【精选】七年级有理数单元练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)
1.点在数轴上分别表示有理数,两点间的距离表示为 .且 .
(1)数轴上表示2和5的两点之间的距离是________,
数轴上表示−2和−5的两点之间的距离是________,
数轴上表示1和−3的两点之间的距离是________;
(2)数轴上表示x和−1的两点A和B之间的距离是________,如果|AB|=2,那么x=________;
(3)当代数式|x+1|+|x−2|取最小值时,相应x的取值范围是________.
【答案】(1)3;3;4
(2)1;-3
(3)−1⩽x⩽2
【解析】【解答】解:(1)、|2−5|=|−3|=3;
|−2−(−5)|=|−2+5|=3;
|1−(−3)|=|4|=4;
( 2 )、|x−(−1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=−2,
所以x=1或x=−3;
( 3 )、数形结合,若|x+1|+|x−2|取最小值,那么表示x的点在−1和2之间的线段上,
所以−1⩽x⩽2.
【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可算出答案;
(2)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值得出AB=,又 |AB|=2 ,从而列出方程,求解即可;
(3)|x+1|+|x−2| 表示数x的点到-1的点距离与表示x的点到2的点距离和,根据两点之间线段最短得出当表示x的点在-1与2之间的时候,代数式|x+1|+|x−2|有最小值,从而得出x的取值范围.
2.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.
(1)当t=1时,d=________;
(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;
(3)当点P运动到线段AB的3等分点时,直接写出d的值;
(4)当d=5时,直接写出t的值.
【答案】(1)3
(2)解:线段AB的中点表示的数是:=1.
①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,
BQ=2×3=6,即Q运动到A点,
此时d=PQ=PA=3;
②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,
AP=1× =,
则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.
故d的值为3或
(3)解:当点P运动到线段AB的3等分点时,分两种情况:
①如果AP=AB=2,那么t==2,
此时BQ=2×2=4,P、Q重合于原点,
则d=PQ=0;
②如果AP=AB=4,那么t==4,
∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,
∴此时BQ=6,即Q运动到A点,
∴d=PQ=AP=4.
故所求d的值为0或4
(4)解:当d=5时,分两种情况:
①P与Q相遇之前,
∵PQ=AB﹣AP﹣BQ,
∴6﹣t﹣2t=5,
解得t=;
②P与Q相遇之后,
∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,
∴d=AP=t=5.
故所求t的值为或5.
【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情
况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.
3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:
(1)试用“||”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;
(2)若|x-2|=4,求x的值;
(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.
【答案】(1)解:|4-(-2)|=6
(2)解:x与2的距离是4,在数轴上可以找到x=-2或6
(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;
当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5
【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.
4.如图A在数轴上对应的数为-2.
(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.
【答案】(1)2
(2)解:,
∴B点到达的位置所表示的数字是2+3×2=8
8-(-6)=14(个单位长度).
故A,B两点间距离是14个单位长度.
(3)解:运动后的B点在A点右边4个单位长度,
设经过t秒长时间A,B两点相距4个单位长度,依题意有
3t=14-4,
解得x= ;
运动后的B点在A点左边4个单位长度,
设经过x秒长时间A,B两点相距4个单位长度,依题意有
3t=14+4,
解得x=6.
∴经过秒或6秒长时间A,B两点相距4个单位长度.
【解析】【解答】解:(1)-2+4=2,
故点B所对应的数是2;
【分析】(1)根据左减右加可求得点B所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B在点A右边4个单位长度;运动后的点B在点A左边4个单位长度,列出方程求解.
5.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,
(1)写出数轴上点B表示的数________;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:
①:若,则=________.②:的最小值为________.
(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.
①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.
【答案】(1)-12
(2)6或10;20
(3)6;3或5
(4)2或4
【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,
∴点B表示的数是8-20=-12.
故答案为:-12.
(2)∵|x-8|=2
∴x-8=±2
解之:x=10或x=6;
|x-(-12)|+|x-8|的最小值为8-(-12)=20.
故答案为:6或10;20.
(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,
∴OP=2t
∴AP=8-2t
当t=1时,AP=8-2×1=6;
当AP=2时,则|8-2t|=2,
解之:t=5或t=3.
故答案为:6;3或5.
(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,
∴点Q的速度为每秒8个单位长度,
设运动时间为t(t>0)秒时,P,Q之间的距离为4.
∴8t-4t-12=4或12+4t-8t=4
解之:t=4或t=2
故答案为:2或4.
【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。

