)1.(2分)﹣的倒数为﹣2;﹣2的相反数是2.【解答】解:﹣的倒数为﹣2;﹣2的相反数是2.故答案为:﹣2;2.2.(2分)若|a|=4,则a=±4;若a2=9,则a=±3.【解答】解:若|a|=4,则a=±4;若a2=9,则a=±3,故答案为:±4,±33.(2分)比较大小:﹣5<2,﹣>﹣.【解答】解:﹣5<2,∵<,∴﹣>﹣.故答案为:<,>.4.(2分)单项式的系数是﹣,次数是3.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.5.(2分)﹣3x m y2与5x3y n是同类项,则m=3,n=2.【解答】解:根据题意得:m=3,n=2.故答案是:3,2.6.(2分)10月19日凌晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为393000米的“太空之吻”,其中“393000米”用科学记数法可表示为3.93×105米.【解答】解:将393000米用科学记数法表示为:3.93×105米.故答案为:3.93×105.7.(2分)小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟).她至少要用6分钟才能让奶奶喝上热牛奶.【解答】解:∵烧开水需要4.5分钟,在烧水的同时可以洗杯子,这样可以节约2分钟,∴让奶奶喝上热牛奶的时间=4.5+1.5=6(分钟).故答案为:6.8.(2分)按照图所示的操作步骤,若输入x的值为3,则输出y的值为18.【解答】解:(3﹣6)2×2=9×2=18故答案为:18.9.(2分)已知x+2y=3,则代数式2x+4y﹣5的值为1.【解答】解:∵x+2y=3,∴2x+4y﹣5=2(x+2y)﹣5,=2×3﹣5,=1.故本题答案为:1.10.(2分)已知有理数a、b满足(a﹣2)2+|b+3|=0,那么代数式b a的值是9.【解答】解:由题意可知:a=2,b=﹣3,∴b a=(﹣3)2=9故答案为911.(2分)如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是±π.【解答】解:∵直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,∴AA′之间的距离为圆的周长=π,∴A点对应的数是±π.故答案是:±π.12.(2分)如图图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是32.【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3(3﹣1)=8个黑色正方形,图④中有2+3(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,∴当n=11时,3n﹣1=32.故答案为:32二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)13.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km【解答】解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.14.(3分)下列一组数:﹣8,2.7,3,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数有()个.A.0 B.1 C.2 D.3【解答】解:无理数是,0.080080008…(相邻两个8之间依次增加一个0),故选:C.15.(3分)下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1是多项式C.﹣πxy2的系数是﹣πD.x与π是同类项【解答】解:A、2x2﹣3xy﹣1是二次三项式,故A正确;B、﹣x+1是多项式,故B正确;C、﹣πxy2的系数是﹣π,故C正确;D、x与π不是同类项,故D错误;故选:D.16.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选:B.17.(3分)现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.【解答】解:※3==,故选:A.18.(3分)数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±4【解答】解:∵|4|=4,|﹣4|=4,则点A所表示的数是±4.故选:D.19.(3分)已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣1【解答】解:∵|x|=3,|y|=2,x•y<0,∴x=3时,y=﹣2,则x+y=3﹣2=1;x=﹣3时,y=2,则x+y=﹣3+2=﹣1.故选:B.20.(3分)若x为有理数,x﹣|x|表示的数是()A.正数B.非正数C.负数D.非负数【解答】解:(1)若x≥0时,x﹣丨x丨=x﹣x=0;(2)若x<0时,x﹣丨x丨=x+x=2x<0;由(1)(2)可得x﹣丨x丨表示的数是非正数.故选:B.三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明)21.(20分)计算:(1)23﹣17﹣(﹣7)+(﹣16)(2)﹣5+6÷(﹣2)×(3)(﹣36)×(﹣+)(4)﹣12﹣(﹣10)×2+(﹣4)2.【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=6+7﹣16=13﹣16=﹣3(2)﹣5+6÷(﹣2)×=﹣5﹣3×=﹣5﹣1=﹣6(3)(﹣36)×(﹣+)=(﹣36)×﹣(﹣36)×+(﹣36)×=﹣18+20﹣21=﹣19(4)﹣12﹣(﹣10)×2+(﹣4)2=﹣1+40+16=5522.