兰州市七年级上册数学期末试卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兰州市七年级上册数学期末试卷(含答案)
一、选择题
1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项
B .225
m n 的系数是2
C .单项式﹣x 3yz 的次数是5
D .3x 2﹣y +5xy 5是二次三项式
2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 4.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1- C . 2.5- D .3 5.计算(3)(5)-++的结果是( )
A .-8
B .8
C .2
D .-2
6.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4
a
b
c
﹣2
3 …
A .4
B .3
C .0
D .﹣2
7.方程3x +2=8的解是( ) A .3
B .
103
C .2
D .
12
8.以下调查方式比较合理的是( )
A .为了解一沓钞票中有没有假钞,采用抽样调查的方式
B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式
C .为了解某省中学生爱好足球的情况,采用普查的方式
D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 9.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )
A .
B .
C .
D .
10.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 11.下列计算正确的是( )
A .-1+2=1
B .-1-1=0
C .(-1)2=-1
D .-12=1
12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()
A .y=2n+1
B .y=2n +n
C .y=2n+1+n
D .y=2n +n+1
二、填空题
13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________. 14.若5
23m x
y +与2n x y 的和仍为单项式,则n m =__________.
15.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 16.分解因式: 2
2xy
xy +=_ ___________
17.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.
18.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______. 19.计算7a 2b ﹣5ba 2=_____. 20.4是_____的算术平方根. 21.已知代数式
235x -与2
33
x -互为相反数,则x 的值是_______. 22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.
23.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______ 24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.
三、压轴题
25.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .
(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?
(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.
26.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.
特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和
∠BOD相等.
(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中
∠MON的度数为°.
发现感悟
解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:
小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.
小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.
(2)请你根据他们的谈话内容,求出图1中∠MON的度数.
类比拓展
受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出
∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.
(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.
27.如图1,线段AB 的长为a .
(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)
(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.
(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.
28.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()2
25350a b ++-=.点
P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;
(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;
(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)
29.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).30.点A在数轴上对应的数为﹣3,点B对应的数为2.
(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=1
2
x﹣5的解,在数轴上是否存在
点P使PA+PB=1
2
BC+AB?若存在,求出点P对应的数;若不存在,说明理由;
(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,
当P在B的右侧运动时,有两个结论:①PM﹣3
4
BN的值不变;②
13
PM
24
BN的值不
变,其中只有一个结论正确,请判断正确的结论,并求出其值
31.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和
40.
(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;
(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.
①求整个运动过程中,P点所运动的路程.
②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);
③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.
32.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.
(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?
(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据同类项的定义,单项式和多项式的定义解答.
【详解】
A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.
B.
2
2
5
m n
的系数是
2
5
,故本选项错误.
C.单项式﹣x3yz的次数是5,故本选项正确.
D.3x2﹣y+5xy5是六次三项式,故本选项错误.
故选C.
【点睛】
本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.
2.C
解析:C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝
对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】
试题分析:384 000=3.84×105. 故选C . 【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
3.D
解析:D 【解析】 【分析】
根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k 的值. 【详解】
解:∵方程2k-3x=4与x-2=0的解相同, ∴x=2,
把x=2代入方程2k-3x=4,得2k-6=4,解得k=5. 故选:D . 【点睛】
本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.
4.C
解析:C 【解析】 【分析】
由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】
解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】
本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
5.C
解析:C 【解析】 【分析】
根据有理数加法法则计算即可得答案. 【详解】
(3)(5)-++
=5+-3-
=2
故选:C.
【点睛】
本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.
6.D
解析:D
【解析】
【分析】
根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.
【详解】
解:∵任意三个相邻格子中所填整数之和都相等,
∴4+a+b=a+b+c,
解得c=4,
a+b+c=b+c+(-2),
解得a=-2,
所以,数据从左到右依次为4、-2、b、4、-2、b,
第9个数与第三个数相同,即b=3,
所以,每3个数“4、-2、3”为一个循环组依次循环,
∵2018÷3=672…2,
∴第2018个格子中的整数与第2个格子中的数相同,为-2.
故选D.
【点睛】
此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.
7.C
解析:C
【解析】
【分析】
移项、合并后,化系数为1,即可解方程.
【详解】
x=,
解:移项、合并得,36
x=,
化系数为1得:2
故选:C.
【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.
8.B
解析:B
【解析】
【分析】
抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【详解】
解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;
B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;
C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;
D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.C
解析:C
【解析】
【分析】
利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.
