山东省淄博第六中学2018-2019学年高三上学期第三次月考试卷数学含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省淄博第六中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1.图1是由哪个平面图形旋转得到的()
A.B.C.D.
2.设函数的集合,平面上点的集合
,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是
A4
B6
C8
D10
N ,则输出的S的值是()
3.在下面程序框图中,输入44
A.251B.253C.255D.260
【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.
4. 已知双曲线)0,0(122
22>>=-b a b
y a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且
1PF PQ ⊥,若||||1PF PQ λ=,3
4
125≤≤λ,则双曲线离心率e 的取值范围为( ).
A. ]210,1(
B. ]537,1(
C. ]2
10,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)
5. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
6. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )
A .2
B .
C .
D .13
7. 设f (x )=(e -x -e x )(12x +1-1
2
),则不等式f (x )<f (1+x )的解集为( )
A .(0,+∞)
B .(-∞,-1
2
)
C .(-12,+∞)
D .(-1
2,0)
8. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆
1)1()3(22=-++y x 上,使得2
π
=
∠APB ,则31≤≤n ;命题:函数x x
x f 3log 4
)(-=
在区间 )4,3(内没有零点.下列命题为真命题的是( )
A .)(q p ⌝∧
B .q p ∧
C .q p ∧⌝)(
D .q p ∨⌝)( 9. 函数f (x )=kx +b
x +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )
A .-1
B .1
C .2
D .4
10.函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,
设(0)a f =,b f =,2(log 8)c f =,则( )
A .a b c <<
B .a b c >>
C .c a b <<
D .a c b <<
11.已知函数,则
=( )
A .
B .
C .
D .
12.已知三棱锥S ABC -外接球的表面积为32π,0
90ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )
A .4
B .
C .8
D .
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.设某双曲线与椭圆
136
272
2=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .
14.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率1
2
k ≤恒
成立,则实数的取值范围是 .
15.已知直线:043=++m y x (0>m )被圆C :06222
2
=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .
16.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.
(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
18.(本小题满分10分)选修4-4:坐标系与参数方程:
在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐
标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2
sin 2cos (0)p p ρθθ=>.
(1)设t 为参数,若22
x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2
||||||PQ MP MQ =⋅,求实数p 的值.
19.若已知,求sinx 的值.
20.已知矩阵A =,向量=
.求向量
,使得A 2=.
21.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面
ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.
(1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.
【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.
22.(本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;
(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余
弦值.
【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.
山东省淄博第六中学2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】A 【解析】
试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.
考点:旋转体的概念. 2. 【答案】B
【解析】本题考查了对数的计算、列举思想
a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时
b =0,b =1符合; a =时,y =log 2(x +)过点(0,-1),(,0),此时b =0,b =1符合;
a =1时,y =log 2(x +1)过点(-,-1),(0,0),(1,1),此时
b =-1,b =1符合;共6个 3. 【答案】B
4. 【答案】C
【解析】如图,由双曲线的定义知,a PF PF
2||||21=-,a QF QF 2||||21=-,两式相加得 a PQ QF PF 4||||||11=-+,又||||1PF PQ λ=,1PF PQ ⊥,
||1||12
1PF QF λ+=∴, a PF PQ QF PF 4||)11(||||||1211=-++=-+∴λλ,
λλ-++=2
1114||a
PF ①,
λ
λλλ-+++-+=
∴22211)11(2||a PF ②,在12PF F ∆中,2
212221||||||F F PF PF =+,将①②代入得
+-++2
2
)114(λ
λa
2
2224)11)
11(2(
c a =-+++-+λλλλ,化简得:+
-++2
2
)
11(4
λλ
2
2
22
2)
11()11(e =-+++-+λλλλ,令t =-++λλ2
11,易知λλ-++=2
11y 在
]34
,125[
上单调递减,故
]35,34[∈t ,2
22222
84)2(4t t t t t t e +-=-+=∴]25,2537[21)411(82∈+-=t ,]210,537[∈e ,故答案 选
C.
5. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 6. 【答案】C
【解析】解:||=3,||=1,与的夹角为,
可得
=||||cos <,>=3×1×=,
即有|﹣4|=
=
=
.