(10分)化简(1)3x2+2x﹣5x2+3x(2)4(m2+n)+2(n﹣2m2)【解答】解:(1)原式=3x2﹣5x2+2x+3x=﹣2x2+5x;(2)原式=(4m2+4n)+(2n﹣4m2)=4m2+4n+2n﹣4m2=6n.23.(8分)先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=1.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=1时,原式=44+22﹣1=65.24.(8分)画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.﹣(﹣1),﹣|﹣2|,﹣3,(﹣2)2.【解答】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣3<﹣|﹣2|<﹣(﹣1)<(﹣2)2.25.(8分)某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?【解答】解:(1)3﹣(﹣4)=7(克).答:它们的质量相差最大7克.(2)5+3=8(袋),(20﹣8)÷20×100%=12÷20×100%=60%.答:这批样品中有8袋质量不合格,这20袋食品的合格率是60%.(3)500×20+(﹣4×5﹣2×3+0×3+1×4+2×2+3×3)=10000﹣9=9991(克).答:这次抽样检测的总质量是9991克.26.(8分)为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是16元;如果小红家每月用水20吨,则水费是45元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?【解答】解:(1)每月用水8吨时,水费为:8×2=16元,每月用水20吨时,水费为:2.5(20﹣10)+20=45元;(2)①如果每月用水x≤10吨,水费为:(2x)元②如果每月用水x>10吨,水费为:2.5(x﹣10)+20=2.5x﹣5元;故答案为:(1)16,45.27.(10分)一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B 到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(3,4),B→C(2,0),C→D(+1,﹣2);(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(﹣2,﹣1),(﹣2,﹣2),请在图中标出P的位置.(4)在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?【解答】解:(1)A→C(3,4),B→C(2,0),C→D(+1,﹣2).故答案为3,4,2,0,D,﹣2;(2)(4+2)+(1+2)+2=6+3+2=11;(3)如图,P在A往右1个单位的格点上;(4)(2+1)+(3+2)+(2+1)+(2+2)=3+5+3+4=15,15×1.5=22.5焦耳.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

江苏省镇江市扬中市2016-2017学年七年级(上)期中数学试卷(解析版)

江苏省镇江市扬中市2016-2017学年七年级(上)期中数学试卷(解析版)

2016-2017学年江苏省镇江市扬中市七年级(上)期中数学试卷一、填空题:(本题共12小题,每小题2分,共24分)1.(2分)﹣2.5的相反数是,倒数是.2.(2分)太阳半径大约是696 000千米,用科学记数法表示为米.3.(2分)比较两个数的大小:﹣﹣.4.(2分)在数轴上,点A表示数﹣1,距A点2.5个单位长度的点表示的数是.5.(2分)单项式﹣3xy2z的系数为,次数为.6.(2分)多项式﹣xy2+﹣2xy的次数是.7.(2分)若m、n满足|m﹣2|+(n+3)2=0,则n+m= .8.(2分)已知2x﹣3y=3,则代数式6x﹣9y+5的值为.9.(2分)若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m= .10.(2分)有理数a、b、c在数轴上的位置如图所示,则|a﹣b|﹣|2a﹣c|= .11.(2分)已知正方形边长为6,黑色部分是以正方形边长为直径的两个半圆,则图中白色部分的面积为.(结果保留π)12.(2分)如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2016的点与圆周上表示数字的点重合.二、选择题:(本题共5小题,每小题3分,共15分)13.下列各数中,一定互为相反数的是()A.﹣(﹣5)和﹣|﹣5| B.|﹣5|和|+5| C.﹣(﹣5)和|﹣5| D.|a|和|﹣a|14.x表示一个两位数,y也表示一个两位数,君君想用x,y组成一个四位数,且把x放在y的右边,则这个四位数用代数式表示为()A.yx B.x+y C.100x+y D.100y+x15.用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)216.已知单项式0.5x a﹣1y3与3xy4+b是同类项,那么a,b的值分别是()A.2,1 B.2,﹣1 C.﹣2,﹣1 D.﹣2,117.下列一组是按一定规律排列的数:1,2,4,8,16,…,则第2016个数是()A.22014B.22015C.22016D.4032三、解答题:(本大题共10小题,共61分)18.