东庙乡初中2018-2019学年七年级下学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东庙乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题
1.(2分)如图,在数轴上表示无理数的点落在()
A.线段AB上
B.线段BC上
C.线段CD上
D.线段DE上
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵=2≈2×1.414≈2.828,
∴2.8<2.828<2.9,
∴在线段CD上.
故答案为:C.
【分析】根据无理数大概的范围,即可得出答案.
2.(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()
A. 1个
B. 2个
C. 3个
D. 4个【答案】B
【考点】无理数的认识
【解析】【解答】解:上述各数中,属于无理数的有:两个.
故答案为:B.
【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。

3.(2分)若2m-4与3m-1是同一个正数的平方根,则m为()
A. -3
B. 1
C. -1
D. -3或1 【答案】D
【考点】平方根
【解析】【解答】解:由题意得:2m-4=3m-1或2m-4=-(3m-1)
解之:m=-3或m=1
故答案为:D
【分析】根据正数的平方根由两个,它们互为相反数,建立关于x的方程求解即可。

4.(2分)下列语句叙述正确的有()
①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;
③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.
A.0个
B.1个
C.2个
D.3个
【答案】B
【考点】两点间的距离,对顶角、邻补角,点到直线的距离
【解析】【解答】解:①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
②如果两个角相等,那么这两个角是对顶角,错误;
③连接两点的线段长度叫做两点间的距离,正确;
④直线外一点到这条直线的垂线段叫做这点到直线的距离,错误;
综上所述:正确的有1个.
故答案为:B.
【分析】对顶角定义:有一个共同的顶点且一边是另一边的反向延长线,由此可知①和②均错误;
两点间的距离:连接两点的线段长度,由此可知③正确;
点到直线的距离:直线外一点到这条直线的垂线段的长度叫做这点到直线的距离,由此可知④错误.
5.(2分)用代入法解方程组的最佳策略是()
A.消y,由②得y= (23-9x)
B.消x,由①得x= (5y+2)
C.消x,由②得x= (23-2y)
D.消y,由①得y= (3x-2)
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:因为方程②中x的系数是方程①中x的系数的3倍,
所以用代入法解方程组的最佳策略是:
由①得
再把③代入②,消去x.
故答案为:B
【分析】因为方程②中x的系数是方程①中x的系数的3倍,故用代入法解该方程组的时候,将原方程组中的①方程变形为用含y的代数式表示x,得出③方程,再将③代入②消去x得到的方程也是整数系数,从而使解答过程简单。

6.(2分)如果方程组与有相同的解,则a,b的值是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:由已知得方程组,
解得,
代入,
得到,
解得.
【分析】先将只含x、y的的方程组成方程组,求出方程组的解,再将x、y的值代入另外的两个方程,建立关于a、b的方程组,解方程组,求出a、b的值。

7.(2分)实数在数轴上的位量如图所示,则下面的关系式中正确的个数为()
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:由数轴可知:
b<-a<0<a<-b,
∴a+b<0,b-a<0,>,|a|<|b|,
故①②错误;③④正确.
故答案为:B.
【分析】由数轴可知:b<-a<0<a<-b,从而可逐一判断对错.
8.(2分)如图,AB∥CD,CD∥EF,则∠BCE等于()
A.∠2-∠1
B.∠1+∠2
C.180°+∠1-∠2
D.180°-∠1+∠2
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠BCD=∠1,
又∵CD∥EF,
∴∠2+∠DCE=180°,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE,
=∠1+180°-∠2.
故答案为:C.
【分析】根据平行线的性质得∠BCD=∠1,∠DCE=180°-∠2,由∠BCE=∠BCD+∠DCE,代入、计算即可得出答案.
9.(2分)已知是方程组的解,则a+b+c的值是()
A. 3
B. 2
C. 1
D. 无法确定
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:将代入方程得

①+②+③得4(a+b+c)=12,
∴a+b+c=3,
故答案为:A.
【分析】将x、y、z的值代入方程组中,再观察方程组中各未知数的系数特点:相同字母的系数之和都为4,因此由(①+②+③)÷4,就可求得a+b+c的值。

10.(2分)方程2x+3y=15的正整数解有()
A.0个
B.1个
C.2个
D.无数个
【答案】C
【考点】二元一次方程的解
【解析】【解答】解:方程2x+3y=15,
解得:x= ,
当y=3时,x=3;当y=1时,x=6,
∴方程2x+3y=15的正整数解有2个,
故答案为:C.
【分析】将方程用含y的代数式表示x,再根据原方程的正整数解,因此分别求出当y=3时;当y=1时的x的值,就可得出此方程的正整数解的个数。

