东湖区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东湖区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知数列{n a }满足n
n n a 2
728-+=(*
∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )
A .
211 B .227 C . 32259 D .32
435 2. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;
丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日
C .6日和11日
D .2日和11日
3.
已知双曲线
﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2
关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .1<e
< B .e
> C .e

D .1<e

4.
若双曲线

=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )
A

B

C

D .2
5. 已知直线l
的参数方程为1cos sin x t y t α
α
=+⎧⎪⎨
=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴
正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3
π
ρθ=+
,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )
A .4
π
α=
B .3
π
α=
C .34
πα=
D .23
π
α=
6. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( ) A

B

C .2
D .4
7. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2
')()(2x x xf x f >+,则不等式
0)2(4)2014()2014(2>--++f x f x 的解集为
A 、)2012
,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 8. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 在ABC ∆中,b =3c =,30B =,则等于( )
A B . C D .2 10.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)
B .45(8)
C .50(8)
D .55(8)
11.如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )
A .
B . C. D .1111]
12.在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8
C .6
D .4
二、填空题
13.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;
②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;
⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.
14.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .
15. 设函数()x
f x e =,()ln
g x x m =+.有下列四个命题:
①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;
②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2
ln 2m e <-;
③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22
e
m <
-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .
【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.
16.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是 17.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)
18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1
e e
x
x f x =-,其中e 为自然对数的底数,则不等式()()
2
240f x f x -+-<的解集为________.
三、解答题
19.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集. (Ⅰ)求实数a 的取值集合A
(Ⅱ)若b ∈A ,a ≠b ,求证a a b b >a b b a

20.设函数f (x )=mx 2﹣mx ﹣1.
(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.
21.已知椭圆C :
+
=1(a >b >0)的短轴长为2
,且离心率e=,设F 1,F 2是椭圆的左、右焦点,
过F 2的直线与椭圆右侧(如图)相交于M ,N 两点,直线F 1M ,F 1N 分别与直线x=4相交于P ,Q 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求△F 2PQ 面积的最小值.
22.本小题满分12分 已知数列{}n a 中,123,5a a ==,其前n 项和n S 满足)3(22112≥+=+---n S S S n n n n . Ⅰ求数列{}n a 的通项公式n a ; Ⅱ 若22256
log ()1
n n b a =-N *n ∈,设数列{}n b 的前n 的和为n S ,当n 为何值时,n S 有最大值,并求最大值.
23.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;
(3)判断函数f (x )在(1,+∞)上的单调性,并证明.
24.数列{}n a 中,18a =,42a =,且满足*
2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式;
(2)设12||||||n n S a a a =++,求n S .
东湖区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】D 【解析】
试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11
2527
22n n n n
n n a a ++--∴-=- ()11
252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,
即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,
2
11
1=a ,∴最小项为211,M m +∴的值为32
435
32259211=+.故选D.
考点:数列的函数特性. 2. 【答案】C
【解析】解:由题意,1至12的和为78, 因为三人各自值班的日期之和相等, 所以三人各自值班的日期之和为26,
根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,
据此可判断丙必定值班的日期是6日和11日, 故选:C .
【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.
3. 【答案】B
【解析】解:设点F 2(c ,0),
由于F 2关于直线PF 1的对称点恰在y 轴上,不妨设M 在正半轴上, 由对称性可得,MF 1=F 1F 2=2c , 则MO==
c ,∠MF
1F 2=60°,∠PF 1F 2=30°,
设直线PF 1:y=
(x+c ),
代入双曲线方程,可得,(3b 2﹣a 2)x 2﹣2ca 2x ﹣a 2c 2﹣3a 2b 2
=0,
则方程有两个异号实数根,
则有3b 2﹣a 2>0,即有3b 2=3c 2﹣3a 2>a 2
,即c >
a ,
则有e=>.
故选:B .
4. 【答案】B
【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,
圆(x ﹣2)2
+y 2
=2的圆心(2,0),半径为

双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,
可得:
, 可得a 2
=b 2
,c=
a ,
e==.
故选:B .
【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.
5. 【答案】A
【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C
的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵
||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴
4
π
α=,选A .
6. 【答案】A
【解析】解:分两类讨论,过程如下:
①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数, ∴f (x )=a
x ﹣1
+log a x
在[1,2]上递增,
∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,
∴log a 2=﹣1,得a=,舍去;
②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数, ∴f (x )=a
x ﹣1
+log a x
在[1,2]上递减,
∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,
∴log a 2=﹣1,得a=,符合题意; 故选A .
7. 【答案】C.
【解析】由,
得:, 即
,令
,则当
时,

