高考物理带电粒子在磁场中的运动试题(有答案和解析)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理带电粒子在磁场中的运动试题(有答案和解析)含解析
一、带电粒子在磁场中的运动专项训练
1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).
(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;
(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);
(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .
【答案】(1)01
52
mv B ql = (2)2
058mv l Q kq = (3)0253mv B ql π= 2
20(23)9mv E ql
ππ-=
【解析】 【分析】 【详解】
(1)粒子从P 到A 的轨迹如图所示:
粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25
r l l α=
= 由洛伦兹力提供向心力可得2
011
v qv B m r =
解得:
0 1
5
2
mv B
ql
=
(2)粒子从P到A的轨迹如图所示:
粒子绕负点电荷Q做匀速圆周运动,设半径为r2
由几何关系得
2
5
2cos8
l
r l
α
==
由库仑力提供向心力得
2
2
22
v
Qq
k m
r r
=
解得:
2
5
8
mv l
Q
kq
=
(3)粒子从P到A的轨迹如图所示:
粒子在磁场中做匀速圆周运动,在电场中做类平抛运动
粒子在电场中的运动时间
00
sin3
5
l l
t
v v
α
==
根据题意得,粒子在磁场中运动时间也为t,则
2
T
t=
又
2
2m
T
qB
π
=
解得0
2
5
3
mv
B
ql
π
=
设粒子在磁场中做圆周运动的半径为r,则0v t r
π
=
解得:35l r π
=
粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t m
α-=
⋅ 解得:2
20(23)9mv E ql
ππ-=
2.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为
510/q
C kg m
=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:
(1)两金属极板间的电压U 是多大?
(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.
(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.
【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3
T π
-<⨯
【解析】
试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度
代入数据得U=100V (2)
粒子在磁场中经过半周从OB中穿出,粒子在磁场中运动时间
射出点在AB间离O点
(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB间射出
如图,由几何关系可得临界时
要不从AB边界射出,应满足
得
考点:本题考查带电粒子在磁场中的运动
3.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB∥CD、AD∥BC,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为B.一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d,带电粒子的质量为m,带电量为q,不计粒子的重力.求:
(1)带电粒子入射速度的大小;
(2)带电粒子在矩形区域内作直线运动的时间;
(3)匀强电场的电场强度大小.
【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d
m θ
【解析】 【分析】
画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】
(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .
由几何关系可知:cos d R
θ=
洛伦兹力做向心力:20
0v qv B m R
= 解得0cos qBd
v m θ
=
(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x
θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θ
θ
=
(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B
解得2qB d
E mcos θ
=
【点睛】
此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.
4.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.
(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;
(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)
(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)2
2e eU v v
m
=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】
(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=
ne
I t
求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】
(1)对电子经 CA 间的电场加速时,由动能定理得
2211
22
e e U mv mv =
- 解得:22e eU
v v m
=
+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =
ne I t
224d dN
n N a a
ππ=
=⨯
解得4alt
N ed
π=
(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为
B .设此轨迹圆的半径为 r ,则
222
(2)a r r a -=+
2
v Bev m r
=
解得:43mv
B ae
=
5.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=
3
2
mv 02。
两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7
2
R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;
(2)如果某次实验时将磁场O 的圆心往上移了
2
R
,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。
【答案】(1) 02v v =;02mv B eR =(2) 0336
12
l π++≥ 【解析】 【详解】
解:(1)对于单个质子进入加速电场后,则有:22
0011eU mv mv 22
=- 又:2
003eU mv 2
=
解得:0v 2v =;
根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为轨迹的圆心,如图所示,并可知轨迹半径r=R
根据洛伦磁力提供向心力有:2
v evB m r
=
可得磁场磁感应强度:0
2mv B eR
=
(2)磁场O 的圆心上移了
R
2
,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心
由于磁场上移了R
2
,故sin∠COF=
R
2
R
=
1
2
,∠
COF=
π
6
,∠DOF=∠FKD=
π
3
对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D点,
下方粒子到达C后最先到达D点的粒子所需时间为
00
(2)(4)
22
24
R
R H R R
t
v v
π
π
++-+
'==
而上方粒子最后一个到达E点的试卷比下方粒子中第一个达到C的时间滞后0
l
Δt
t
=
上方最后的一个粒子从E点到达D点所需时间为
()
000
π1
R Rsin2πR62π33
36
t R
2v2v
-+-
=+=
要使两质子束相碰,其运动时间满足t t t
'≤+∆
联立解得
π336
l
12
++
≥
6.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.