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0.﹣|25|,﹣3.5按照从小到大的顺序排列为.19.计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)24×(﹣+﹣);(3)﹣22+[12﹣(﹣3)×2]÷(﹣3);(4)1×﹣(﹣)×2+(﹣)÷1.20.化简:(1)3(2x﹣7y)﹣(4x﹣10y)(2)(2a2﹣ab)﹣2(3a2﹣2ab).21.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=3,b=﹣2.22.已知:|a|=3,b2=4,ab<0,求a﹣b的值.23.已知:A=2a2+2ab﹣2a﹣1,B=﹣a2+ab﹣1(1)求A﹣(A﹣2B)的值;(2)若A+2B的值与a的取值无关,求b的值.24.已知a,b互为倒数,c、d互为相反数,|x|=3.试求:x2﹣(ab+c+d)x+|ab+3|的值.25.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?26.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①.方法②;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.27.(7分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和﹣10的两点之间的距离是.(2)数轴上表示x和﹣2的两点之间的距离表示为.(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|.2016-2017学年江苏省镇江市扬中市七年级(上)期中数学试卷参考答案与试题解析一、填空题:(本题共12小题,每小题2分,共24分)1.﹣2.5的相反数是 2.5 ,倒数是﹣.【考点】倒数;相反数.【分析】根据只有符号不同的两个数是相反数,可得﹣2.5的相反数,根据乘积是1的两个数互为倒数,可得﹣2.5的倒数.【解答】解:﹣2.5的相反数是2.5,﹣2.5的倒数是,故答案为:2.5,﹣.【点评】本题考查了有理数的倒数,理解乘积是1的两个数互为倒数是解题关键.2.太阳半径大约是696 000千米,用科学记数法表示为 6.96×108米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:696 000千米=696 000 000米=6.96×108米.【点评】用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).3.比较两个数的大小:﹣<﹣.【考点】有理数大小比较.【分析】根据有理数大小比较的方法,两个负数,绝对值大的其值反而小,判断出两个数的大小关系即可.【解答】解:|﹣|=,|﹣|=,∵,∴﹣.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4.在数轴上,点A表示数﹣1,距A点2.5个单位长度的点表示的数是﹣3.5或1.5 .【考点】数轴.【专题】数形结合.【分析】这样的点有2个,分别位于原点的两侧且到点﹣1的距离都是2.5,右边的为1.5,左边的为﹣3.5.【解答】解:如图:距离点A点2.5个单位长度的数为﹣3.5或1.5.故答案为﹣3.5或1.5.【点评】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.5.单项式﹣3xy2z的系数为﹣3 ,次数为 4 .【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣3xy2z的系数为﹣3,次数为 4.故答案为:﹣3,4.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.多项式﹣xy2+﹣2xy的次数是 3 .【考点】多项式.【分析】根据多项式的次数求出答案;【解答】解:多项式的次数是次数最高项的次数,故答案为:3【点评】本题考查多项式的概念,属于基础题.7.若m、n满足|m﹣2|+(n+3)2=0,则n+m= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质,可求出m、n的值,然后将代数式化简再代值计算.【解答】解:∵|m﹣2|+(n+3)2=0,∴m=2,n=﹣3;原式=n+m=﹣3+2=﹣1.故答案为﹣1.【点评】本题考查了非负数的性质以及绝对值,几个非负数的和为0时,这几个非负数都为0.8.已知2x﹣3y=3,则代数式6x﹣9y+5的值为14 .【考点】代数式求值.【专题】整体思想.【分析】观察所求代数式可知,可以将已知整体代入求代数式的值.【解答】解:∵2x﹣3y=3,∴6x﹣9y+5=3(2x﹣3y)+5=3×3+5=14.故答案为:14.【点评】本题考查了代数式的求值运算,根据式子的特点,采用整体代入的方法.也可以将x=代入所求代数式消元,再化简.9.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m= ﹣6 .【考点】整式的加减.【分析】可以先将原多项式合并同类项,然后根据不含有ab项可以得到关于m的方程,解方程即可解答.【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.【点评】解答此题,必须先合并同类项,否则容易误解为m=0.10.有理数a、b、c在数轴上的位置如图所示,则|a﹣b|﹣|2a﹣c|= a+b﹣c .【考点】整式的加减;数轴;绝对值.【分析】根据绝对值是非负数,可化简绝对值,根据整式的加减,可得答案.