【详解】
棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;
当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.
故选:C.
【点睛】
本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.
10.A
解析:A
【解析】
∵+5米表示一个物体向东运动5米,
∴-3米表示向西走3米,
故选A.
11.A
解析:A
【解析】
解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2; C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;
D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .
12.B
解析:B 【解析】 【分析】 【详解】
∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】
考点:规律型:数字的变化类.
二、填空题 13.-1; 【解析】
解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.
解析:-1; 【解析】
解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3
(1)a b =-=-1. 故答案为-1.
点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.
14.9 【解析】
根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.
解析:9 【解析】 根据5
23m x
y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得
m 3,n 2=-=,所以()2
39n m =-=,故答案为:9.
15.【解析】 【分析】
根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.
【详解】
解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125
【解析】
【分析】
根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.
【详解】
解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)
Q 到A 前:103826t t -+-=,求得125
t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =
. 故填125
. 【点睛】
本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.
16.【解析】
【分析】
原式提取公因式xy ,即可得到结果.
【详解】
解:原式=xy (2y +1),
故答案为:xy (2y +1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本
解析:xy(2y 1)+
【解析】
【分析】
原式提取公因式xy ,即可得到结果.
【详解】
解:原式=xy (2y +1),
故答案为:xy (2y +1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键. 17.100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案
解析:100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.
故答案为100.
【点睛】
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
18.2020
【解析】
【分析】
把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.
【详解】
代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),
由已知
解析:2020
【解析】
【分析】
把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.
【详解】
代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),
由已知,a-b=-7,c+d=2013,
∴原式=7+2013=2020,
故答案为:2020.
【点睛】
本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律
的应用是解题的关键.
19.2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
故答案为:
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.
解析:2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
()
2222
7a b5ba=75a b=2a b
﹣﹣.
故答案为:2
2a b
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.20.【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
解析:【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
21.【解析】
【分析】
根据互为相反数的两个数之和为0,建立方程求解即可.
【详解】
∵与互为相反数
∴
解得:
【点睛】
本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键
解析:27 8
【解析】
【分析】
根据互为相反数的两个数之和为0,建立方程求解即可.【详解】
∵23
5
x-
与
2
3
3
x-互为相反数
∴232
30 53
-⎛⎫
+-=
⎪
⎝⎭
x
x
解得:
27
8 x=
【点睛】
本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.22.4
【解析】
【分析】
根据题中所给的定义进行计算即可
【详解】
∵32=9,记作(3,9)=2,(−2)4=16,
∴(−2,16)=4.
【点睛】
本题考查的知识点是零指数幂,解题的关键是熟练的
解析:4
【解析】
【分析】
根据题中所给的定义进行计算即可
【详解】
∵32=9,记作(3,9)=2,(−2)4=16,
∴(−2,16)=4.
【点睛】
本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.
23.①③④
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总
体、个体、样本、样本容量,这四个概
解析:①③④
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
①这10000名考生的数学中考成绩的全体是总体,正确;
②每个考生的数学中考成绩是个体,故原说法错误;
③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;
④样本容量是200,正确;
故答案为:①③④.
【点睛】
本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
24.11
【解析】
【分析】
对整式变形得,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a﹣b=4,
∴=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已
解析:11
【解析】
【分析】
对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a ﹣b=4,
∴423a b -+=2(2)324311a b -+=⨯+=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.
三、压轴题
25.(1)10
7
秒或10秒;(2)
14
13
或
114
13
.
【解析】
【分析】
(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;
(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,
由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.
【详解】
(1)∵|a-20|+|c+10|=0,
∴a-20=0,c+10=0,
∴a=20,c=﹣10.
设点B对应的数为b.
∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).
解得:b=10.
当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.
∵Q到B的距离与P到B的距离相等,
∴|﹣10+5t﹣10|=|20+2t﹣10|,
即5t﹣20=10+2t或20﹣5t=10+2t,
解得:t=10或t=10
7
.
答:运动了10
7
秒或10秒时,Q到B的距离与P到B的距离相等.
(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.
∵点M为线段PR的中点,点N为线段RQ的中点,
∴点M对应的数为22420
2
x x
++-
=
44
2
x
+
,
点N对应的数为205
2
x x
-+
=2x+10,
∴MN=|44
2
x
+
﹣(2x+10)|=|12﹣1.5x|.
∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.