即在是减函数,,
,,
在是减函数,所以由得,,
即,故选
8.【答案】B
【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,
可推出¬p为假命题,q为假命题,
故为真命题的是p∨q,
故选:B.
【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.
9.【答案】C
【解析】
考点:余弦定理.
10.【答案】D
【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).
再利用“除8取余法”可得:45(10)=55(8).
故答案选D.
11.【答案】A
【解析】
考点:几何体的体积与函数的图象.
【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,
题目新颖,属于中档试题.
12.【答案】B
【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,
则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,
∴,
∴n=8,r=6.
故选:B.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
二、填空题
13.【答案】②③④
【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;
对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),
可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;
对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,
如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;
对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;
对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.
故答案为:②③④.
【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.
14.【答案】.
【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球
故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,
方法二:先求出“第一次摸到红球”的概率为:P1=,
设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P 2
再求“第一次摸到红球且第二次也摸到红球”的概率为P==,
根据条件概率公式,得:P 2==,
故答案为:
【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.
15.【答案】①②④ 【

析】
16.【答案】(],1-∞ 【解析】
试题分析:函数(){}
2
min 2,f x x x =-的图象如下图:
观察上图可知:()f x 的取值范围是(],1-∞。

考点:函数图象的应用。

17.【答案】 15
【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),
∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,
根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.
【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.
18.【答案】()32-,
【解析】∵()1e ,e x x f x x R =-
∈,∴()()11x
x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝
⎭,即函数()f x 为奇函数,又∵()0x
x
f x e e
-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为
()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()
2240f x f x -+-<的解集为
()32-,,故答案为()32-,. 三、解答题
19.【答案】
【解析】解(1)要使不等式|x ﹣10|+|x ﹣20|<10a+10的解集不是空集, 则(|x ﹣10|+|x ﹣20|)min <10a+10,
根据绝对值三角不等式得:|x ﹣10|+|x ﹣20|≥|(x ﹣10)﹣(x ﹣20)|=10, 即(|x ﹣10|+|x ﹣20|)min =10, 所以,10<10a+10,解得a >0,
所以,实数a 的取值集合为A=(0,+∞); (2)∵a ,b ∈(0,+∞)且a ≠b ,
∴不妨设a >b >0,则a ﹣b >0且>1,

>1恒成立,即
>1,
所以,a a ﹣b >b a ﹣b

将该不等式两边同时乘以a b b b
得,
a a
b b >a b b a ,即证.
【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题.
20.【答案】 【解析】解:(1)当m=0时,f (x )=﹣1<0恒成立,
当m ≠0时,若f (x )<0恒成立,

解得﹣4<m<0
综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(2)要x∈[1,3],f(x)<﹣m+5恒成立,
即恒成立.
令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣﹣﹣﹣
当m>0时,g(x)是增函数,
所以g(x)max=g(3)=7m﹣6<0,
解得.所以
当m=0时,﹣6<0恒成立.
当m<0时,g(x)是减函数.
所以g(x)max=g(1)=m﹣6<0,
解得m<6.
所以m<0.
综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.
21.【答案】
【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,
∴,解得a2=4,b2=3,
∴椭圆C的方程为=1.
(Ⅱ)设直线MN的方程为x=ty+1,(﹣),
代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,
∴,,
设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),
则直线F 1M
:,令x=4,得P (4
,),同理,Q (4

),

=
||=15×
|
|=180×
|
|,
令μ
=∈[1

),则=180
×,

y=
=
在[1

)上是增函数, ∴当μ=1时,即t=0
时,(
)min
=

【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.
22.【答案】
【解析】Ⅰ由题意知()321211≥+-=-----n S S S S n n n n n , 即()3211≥+=--n a a n n n
22311)(......)()(a a a a a a a a n n n n n +-++-+-=--
()3122122...2252...22221221≥+=++++++=++++=----n n n n n n
检验知n =1, 2时,结论也成立,故a n =2n +1.
Ⅱ 由8
82222222562log ()log log 28212
n n n n b n a -====-- N *n ∈
法一: 当13n ≤≤时,820n b n =->;当4n =时,820n b n =-=;
当5n ≥时,820n b n =-< 故43==n n 或时,n S 达最大值,1243==S S .
法二:可利用等差数列的求和公式求解
23.【答案】
【解析】解:(1)∵f (x )=2x ﹣,且f (2)=, ∴4﹣=, ∴a=﹣1;(2分) (2)由(1)得函数,定义域为{x|x ≠0}关于原点对称…(3分)
∵=

∴函数
为奇函数.…(6分)
(3)函数f (x )在(1,+∞)上是增函数,…(7分)
任取x 1,x 2∈(1,+∞),不妨设x 1<x 2,则
=
…(10分)
∵x 1,x 2∈(1,+∞)且x 1<x 2∴x 2﹣x 1>0,2x 1x 2﹣1>0,x 1x 2>0 ∴f (x 2)﹣f (x 1)>0,即f (x 2)>f (x 1), ∴f (x )在(1,+∞)上是增函数 …(12分)
【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.
24.【答案】(1)102n a n =-;(2)2
29(5)
940(5)
n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.
【解析】
试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .
当5n ≤时,12||||||n n S a a a =++
2
129n a a a n n =+++=-
∴2
29(5)940(5)
n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1
考点:等差数列的通项公式;数列的求和.。

相关文档
最新文档