鲁教版(五四制)六年级数学上册 《用字母表示数》参考课件2
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 整式及其加减 本3.1课 内用字容母结表示束数
1、提出问题
我们都知道2008年奥运已在我国北京成功举行,为了纪念2008 年奥运会,我设想以下面的这种形式从左往右搭2008个正方形, 谁能告诉老师需要多少根火柴棒?
本课内容结束
2.分析探究、问题解决: 用火柴棒搭一搭,数一数,并填写下表:
4.形成性练习1
1.如图,按照这样的规律画下去,完成此题:
(1).填写下表
图形编号 小正方形个数
本 (1) 课(2内) 容(3)结束(4)
(5)
(6)
(2).第n个图形有多少个小正方形?
解(1).
图形编号 小正方形个)
(5)
(6)
1
4
9
16
25
36
本课内容结束
(2).第n个图形有 个小n正2 方形.
5.形成性练习2 找一找下面等式有什么规律?
你能写出来吗?
13=12 13+23=32
本课内容结束
13+23+33=62
13+23+33+43=102... …
13+23+33+…+n3=(1+2+3+…+n)2
通过本课的学习中,谈谈你的收获。
字母能表示任何数本 课 内 容 结 束
(用字母表示数,能把数量和数量关系一般而又简 明地表达出来,为研究和叙述问题带来方便.)
3.想一想
(1)回归引例,请选择其中一种方法算一算搭2008
个正方形需要多少根火柴棒?
6025根
x 本课内 (2)结合上题,说明在下列各式中 容表示结什么束?
字母能表示 数量关系或变化
规律
1 3x
4 3(x 1)
4x (x 1)
x x (x 1)
同示本学数课们的内能例容举子出 吗结生 ?束活中用字母表
搭正方形个数 用火柴棒根数
1
2
3 … 10
…
本课4 7内1容0 …结束 31 …
x 想一想:像搭 个这样的正方形需要多少根火柴棒?
把它们拆开 了找规律!
本课内容结束
1 3x
拆法不同,表达 式也变了!
本课内容结束
4 3(x 1)
本课内容结束
4x (x 1)
本课内容结束
x x (x 1)
回忆一下以前学过用字母表示数的例子吗?
b a
a b
三角形面积公式:
S 1 ab
本课内容结束2
长方形面积公式:
S ab
字母能表示公 式
r
圆的面积公式:
S r2
用字母表示有理数的运算律: 加法交换律:
本a+课b=内b+a容 结 束
乘法交换律:
a•b=b•a
(其中a、b是有理数)
字母能表示 数的运算律
本今课日作内业容: 结束
P81 知识技能 1 P82问题解决 3
1、提出问题
我们都知道2008年奥运已在我国北京成功举行,为了纪念2008 年奥运会,我设想以下面的这种形式从左往右搭2008个正方形, 谁能告诉老师需要多少根火柴棒?
本课内容结束
2.分析探究、问题解决: 用火柴棒搭一搭,数一数,并填写下表:
4.形成性练习1
1.如图,按照这样的规律画下去,完成此题:
(1).填写下表
图形编号 小正方形个数
本 (1) 课(2内) 容(3)结束(4)
(5)
(6)
(2).第n个图形有多少个小正方形?
解(1).
图形编号 小正方形个)
(5)
(6)
1
4
9
16
25
36
本课内容结束
(2).第n个图形有 个小n正2 方形.
5.形成性练习2 找一找下面等式有什么规律?
你能写出来吗?
13=12 13+23=32
本课内容结束
13+23+33=62
13+23+33+43=102... …
13+23+33+…+n3=(1+2+3+…+n)2
通过本课的学习中,谈谈你的收获。
字母能表示任何数本 课 内 容 结 束
(用字母表示数,能把数量和数量关系一般而又简 明地表达出来,为研究和叙述问题带来方便.)
3.想一想
(1)回归引例,请选择其中一种方法算一算搭2008
个正方形需要多少根火柴棒?
6025根
x 本课内 (2)结合上题,说明在下列各式中 容表示结什么束?
字母能表示 数量关系或变化
规律
1 3x
4 3(x 1)
4x (x 1)
x x (x 1)
同示本学数课们的内能例容举子出 吗结生 ?束活中用字母表
搭正方形个数 用火柴棒根数
1
2
3 … 10
…
本课4 7内1容0 …结束 31 …
x 想一想:像搭 个这样的正方形需要多少根火柴棒?
把它们拆开 了找规律!
本课内容结束
1 3x
拆法不同,表达 式也变了!
本课内容结束
4 3(x 1)
本课内容结束
4x (x 1)
本课内容结束
x x (x 1)
回忆一下以前学过用字母表示数的例子吗?
b a
a b
三角形面积公式:
S 1 ab
本课内容结束2
长方形面积公式:
S ab
字母能表示公 式
r
圆的面积公式:
S r2
用字母表示有理数的运算律: 加法交换律:
本a+课b=内b+a容 结 束
乘法交换律:
a•b=b•a
(其中a、b是有理数)
字母能表示 数的运算律
本今课日作内业容: 结束
P81 知识技能 1 P82问题解决 3