(2)利用绝对值的意义可知x-8=±2,求出方程的解即可;根据两点间的距离公式可求解。

(3)抓住题中关键的已知条件:可得到AP=8-2t,再将t=1代入计算可求出点A、P之间的距离;然后根据A、P之间的距离为2建立方程,解方程求出t的值。

(4)由题意可得到点Q的运动速度,再分情况讨论:当点P在点Q的右边和点P在点Q 左边,由点P和点Q之间的距离等于4,分别建立关于t的方程,解方程求出t的值即可。

6.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.
利用数轴,根据数形结合思想,回答下列问题:
(1)已知|x|=3,则x的值是________.
(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;
(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________
(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;
(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.
(6)|x+1|﹣|x﹣3|的最大值为________.
【答案】(1)
(2)4;3
(3)|x﹣1|
;|x+3|
(4)8
(5)7;6
(6)4
【解析】【解答】解:(1)∵,则;
故答案为:;(2),,
故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;
数轴上表示x和-3两点之间的距离为:;
故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;
故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;
故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,
|x+1|-|x-3|的最大值为4;
故答案为:4.
【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.
7.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.
比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…
(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;
(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值________;
②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).
【答案】(1)50;5
(2)10或;-45.
【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,
∴AC=30-(-20)=50;
∵CD=AD
∴点D为AC的中点
∴D所表示的数为 =5,
故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,
AB=|-20+2t-(1+t)|=|-21+t|,
BC=|30-3t-(1+t)|=|29-4t|,
∵AB=BC
∴|-21+t|=|29-4t|,
-21+t=29-4t,
解得t=10,
-21+t=4t-29
解得t= .
∴当AB=BC时,t=10或.
②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,
AB=1+t-(-20-2t)=21+3t,
BC=30+3t-(1+t)=29+2t,
∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,
∵2AB-m×BC的值不随时间t的变化而改变,
∴6t-2mt=0,
∴m=3,
∴42+6t-29m-2mt=-45,
∴2AB-m×BC=-45.
故答案为-45.
【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.
8.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,
),(5,),都是“共生有理数对”.
(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;
(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);
(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)
(4)若(a,3)是“共生有理数对”,求a的值.
【答案】(1)
(2)是
(3)(0.-1)等
(4)解:∵(a,3)是“共生有理数对”,
∴a-3=3a+1
解之:a=-2.
【解析】【解答】(1)数对(﹣2,1)
∴-2×1+1=-1,-2-1=-3
-1≠-3
∴数对(﹣2,1)不是“共生有理数对”;
数对(3,)
∴,
∴数对(3,)是“共生有理数对”;
故答案为:(3,);
(2)∵(m,n)是“共生有理数对”
∴m-n=mn+1
∴-n-(-m)=m-n
-n(-m)+1=mn+1
∴-n-(-m)=-n(-m)+1,
∴(﹣n,﹣m)是“共生有理数对”
故答案为:是.
(3)∵0×(-1)+1=1
0-(-1)=1
∴(0,-1)是“共生有理数对”.
【分析】(1)利用“共生有理数对”的定义:若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。