(1)求两板间磁场的磁感应强度大小B.
(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.
【答案】(1)0
mv
B
qL
=(2)
22
3
cos
d R a R L
≥+=;min
(632)L
T
π
+
=
【解析】
【分析】
【详解】
(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0
1
02
qv B m v R =
由几何关系:222113()()22
L L R R =+- 解得0
mv B qL
=
(2)粒子P 从O 003L v t =
011
22
y L v t = 解得03
y v =
设合速度为v ,与竖直方向的夹角为α,则:0
tan 3y
v v α== 则=
3
π
α
003
sin 3
v v v α=
= 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则
21
2sin L R α
=
, 解得233
L R =
右侧磁场沿初速度方向的宽度应该满足的条件为223
cos 2
d R R L α≥+=
; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:
2
min 0(22)2R T t v
πα--=
解得(
)
min
6323L T v π+=
【点睛】
带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.
7.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:
(1)求带电粒子在磁场中运动的半径r ;
(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;
(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为
222x y R +=(3
0.1,
0.120
R m m x m =≤≤) 【解析】 【分析】 【详解】
(1)洛伦兹力充当向心力,根据牛顿第二定律可得2
v qvB m r
=,解得0.1r m =
(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,
粒子在电场中运动的加速度qE a m
= 粒子在电场中运动的时间2v t a
= 解得43.310t s -=⨯
(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,
则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,
曲线方程为2
2
x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭
【点睛】
带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径
8.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为
q
m
=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
(1)求粒子打到荧光屏上的位置到A 点的距离;
(2)若撤去磁场在荧光屏左侧某区域加竖直向上匀强电场,电场左右宽度为2r ,场强大小E=1.0×103V/m ,粒子仍打在荧光屏的同一位置,求电场右边界到屏幕MN 的距离。
【答案】(1)0.267m (2)0.867m 【解析】 【详解】
(1)粒子射入O 点时的速度v ,由动能定理得到:2
12
qU m v =
进入磁场后做匀速圆周运动,2
qvB m R
v =
设圆周运动的速度偏向角为α,则联立以上方程可以得到:1
tan
2
2
r R α
=
=,故4tan 3
α=
由几何关系可知纵坐标为y ,则tan y r
α= 解得:4
0.26715
y m m =
=;
(2)粒子在电场中做类平抛运动,Eq ma =,2r vt =,2
112
y at =,y v at = 射出电场时的偏向角为β,tan y v v
β=
磁场右边界到荧光屏的距离为x ,由几何关系1
tan y y x
β-=
,解得:0.867x m =。
9.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(
q
m
)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:
(1)电场强度的大小; (2)带电微粒的初速度;
(3)带电微粒做圆周运动的圆心坐标.