分三种情况讨论:
①当0<x <4时,12﹣1.5x +20﹣5x =25,
解得:x =1413
; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25, 解得:x =
667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,
解得:x 3
1141=. 综上所述:x 的值为
1413或11413. 【点睛】
本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.
26.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣
12x °)+x °+(45°﹣
12x °)=135°. 【解析】
【分析】
(1)由题意可得,∠MON =
12×90°+90°,∠MON =12∠AOC +12
∠BOD +∠COD ,即可得出答案;
(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;
(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON ,又∠MON =∠MOC +∠BOC +∠BON ,即可得出答案.
【详解】 解:(1)图2中∠MON =
12
×90°+90°=135°;图3中∠MON =12∠AOC +12∠BOD +∠COD =12
(∠AOC +∠BOD )+90°=12⨯90°+90°=135°; 故答案为:135,135;
(2)∵∠COD =90°,
∴∠AOC +∠BOD =180°﹣∠COD =90°,
∵OM 和ON 是∠AOC 和∠BOD 的角平分线,
∴∠MOC+∠NOD=1
2
∠AOC+
1
2
∠BOD=
1
2
(∠AOC+∠BOD)=45°,
∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,
设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,
∴∠MOC=1
2
∠AOC=
1
2
(180°﹣x°)=90°﹣
1
2
x°,
∠BON=1
2
∠BOD=
1
2
(90°﹣x°)=45°﹣
1
2
x°,
∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣1
2
x°)+x°+(45°﹣
1
2
x°)=135°.
【点睛】
本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.
27.(1)详见解析;(2)35;(3)﹣5、15、112
3
、﹣7
6
7
.
【解析】
【分析】
(1)根据尺规作图的方法按要求做出即可;
(2)根据中点的定义及线段长度的计算求出;
(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.
【详解】
解:(1)如图所示;
(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有
点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35
(3)设乙从M点第一次回到点N时所用时间为t,则
t=2235
22
MN⨯
==35(秒)
那么甲在总的时间t内所运动的长度为
s=5t=5×35=175
可见,在乙运动的时间内,甲在C,D之间运动的情况为
175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有
5t1=2t1+15,t1=5(秒)
而﹣30+5×5=﹣5,﹣15+2×5=﹣5
这时甲和乙所对应的有理数为﹣5.
②设甲乙第二次相遇时的时间经过的时间t2,有
5t2+2t2=25+30+5+10,t2=10(秒)
此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.
③设甲乙第三次相遇时的时间经过的时间t3,有
5t3﹣2t3=20,t3=20
3
(秒)
此时甲的位置:30﹣(5×20
3
﹣15)=11
2
3
,乙的位置:20﹣(2×
20
3
﹣5)=11
2
3
这时甲和乙所对应的有理数为112 3
④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有
5t4﹣112
3
﹣30﹣15+2t4=11
2
3
,t4=9
16
21
(秒)
此时甲的位置:5×916
21
﹣45﹣11
2
3
=﹣7
6
7
,乙的位置:11
2
3
﹣2×9
16
21
=﹣7
6
7
这时甲和乙所对应的有理数为﹣76
7
.
四次相遇所用时间为:5+10+20
3
+9
16
21
=31
3
7
(秒),剩余运行时间为:35﹣31
3
7
=3
4
7
(秒)
当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×34
7
=
525
7
⨯
=
176
7
.
位置在﹣76
7
+17
6
7
=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、
112
3
、﹣7
6
7
.
【点睛】
本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.
28.(1)25
-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.
【解析】
【分析】
(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.
【详解】
-,35
解:(1)25
(2)设运动时间为x秒
+=+
13x2x2535
=
解得x4
-⨯=
352427
答:运动时间为4秒,相遇点表示的数字为27
(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,
-+=,
∵25305
∴点P所在的位置表示的数为5 .
(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,
∴点P和点Q一共相遇了6+1=7次.
【点睛】
本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.
29.(1)90°;(2)30°;(3)12秒或48秒.
【解析】
【分析】
(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;
(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-
∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;
(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.
【详解】
(1)由旋转的定义可知:旋转角=∠NOB=90°.
故答案为:90°
(2)∠AOM﹣∠NOC=30°.
理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,
∴∠AOC=60°.
∴∠NOC=60°﹣∠AON.
∵∠NOM=90°,
∴∠AOM=90°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
(3)如图1所示:当OM为∠BOC的平分线时,。