11.(2分)下列方程中,是二元一次方程的是()
A.3x﹣2y=4z
B.6xy+9=0
C.
D.
【答案】D
【考点】二元一次方程的定义
【解析】【解答】解:根据二元一次方程的定义,方程有两个未知数,方程两边都是整式,故D符合题意,故答案为:D
【分析】根据二元一次方程的定义:方程有两个未知数,含未知数项的最高次数都是1次,方程两边都是整式,即可得出答案。

12.(2分)下列各式中是二元一次方程的是()
A.x+3y=5
B.﹣xy﹣y=1
C.2x﹣y+1
D.
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;
B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;
C. 2x﹣y+1,不是方程,不符合题意;
D. ,不是整式方程,不符合题意,
故答案为:A.
【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。

二、填空题
13.(1分)为了奖励数学社团的同学,张老师恰好用100元在网上购买《数学史话》、《趣味数学》两种书(两种书都购买了若干本),已知《数学史话》每本10元,《趣味数学》每本6元,则张老师最多购买了________《数学史话》.
【答案】7本
【考点】二元一次方程的应用
【解析】【解答】解:设张老师购买了x本《数学史话》,购买了y本《趣味数学》,
根据题意,得:10x+6y=100,
当x=7时,y=5;当x=4时,y=10;
∴张老师最多可购买7本《数学史话》,
故答案为:7本。

【分析】等量关系为:《数学史话》的数量×单价+《趣味数学》的数量×单价=100,设未知数列方程,再求出这个不定方程的正整数解,就可得出张老师最多可购买《数学史话》的数量。

14.(1分)如图,∠1=________.
【答案】120°.
【考点】对顶角、邻补角,三角形的外角性质
【解析】【解答】解:∠1=(180°﹣140°)+80°=120°.
【分析】根据邻补角定义求出其中一个内角,再根据三角形一个外角等于和它不相邻的两个内角和求出∠1。

15.(3分)的平方根是________,的算术平方根是________,-216的立方根是________.
【答案】±

;-6
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:的平方根为:±;
=3,所以的算术平方根为:;
-216的立方根为:-6
故答案为:±;;-6
【分析】根据正数的平方根有两个,它们互为相反数,正数的算术平方根是正数,及立方根的定义,即可解决问题。

16.(1分)判断是否是三元一次方程组的解:________(填:“是”或者“不是”).
【答案】是
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵把代入:得:
方程①左边=5+10+(-15)=0=右边;
方程②左边=2×5-10+(-15)=-15=右边;
方程③左边=5+2×10-(-15)=40=右边;
∴是方程组:的解.
【分析】将已知x、y、z的值分别代入三个方程计算,就可判断;或求出方程组的解,也可作出判断。

17.(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看
错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;
将代入①,5a+20=15,a=﹣1.
故原方程组为,
解得.
故答案为:.
【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。

18.(1分)对于x、y定义一种新运算“◎”:x◎y=ax+by,其中a、b为常数,等式右边是通常的加法和乘法运算.已知3◎2=7,4◎(﹣1)=13,那么2◎3=________.
【答案】3
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:∵x◎y=ax+by,3◎2=7,4◎(﹣1)=13,
∴,①+②×2得,11a=33,解得a=3;把a=3代入①得,9+2b=7,解得b=﹣1,
∴2◎3=3×2﹣1×3=3.
故答案为:3.
【分析】由题意根据3◎2=7,4◎(﹣1)=13知,当x=3、y=2时可得方程3a+2b=7,;当x=4、-1时,可得方程4a-b=13,解这个关于a、b的方程组可求得a、b的值,则当x=2、y=3时,2◎3 的值即可求解。

三、解答题
19.(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。

正有理数、0、负有理数统称有理数。

非负整数包括正整数和0;无理数是无限不循环的小数。

将各个数准确填在相应的括号里。

20.(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
21.(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
22.(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
23.(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,


把代入,得,

∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。

24.(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
25.(5分)如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分∠ADC,CE平分∠BCD,
∴∠1=∠ADE,∠2=∠BCE,
∵∠1+∠2=90°,
即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
∴∠BEC+∠AED=90°,
又∵DA ⊥AB,
∴∠A=90°,
∴∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠ADE+∠BCE=90°,
∴∠BEC+∠BCE=90°,
∴∠B=90°,
即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.
26.(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
27.(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1=
∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.。

相关文档
最新文档