【答案】(1)g k (2)2g
kB
(3)2222232(,)28g k B L L k B g -
【解析】 【分析】 【详解】
(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=q
k m
解得g E k
=
(2)由几何关系:2R cos θ=L ,
粒子做圆周运动的向心力等于洛伦兹力:2
v qvB m r
= ;
由
cos y v v
θ=
在进入复合场之前做平抛运动:y gt =v
0L v t =
解得02g v kB
=
(3)由2
12
h gt =
其中2kBL t g = ,
则带电微粒做圆周运动的圆心坐标:'3
2
O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-
10.如图,PQ 分界线的右侧空间有一垂直纸面向里、磁感应强度为B 的匀强磁场。
一质量为m 、电荷量为q 的粒子以速度v 0沿AC 方向由A 点射入。
粒子经D 点时速度的偏向角(偏离原方向的夹角)θ=60°。
(不计重力)
(1)试求AD 间的距离;
(2)若去除磁场,改为纸平面内垂直于AC 方向的匀强电场,要想由A 射入的粒子仍然能经过D 点,试求该电场的强度的大小及方向;粒子此时经D 点时速度的偏向角比60°角大还是小?为什么? 【答案】(1)o
mv R=Bq
(2)a<60︒ 【解析】 【详解】
(1)带电粒子在磁场中做匀速圆周运动,速度偏角为60︒,则粒子转过的圆心角为60︒, 即AD=R
由2
0v qv B m R
=
得AD =0
mv R Bq
=
(2)经D点
3
cos30
x R R =︒
=,
1
sin30
2
y R R
=︒=
而0
x v t
=,2
1
2
y at
=,
qE
a
m
=
解得
4
3
E Bv
=,方向垂直AC向上
速度偏向角y
x
v
v
tana=,
y
v at
=
解得
2
tan2tan303
3
α=︒=
而tan60=3
︒,即tan tan60
α<︒,则<60
α︒
11.如图甲所示,两金属板M、N水平放置组成平行板电容器,在M板中央开有小孔O,再将两个相同的绝缘弹性挡板P、Q对称地放置在M板上方,且与M板夹角均为60°,两挡板的下端在小孔O左右两侧.现在电容器两板间加电压大小为U的直流电压,在M板上方加上如图乙所示的、垂直纸面的交变磁场,以方向垂直纸面向里为磁感应强度的正值,其值为B0,磁感应强度为负值时大小为B x,但B x未知.现有一质量为m、电荷量为q(q>0),不计重力的带电粒子,从N金属板中央A点由静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在t1时刻粒子第一次撞到左挡板P上,紧接着在t1+t2时刻粒子撞到了右挡板Q上,然后粒子又从O点竖直向下返回平行金属板间,接着再返回磁场做前面所述的运动.粒子与挡板碰撞前后电荷量不变,沿板面的分速度不变,垂直于板面的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.图中t1,t2未知,求:
(1)粒子第一次从A到达O点时的速度大小;
(2) 粒子从O点第一次撞到左挡板P的时间t1的大小;
(3)图乙中磁感应强度B x的大小;
(4)两金属板M和N之间的距离d.
【答案】(1)v=2Uq
m
(2)t1=
3
m
B q
π
(3)B x=2B0(4)d=
()
352
24
n Um
B q
π+
,n=0,1,2,3
【解析】【分析】粒子在电场间做匀加速直线运动,由动能定理求出粒子刚进入磁场的速度,在磁场中做圆周运动,由几何关系得圆心角求出运动时间,粒子在整个装置中做周期性的往返运动,由几何关系得半径求出磁感应强度B x的大小,在t1~(t1+t2)时间内,粒子做匀速圆周运动,由周期关系求出在金属板M和N间往返时间,再求出金属板M和N间的距离。
解:(1) 2
1
Uq=mv-0
2
解得
2
v=
Uq
m
(2)由
2
qvB=
mv
r
得
r=
mv
B q
1
22
T==
r m
v B q
ππ
11
1
t=T=
63
m
B q
π
(3)由
2
qvB=
mv
r
得,粒子做匀速圆周运动的半径
r=
mv
B q
,
x
x
r=
mv
B q
粒子在整个装置中做周期性的往返运动,运动轨迹如图所示
由图易知:
=2
x
r r
解得
=2
x
B B
(4)在t1~(t1+t2)时间内,粒子做匀速圆周运动的周期
2
2
T==
x
m m
B q B q
ππ
2201t =T =2
2m B q
π
设粒子在金属板M 和N 间往返时间为t ,有
0+d=
22
v t ⨯ 且满足: ()2120,1,2,3t t n t t n ⋯⋯=++,= 联立可得金属板M 和N 间的距离:
23+5=
0,1,2,324m
U n d n B q
π(),=
12.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量
为+q 的粒子由小孔下方
2
d
处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。
不计粒子的重力。
(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、
4mv
qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【答案】(1)2
mv qd
(2)4mv qD 或43mv qD (3)5.5πD
【解析】 【分析】 【详解】
(1)粒子在电场中,根据动能定理2
122
d Eq mv ⋅=,解得2mv E qd =
(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为
/2
E R 由2
1
1
v qvB m r =,解得4mv B qD =
则当外切时,半径为
e
R
由
2
1
2
v
qvB m
r
=,解得
4
3
mv
B
qD
=