【解答】解:|a﹣b|﹣|2a﹣c|=b﹣a﹣(c﹣2a)=b﹣a﹣c+2a=a+b﹣c,故答案为:a+b﹣c.【点评】本题考查了整式的加减,差的绝对值是大数减小数,化简绝对值是解题关键.11.已知正方形边长为6,黑色部分是以正方形边长为直径的两个半圆,则图中白色部分的面积为36﹣9π.(结果保留π)【考点】列代数式.【分析】两个半圆的面积的和就是一个圆的面积,正方形的面积减去圆面积即可求解.【解答】解:正方形的面积是:36,两个半圆的面积是:π()2=9π,则图中白色部分的面积为:36﹣9π.【点评】本题考查了列代数式,正确理解两个半圆的面积的和就是一个圆的面积是关键.12.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2016的点与圆周上表示数字 1 的点重合.【考点】规律型:图形的变化类;数轴.【分析】此题注意寻找规律:每4个数一组,分别与0、3、2、1重合,所以需要计算2016÷4,看是第几组的第几个数.【解答】解:∵﹣2016÷4=504,∴表示﹣2016的点是第504组的第四个数,即是1,故答案为:1.【点评】此题是借助数轴的一道规律题,寻找规律是关键.二、选择题:(本题共5小题,每小题3分,共15分)13.下列各数中,一定互为相反数的是()A.﹣(﹣5)和﹣|﹣5| B.|﹣5|和|+5| C.﹣(﹣5)和|﹣5| D.|a|和|﹣a|【考点】相反数;绝对值.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣(﹣5)=5,﹣|﹣5|=﹣5,故A正确;故选:A.【点评】本题考查了相反数,利用了相反数的定义.14.x表示一个两位数,y也表示一个两位数,君君想用x,y组成一个四位数,且把x放在y的右边,则这个四位数用代数式表示为()A.yx B.x+y C.100x+y D.100y+x【考点】列代数式.【分析】根据题意可知用x,y组成一个四位数,且把x放在y的右边,则y扩大100倍,从而可以用代数式表示这个四位数,本题得以解决.【解答】解:由题意可得,这个四位数用代数式表示:100y+x,故选D.【点评】本题考查列代数式,解题的关键是明确题意列出相应的代数式.15.用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2【考点】列代数式.【分析】认真读题,表示出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平方,于是答案可得.【解答】解:∵m的3倍与n的差为3m﹣n,∴m的3倍与n的差的平方为(3m﹣n)2.故选A.【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平方与平方差的区别,做题时注意体会.16.已知单项式0.5x a﹣1y3与3xy4+b是同类项,那么a,b的值分别是()A.2,1 B.2,﹣1 C.﹣2,﹣1 D.﹣2,1【考点】同类项.【分析】根据同类项的定义进行计算即可.【解答】解:∵单项式0.5x a﹣1y3与3xy4+b是同类项,∴a﹣1=1,4+b=3,∴a=2,b=﹣1,故选B.【点评】本题考查了同类项的定义,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.17.下列一组是按一定规律排列的数:1,2,4,8,16,…,则第2016个数是()A.22014B.22015C.22016D.4032【考点】规律型:数字的变化类.【分析】根据题意可知数据的排列规律是,第n个数是2n﹣1.【解答】解:第2016个数是22015.故选:B.【点评】此题考查数字的变化规律,找出数字的运算规律,利用运算的规律解决问题.三、解答题:(本大题共10小题,共61分)18.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0.﹣|25|,﹣3.5按照从小到大的顺序排列为﹣3.5<﹣|﹣2.5|<﹣1.5<0<﹣(﹣1)<3 .【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣3.5<﹣|﹣2.5|<﹣1.5<0<﹣(﹣1)<3,故答案为:﹣3.5<﹣|﹣2.5|<﹣1.5<0<﹣(﹣1)<3.【点评】本题考查了数轴,有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.19.(12分)(2016秋•扬中市期中)计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)24×(﹣+﹣);(3)﹣22+[12﹣(﹣3)×2]÷(﹣3);(4)1×﹣(﹣)×2+(﹣)÷1.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式逆用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣2﹣3﹣1+6=0;(2)原式=18﹣4+15=29;(3)原式=﹣4+[12﹣(﹣6)]×(﹣)=﹣4+18×(﹣)=﹣10;(4)原式=(+﹣)×=×=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.化简:(1)3(2x﹣7y)﹣(4x﹣10y)(2)(2a2﹣ab)﹣2(3a2﹣2ab).【考点】整式的加减.【专题】计算题.【分析】(1)先去括号,然后合并即可;(2)先去括号,然后合并即可.【解答】解:(1)原式=6x﹣21y﹣4x+10y=2x﹣11y;(2)原式=2a2﹣ab﹣6a2+4ab=﹣4a2+3ab.【点评】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.