故选:C .
【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
7. 【答案】
【解析】选C.f (x )的定义域为x ∈R ,
由f (x )=(e -x -e x )(12x +1-1
2)得
f (-x )=(e x -e -x )(12-x +1-1
2)
=(e
x
-e -x )(
-1
2x +1+12
) =(e -x -e x )(12x +1-1
2)=f (x ),
∴f (x )在R 上为偶函数,
∴不等式f (x )<f (1+x )等价于|x |<|1+x |,
即x 2<1+2x +x 2,∴x >-1
2
,
即不等式f (x )<f (1+x )的解集为{x |x >-1
2},故选C.
8. 【答案】A 【解析】
试题分析:命题p :2
π
=
∠APB ,则以AB 为直径的圆必与圆()
()1132
2
=-++y x 有公共点,所以
121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()x
x
x f 3log 4-=
,()0log 144
3<-=f ,()0log 3
4
333>-=
f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .
考点:复合命题的真假.
【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2
π
=
∠APB ,因此在以AB 为直径的圆上,又点P 在圆
1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数
x x
x f 3log 4
)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.
9. 【答案】
【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),
则⎩
⎪⎨⎪⎧n =
km +b m +1
4-n =k (-2-m )+b -1-m ,恒成立.
由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,
∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,
∴b =1,故选B. 10.【答案】C 【解析】
考点:函数的对称性,导数与单调性.
【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:
()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,
则其图象关于点(,)m n 对称. 11.【答案】B
【解析】解:因为>0,所以f ()==﹣2,又﹣2<0,所以f (﹣2)=2﹣2=;
故选:B .
【点评】本题考查了分段函数的函数值求法;关键是明确自变量所属的范围,代入对应的解析式计算即可.
12.【答案】A 【解析】
考
点:三视图.
【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】15
42
2=-x y 【解析】
试题分析:由题意可知椭圆
136
272
2=+y x 的焦点在y 轴上,且927362=-=c ,故焦点坐标为()3,0±由双曲线的定义可得()()
()()
4340153401522
2
2
2
=++--
-+-=
a ,故2=a ,5492=-=
b ,故所求双
曲线的标准方程为15422=-x y .故答案为:15
42
2=-x y . 考点:双曲线的简单性质;椭圆的简单性质. 14.【答案】2
1≥a 【解析】
试题分析:'
21()a f x x x =
-,因为(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率1
2
k ≤恒成立,2112a x x ∴-≤,(0,3]x ∈,x x a +-≥∴221
,(0,3]x ∈恒成立,由2111,222
x x a -+≤∴≥.1
考点:导数的几何意义;不等式恒成立问题.
【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件. 15.【答案】9 【解析】
考点:直线与圆的位置关系
【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 16.【答案】26 【解析】
试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和
11313713()
13262
a a S a +=
==.
考点:等差数列的性质和等差数列的和.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】
【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.
(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分. 平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5, 即估计选择理科的学生的平均分为79.5分. 18.【答案】
【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.
19.【答案】
【解析】解:∵,∴<<2π,
∴sin()=﹣=﹣.
∴sinx=sin[(x+)﹣]=sin()cos﹣cos()sin
=﹣﹣=﹣.
【点评】本题考查了两角和差的余弦函数公式,属于基础题.20.【答案】=
【解析】A2=.
设=.由A 2=,得
,从而
解得x =-1,y =2,所以=
21.【答案】
【解析】(1)连接FH ,由题意,知CD BC ⊥,CD CF ⊥,∴CD ⊥平面BCFG . 又∵GH ⊂平面BCFG ,∴CD ⊥GH . 又∵EF
CD ,∴EF GH ⊥……………………………2分
由题意,得14BH a =,34CH a =,12BG a =,∴222
2516
GH BG BH a =+=
, 22225()4FG CF BG BC a =-+=,2222
2516
FH CF CH a =+=,
则222
FH FG GH =+,∴GH FG ⊥.……………………………4分
又∵EF
FG F =,GH ⊥平面EFG .……………………………5分
∵GH ⊂平面AGH ,∴平面AGH ⊥平面EFG .……………………………6分
22.【答案】 【
解
析
】
∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,。