(2)若Ⅰ区域的磁感应强度为
22
9
32
qB L
m
U
=,则粒子运动的半径为00
10016
819
U U
U
≤≤;Ⅱ
区域的磁感应强度为2
1
2
qU mv
=,则粒子运动的半径为
2
v
qvB m
r
=;
设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T1、T2,由运动公式可得:
1
1
1
2R
T
v
π
=;
3
4
r L
=
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,
Ⅰ区两段圆弧所对的圆心角相同,设为
1
θ,Ⅱ区内圆弧所对圆心角为
2
θ,圆弧和大圆的两个切点与圆心O连线间的夹角设为α,由几何关系可得:1120
θ=;
2
180
θ=;
60
α=
粒子重复上述交替运动回到H点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t1、t2,可得:r U
∝;
1
5
6
U
L
U
L
=
设粒子运动的路程为s,由运动公式可知:s=v(t1+t2)
联立上述各式可得:s=5.5πD
13.平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y 轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q 点以速度v 0沿x 轴正方向开始运动,Q 点到y 轴的距离为到x 轴距离的2倍.粒子从坐标原点O 离开电场进入磁场,最终从x 轴上的P 点射出磁场,P 点到y 轴距离与Q 点到y 轴距离相等.不计粒子重力,问:
(1)粒子到达O 点时速度的大小和方向; (2)电场强度和磁感应强度的大小之比.
【答案】(1)02v ,与x 轴正方向成45°角斜向上 (2)0
2
v 【解析】 【分析】 【详解】
(1)粒子运动轨迹如图:
粒子在电场中由Q 到O 做类平抛运动,设O 点速度v 与x 方向夹角为α,Q 点到x 轴的距离为L ,到y 轴的距离为2L ,粒子的加速度为a ,运动时间为t ,根据平抛运动的规律有: x 方向:02L v t = y 方向:212
L at =
粒子到达O 点时沿y 轴方向的分速度:
y v at =,
又
tan y x v v α=, 解得tan 1α=,即45α=︒, 粒子到达O 点时的夹角为450解斜向上,粒子到达O 点时的速度大小为
002cos 45v v v ︒
==; (2)设电场强度为E ,粒子电荷量为q ,质量为m ,粒子在电场中受到的电场力为F ,粒子在电场中运动的加速度:
qE a m
=, 设磁感应强度大小为B ,粒子做匀速圆周运动的半径为R ,洛伦兹力提供向心力,有:
2
v qvB m R
=, 根据几何关系可知:
2R L =
解得:
02
v E B =
14.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.
【答案】当α=30°时,粒子在磁场中运动的时间为π126T m t qB =
= 当α=90°时,粒子在磁场中运动的时间为π42T m t qB
=
= 【解析】 根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x
轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)
2v qvB m R =(1分) 周期为2πm T qB
=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得
sin αAD R =,cot 60OD AD =︒, ,OP AD BP =+
α=β (2分) 联立得到sin αα13
+=(2分) 解得α=30°,或α=90° (各2分)
设M 点到O 点的距离为h ,有sin αAD R =
h R OC =-,3cos α3OC CD OD R AD =-=-
联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3
R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为
π126T m t qB
==(2分) 当α=90°时,粒子在磁场中运动的时间为 π42T m t qB =
=(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.
15.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.
(1)求质量为m 1的离子进入磁场时的速率v 1;
(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;
(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.
【答案】(112qU m 2122
8U m m qB (3)d m 12122m m m m --L 【解析】
(1)动能定理 Uq =
12m 1v 12 得:v 1= 1
2qU m …① (2)由牛顿第二定律和轨道半径有:
qvB =2
mv R
,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):
R 1=122 mU qB ,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228
()U m m qB - …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).
为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21
m m >d R 1的最大值满足:2R 1m =L-d
得:(L −d )(1−21
m m >d 求得最大值:d m 12
122m m m m --L。