整式的加减实质上就是合并同类项.21.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=3,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣3ab2﹣2=﹣ab2,当a=3,b=﹣2时,原式=﹣12.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知:|a|=3,b2=4,ab<0,求a﹣b的值.【考点】有理数的减法;绝对值;有理数的乘法.【分析】本题涉及平方根的概念,绝对值的性质,因为ab<0,可确定a、b的取值,则a﹣b的值可求.【解答】解:∵|a|=3,b2=4,∴a=±3,b=±2,又∵ab<0,∴当a=3,b=﹣2时,a﹣b=5;当a=﹣3,b=2时,a﹣b=﹣5.∴a﹣b=±5.【点评】本题综合考查平方根,绝对值的性质.绝对值等于一个正数的数有两个.一个正数有两个平方根,它们互为相反数.23.已知:A=2a2+2ab﹣2a﹣1,B=﹣a2+ab﹣1(1)求A﹣(A﹣2B)的值;(2)若A+2B的值与a的取值无关,求b的值.【考点】整式的加减.【分析】(1)先去括号,再把B=﹣a2+ab﹣1代入即可;(2)先求出A+2B的表达式,再根据其值与a的取值无关,求出b的值即可、【解答】解:(1)A﹣(A﹣2B)=A﹣A+2B=2B∵B=﹣a2+ab﹣1,∴原式=2B=2(﹣a2+ab﹣1)=﹣2a2+2ab﹣2;(2)∵A=2a2+2ab﹣2a﹣1,B=﹣a2+ab﹣1,∴A+2B=2a2+2ab﹣2a﹣1+2(﹣a2+ab﹣1)=2a2+2ab﹣2a﹣1﹣2a2+2ab﹣2=4ab﹣2a﹣3.∵A+2B的值与a的取值无关,∴4ab﹣2a﹣3与a的取值无关,即(4b﹣2)a﹣3与a的取值无关∴4b﹣2=0,解得b=.答:b的值为.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知a,b互为倒数,c、d互为相反数,|x|=3.试求:x2﹣(ab+c+d)x+|ab+3|的值.【考点】代数式求值.【分析】根据相反数、倒数、绝对值的意义得到ab=1,c+d=0,x=±3,然后把ab=1,c+d=0,x=3或ab=1,c+d=0,x=﹣3分别代入计算即可.【解答】解:由题意得:ab=1,c+d=0,x=±3,x=3时,原式=10,x=﹣3时,原式=16.综上所述,x2﹣(ab+c+d)x+|ab+3|的值为10或16.【点评】本题考查了代数式求值,先把代数式根据已知条件变形,然后利用整体代入进行计算是解答此题的关键.25.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.【点评】本题考查了正数和负数,(1)利用了有理数的加法,(2)计算出每次与出发点的距离是解题关键,(3)单位耗油量乘以路程.26.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于m﹣n ;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①(m+n)2﹣4mn .方法②(m﹣n)2;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.【考点】列代数式;代数式求值.【专题】应用题.【分析】平均分成后,每个小长方形的长为m,宽为n.(1)正方形的边长=小长方形的长﹣宽;(2)第一种方法为:大正方形面积﹣4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;(3)利用(m+n)2﹣4mn=(m﹣n)2可求解;(4)利用(a﹣b)2=(a+b)2﹣4ab可求解.【解答】解:(1)m﹣n;(2)(m+n)2﹣4mn或(m﹣n)2;(3)(m+n)2﹣4mn=(m﹣n)2;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=4,∴(a﹣b)2=36﹣16=20.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.本题更需注意要根据所找到的规律做题.27.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8 ,数轴上表示2和﹣10的两点之间的距离是12 .(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2| .(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|.【考点】绝对值;数轴.【专题】解题方法.【分析】(1)计算两个数差的绝对值;(2)计算x与﹣2差的绝对值;(3)由于x是一个有理数,可通过x与﹣2,1间不同位置,分类讨论并计算最小值.(4)利用绝对值的意义,通过x与1、2、3、4、5不同的位置关系分类讨论,计算出结果.【解答】解:(1)|2﹣10|=8,|2﹣(﹣10)|=|2+10|=12;故答案为:8,12;(2)|x﹣(﹣2)|=|x+2|;故答案为:|x+2|(3)①x≥1原式=x﹣1+x+2=2x+1x=1,最小值为3②﹣2<x<1原式=1﹣x+x+2=3③x≤﹣2原式=1﹣x﹣x﹣2=﹣2x﹣1x=﹣2,最小值为3.综上,|x﹣1|+|x+2|有最小值,最小值为3;(4)①当x≤1时,原式=1﹣x+2﹣x+3﹣x+4﹣x+5﹣x=15﹣5x;②当1<x≤2时,原式=x﹣1+2﹣x+3﹣x+4﹣x+5﹣x=13﹣3x;③当2<x≤3时,原式=x﹣1+x﹣2+3﹣x+4﹣x+5﹣x=9﹣x;④当3<x≤4时,原式=x﹣1+x﹣2+x﹣3+4﹣x+5﹣x=3+x;⑤当4<x≤5时,原式=x﹣1+x﹣2+x﹣3+x﹣4+5﹣x=3x﹣5;⑥当x>5时,原式=x﹣1+x﹣2+x﹣3+x﹣4+x﹣5=5x﹣15;【点评】本题考查了绝对值的意义、整式的加减及确定驻点分类讨论.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.。