(2)若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。

(3)利用“共生有理数对”的定义,写出符合题意的“共生有理数对”即可。

(4)根据(a,3)是“共生有理数对”,建立关于a的方程,解方程求出a的值。

9.先阅读下列材料,再解决问题:
学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的
数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =
.
解决问题:根据上述规律完成下列各题:
(1)到表示数50和数150距离相等的点表示的数是________
(2)到表示数和数距离相等的点表示的数是________
(3)到表示数 12和数 26距离相等的点表示的数是________
(4)到表示数a和数b距离相等的点表示的数是________
【答案】(1)100
(2)
(3)-14
(4)
【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:
(2)到表示数和数距离相等的点表示的数为:
(3)到表示数 -12 和数 -26 距离相等的点表示的数为:
(4)到表示数a和数b距离相等的点表示的数为: .
故答案为:100,, -14,.
【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.
10.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .
(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.
(2)若点A到原点的距离为3,B为AC的中点.
①用b的代数式表示c;
②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.
【答案】(1)解:∵a=﹣2,b=4,c=8,
∴AB=6,BC=4,
∵D为AB中点,F为BC中点,
∴DB=3,BF=2,
∴DF=5
(2)解:①∵点A到原点的距离为3且a<0,
∴a=﹣3,
∵点B到点A,C的距离相等,
∴c-b=b-a,
∵c﹣b=b﹣a,a=﹣3,
∴c=2b+3,
答:b、c之间的数量关系为c=2b+3.
②依题意,得x﹣c<0,x-a>0,
∴|x﹣c|=c﹣x,|x-a|=x-a,
∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,
∵c=2b+3,
∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,
∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,
∴3b﹣3=0,
∴b=1.
答:b的值为1
【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由
B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;
②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值.
11.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动
点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为
t秒.
(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀
速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.
①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.
②当点P是线段AQ的三等分点时,求t的值.
【答案】(1)9;
(2)解:①根据题意,得:(1+2)t=12,
解得:t=4,
∴P回到A需8s,当t=8时,点P与点A重合,此时点Q表示的数为1;
②P与Q重合前(即t<4):
当2AP=PQ时,有2t+4t+t=12,解得t=;
当AP=2PQ时,有2t+t+t=12,解得t=3;
P与Q重合后(即4<t<8):
当AP=2PQ时,有2(8﹣t)=2(t﹣4),解得t=6;
当2AP=PQ时,有4(8﹣t)=t﹣4,解得t=;
综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.
【解析】【解答】解:(1)由题意知,点B表示的数是﹣3+12=9,点P表示的数是﹣
3+2t,
故答案为:9,﹣3+2t;
【分析】(1)根据两点间的距离求解可得;(2)①根据重合前两者的路程和等于AB的长度列方程求解可得;②分点P与点Q重合前和重合后,依据点P是线段AQ的三等分点线段间的数量关系,并据此列出方程求解可得.
12.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:
(1)数轴上表示1和-3的两点之间的距离是________:
(2)若AB=8,|b|=3|a|,求a,b的值.
(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值
【答案】(1)4
(2)解:∵|b|=3|a|
∴b=±3a
∵AB=8
∴|a-b|=8
当b=3a时,|a-b|=|-2a|=8
∴a=4,b=12或a=-4,b=-12
当b=-3a时,|a-b|=|4a|=8
∴a=2,b=-6或a=-2,b=6
综上所述:a=4,b=12或a=-4,b=-12或a=2,b=-6或a=-2,b=6.
(3)解:由线段上的点到线段两端点的距离的和最小,
①当点b在a的右侧时,
得P在3点与b点的线段上,|x−3|+|x−b|的值最小为4,
|x−3|+|x−b|最小=x−3+b−x=4,
解得:b=7;
②当点b在a的左侧时,
得P在3点与b点的线段上,|x−3|+|x−b|的值最小为4,
|x−3|+|x−b|最小=3−x+x−b=4,
解得:b=−1;
故答案为:7或−1.
【解析】【解答】解:(1)1和-3两点之间的距离为|1-(-3)|=4
【分析】(1)根据数轴上两点间的距离公式即可求解;(2)根据|b|=3|a|,分类讨论b=3a和b=-3a时的情况,分别求解a、b即可;(3)根据|x−a|+|x−b|的最小值为4可知,a、b对应点在数轴上距离为4,再根据a的取值可解得b.。

相关文档
最新文档