2016-2017学年苏科版七年级上册期中考试数学试题含答案

2016-2017学年苏科版七年级上册期中考试数学试题含答案

2016-2017学年第一学期期中试卷初一数学(满分:130分 时间:120分钟)卷首语:亲爱的同学,这是你们来到市二中的第一场大型考试,当你走进考场,你就是这10小题,每小题3分,共30分.请将选择题的答案填在答题纸相对应......) 12的倒数是( ▲ ) A .-12B .2C .-2D .12▲ ) .正数B .负数C .0D .不能确定正负361000000km 2,用科学记数法可表示为( ▲ )361×106 km 2 B .36.1×107 km 2 C .0.361×109 km 2 D .3.61×108 km 2( ▲ )A .平方是本身的数是0B .立方是本身的数是0、1C .绝对值是本身的数是正数D .倒数是本身的数是±1 x +y ,0,-a ,-3x 2y ,13x +,1x中,单项式的个数为( ▲ ) .3 B .4 C .5 D .6▲ ) A .8x 2+3y 2=11x 2y 2 B .4x 2-9x 2=-5x 2 C .5a 2b -5ba 2=0 D .3m -(-2m)=5m▲ )1-;②数轴上表示数4和-4的点到原点的距离相等;③当0≤a 时,a a -=a 的倒数是a1;⑤3)2(-和32-相等。

、2个 B 、3个 C 、4个 D 、5个 7)4(21+--x m x m是关于x 的四次三项式,则m 的值是( ▲ ) 4 B .2- C .4- D .4或4-2271x ab b kab -++-不含ab 项,则k 的值为 ( ▲ )A. 0 B. 7 C. 1 D.不能确定10.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为…………………………( ▲ )A .2a-3bB .4a-8bC .2a-4bD .4a-10b二、填空题:本大题共10小题,每小题3分,共30分.把答案直接填在答题纸相对应的位置上............ 11. 在227-,0,π,010010001.0 -四个数中,有理数有 ▲ 个 12.-2xy 2的次数为 ▲ .13.一台电脑原价a 元,现降价20%,则现售价为 ▲ 元.15.,则最后输出的结果是 ▲ .16.已知,m 、n 互为相反数,则n m ++3=__▲____.17.长方形的长为acm ,宽为bcm ,若长增加了2cm 后,面积比原来增加了 ▲ 2cm 18.已知计算规则bc ad db c a -=,则=--1231___▲____.19.已知:x -2y =-9,则代数式2x -4y -1的值为 ▲ .20. 若有理数在数轴上的位置如图所示,则化简:a c ++a b --c +注意:此卷不交,考试结束后自己保存,请将答案填写在答案卷上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年江苏省镇江市七年级(上)期中数学试卷一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分)1.(2分)﹣的倒数为;﹣2的相反数是.2.(2分)若|a|=4,则a=;若a2=9,则a=.3.(2分)比较大小:﹣52,﹣﹣.4.(2分)单项式的系数是,次数是.5.(2分)﹣3x m y2与5x3y n是同类项,则m=,n=.6.(2分)10月19日凌晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为393000米的“太空之吻”,其中“393000米”用科学记数法可表示为米.7.(2分)小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟).她至少要用分钟才能让奶奶喝上热牛奶.8.(2分)按照图所示的操作步骤,若输入x的值为3,则输出y的值为.9.(2分)已知x+2y=3,则代数式2x+4y﹣5的值为.10.(2分)已知有理数a、b满足(a﹣2)2+|b+3|=0,那么代数式b a的值是.11.(2分)如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是.12.(2分)如图图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是.二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)13.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km14.(3分)下列一组数:﹣8,2.7,3,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数有()个.A.0 B.1 C.2 D.315.(3分)下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1是多项式C.﹣πxy2的系数是﹣πD.x与π是同类项16.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)217.(3分)现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.18.(3分)数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±419.(3分)已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣120.(3分)若x为有理数,x﹣|x|表示的数是()A.正数B.非正数C.负数D.非负数三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明)21.(20分)计算:(1)23﹣17﹣(﹣7)+(﹣16)(2)﹣5+6÷(﹣2)×(3)(﹣36)×(﹣+)(4)﹣12﹣(﹣10)×2+(﹣4)2.22.(10分)化简(1)3x2+2x﹣5x2+3x(2)4(m2+n)+2(n﹣2m2)23.(8分)先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=1.24.(8分)画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.﹣(﹣1),﹣|﹣2|,﹣3,(﹣2)2.25.(8分)某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?26.(8分)为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是元;如果小红家每月用水20吨,则水费是元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?27.(10分)一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→C(,),C→(+1,);(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(﹣2,﹣1),(﹣2,﹣2),请在图中标出P的位置.(4)在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?2016-2017学年江苏省镇江市七年级(上)期中数学试卷参考答案与试题解析一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分)1.(2分)﹣的倒数为﹣2;﹣2的相反数是2.【解答】解:﹣的倒数为﹣2;﹣2的相反数是2.故答案为:﹣2;2.2.(2分)若|a|=4,则a=±4;若a2=9,则a=±3.【解答】解:若|a|=4,则a=±4;若a2=9,则a=±3,故答案为:±4,±33.(2分)比较大小:﹣5<2,﹣>﹣.【解答】解:﹣5<2,∵<,∴﹣>﹣.故答案为:<,>.4.(2分)单项式的系数是﹣,次数是3.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.5.(2分)﹣3x m y2与5x3y n是同类项,则m=3,n=2.【解答】解:根据题意得:m=3,n=2.故答案是:3,2.6.(2分)10月19日凌晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为393000米的“太空之吻”,其中“393000米”用科学记数法可表示为3.93×105米.【解答】解:将393000米用科学记数法表示为:3.93×105米.故答案为:3.93×105.7.(2分)小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟).她至少要用6分钟才能让奶奶喝上热牛奶.【解答】解:∵烧开水需要4.5分钟,在烧水的同时可以洗杯子,这样可以节约2分钟,∴让奶奶喝上热牛奶的时间=4.5+1.5=6(分钟).故答案为:6.8.(2分)按照图所示的操作步骤,若输入x的值为3,则输出y的值为18.【解答】解:(3﹣6)2×2=9×2=18故答案为:18.9.(2分)已知x+2y=3,则代数式2x+4y﹣5的值为1.【解答】解:∵x+2y=3,∴2x+4y﹣5=2(x+2y)﹣5,=2×3﹣5,=1.故本题答案为:1.10.(2分)已知有理数a、b满足(a﹣2)2+|b+3|=0,那么代数式b a的值是9.【解答】解:由题意可知:a=2,b=﹣3,∴b a=(﹣3)2=9故答案为911.(2分)如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是±π.【解答】解:∵直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,∴AA′之间的距离为圆的周长=π,∴A点对应的数是±π.故答案是:±π.12.(2分)如图图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是32.【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3(3﹣1)=8个黑色正方形,图④中有2+3(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,∴当n=11时,3n﹣1=32.故答案为:32二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)13.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km【解答】解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.14.(3分)下列一组数:﹣8,2.7,3,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数有()个.A.0 B.1 C.2 D.3【解答】解:无理数是,0.080080008…(相邻两个8之间依次增加一个0),故选:C.15.(3分)下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1是多项式C.﹣πxy2的系数是﹣πD.x与π是同类项【解答】解:A、2x2﹣3xy﹣1是二次三项式,故A正确;B、﹣x+1是多项式,故B正确;C、﹣πxy2的系数是﹣π,故C正确;D、x与π不是同类项,故D错误;故选:D.16.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选:B.17.(3分)现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.【解答】解:※3==,故选:A.18.(3分)数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±4【解答】解:∵|4|=4,|﹣4|=4,则点A所表示的数是±4.故选:D.19.(3分)已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣1【解答】解:∵|x|=3,|y|=2,x•y<0,∴x=3时,y=﹣2,则x+y=3﹣2=1;x=﹣3时,y=2,则x+y=﹣3+2=﹣1.故选:B.20.(3分)若x为有理数,x﹣|x|表示的数是()A.正数B.非正数C.负数D.非负数【解答】解:(1)若x≥0时,x﹣丨x丨=x﹣x=0;(2)若x<0时,x﹣丨x丨=x+x=2x<0;由(1)(2)可得x﹣丨x丨表示的数是非正数.故选:B.三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明)21.(20分)计算:(1)23﹣17﹣(﹣7)+(﹣16)(2)﹣5+6÷(﹣2)×(3)(﹣36)×(﹣+)(4)﹣12﹣(﹣10)×2+(﹣4)2.【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=6+7﹣16=13﹣16=﹣3(2)﹣5+6÷(﹣2)×=﹣5﹣3×=﹣5﹣1=﹣6(3)(﹣36)×(﹣+)=(﹣36)×﹣(﹣36)×+(﹣36)×=﹣18+20﹣21=﹣19(4)﹣12﹣(﹣10)×2+(﹣4)2=﹣1+40+16=5522.(10分)化简(1)3x2+2x﹣5x2+3x(2)4(m2+n)+2(n﹣2m2)【解答】解:(1)原式=3x2﹣5x2+2x+3x=﹣2x2+5x;(2)原式=(4m2+4n)+(2n﹣4m2)=4m2+4n+2n﹣4m2=6n.23.(8分)先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=1.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=1时,原式=44+22﹣1=65.24.(8分)画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.﹣(﹣1),﹣|﹣2|,﹣3,(﹣2)2.【解答】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣3<﹣|﹣2|<﹣(﹣1)<(﹣2)2.25.(8分)某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?【解答】解:(1)3﹣(﹣4)=7(克).答:它们的质量相差最大7克.(2)5+3=8(袋),(20﹣8)÷20×100%=12÷20×100%=60%.答:这批样品中有8袋质量不合格,这20袋食品的合格率是60%.(3)500×20+(﹣4×5﹣2×3+0×3+1×4+2×2+3×3)=10000﹣9=9991(克).答:这次抽样检测的总质量是9991克.26.(8分)为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是16元;如果小红家每月用水20吨,则水费是45元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?【解答】解:(1)每月用水8吨时,水费为:8×2=16元,每月用水20吨时,水费为:2.5(20﹣10)+20=45元;(2)①如果每月用水x≤10吨,水费为:(2x)元②如果每月用水x>10吨,水费为:2.5(x﹣10)+20=2.5x﹣5元;故答案为:(1)16,45.27.(10分)一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B 到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(3,4),B→C(2,0),C→D(+1,﹣2);(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(﹣2,﹣1),(﹣2,﹣2),请在图中标出P的位置.(4)在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?【解答】解:(1)A→C(3,4),B→C(2,0),C→D(+1,﹣2).故答案为3,4,2,0,D,﹣2;(2)(4+2)+(1+2)+2=6+3+2=11;(3)如图,P 在A 往右1个单位的格点上;(4)(2+1)+(3+2)+(2+1)+(2+2)=3+5+3+4=15,15×1.5=22.5焦耳.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

相关文档
最新文档