整式总复习.pptx
合集下载
中考数学总复习第一章第2课时整式课件
![中考数学总复习第一章第2课时整式课件](https://img.taocdn.com/s3/m/fec969e7dc3383c4bb4cf7ec4afe04a1b071b0a4.png)
1 (5)8
(6)1
乘法公式
3.(1+y)2=( ) A.1+y2 C.1+2y+y2 答案:C
B.1+y+y2 D.1-2y+y2
4.(1)已知 a+b=- 2 ,求代数式(a-1)2+b(2a+b)+2a 的值. (2)阅读理解:引入新数 i,新数 i 满足分配律、结合律和交换 律,已知 i2=-1,那么(1+i)(1-i)=________.
2.计算:
(1)a4·a3=__________; (2)a4÷a3=__________;
(3)(a3)2=__________. (5)2-3=__________;
(4)(ba)2=__________; (6)(-3)0=__________.
答案:(1)a7
(2)a (3)a6
b2 (4)a2
答案:A
8.(2021·岳阳)下列运算结果正确的是( ) A.3a-a=2 B.a2·a4=a8 C.(a+2)(a-2)=a2-4 D.(-a)2=-a2 答案:C
9.(2022·永州)若单项式 3xmy 与-2x6y 是同类项,则 m= __________.
答案:6 10.化简:(1-x)2+2x=__________. 答案:1+x2
A.(a+b)2=a2+2ab+b2 C.(a+b)(a-b)=a2-b2 答案:A
B.(a-b)2=a2-2ab+b2 D.(ab)2=减”政策,某校利用课后服务开展了
主题为“书香满校园”的读书活动.现需购买甲、乙两种读本共
100 本供学生阅读,其中甲种读本的单价为 10 元/本,乙种读本的
11.(2020·广东)已知 x=5-y,xy=2,计算 3x+3y-4xy 的值 为________.
整式复习(118张PPT)
![整式复习(118张PPT)](https://img.taocdn.com/s3/m/ae6f6b0355270722192ef77a.png)
πR - πr
2 2
2ab、2ah、2bh
πR 和- πr
2 2
三项式 二项式 二项式 二项式
5x-4
1 2rh πr 2 2
5x、-4
1 2rh和 πr 2 2
注意:指出每一项时必须包含前面的符号.
知识要点
多项式的次数
多项式里次数最高项的次数,就是
这个多项式的次数.
指出下列多项式的次数.
2ab+2ah+2bh
m 2
如果的次数为4次,则m为多少? 如果多项式只有二项,则m为多少? 2.一个关于字母x的二次三项式的二次项 系数 为4,一次项系数为1,常数项为7 则这个二次三项式为_______. 4x2+x+7
提高探究
• 已知n是自然数,多 n+1 3 项式 y +3x -2x 是三次三项式,那 么n可以是哪些数?
练 习(二):
1、下列各组是不是同类项:
(1) 4abc 与 4ab
不是
是
–4a )
(2) -5 m2 n3 与 2n3 m2 2、合并下列同类项:
(1)
是
–2xy
(3) -0.3 x2 y 与 y x2
3xy – 4 xy – xy = (
)
(2) -a-a-2a=(
a3 b+0.2ab3 =( ab3 - a3 b ) 3、若5x2 y与是 x m yn同类项,则m=( 2 ) n=( 若5x2 y与 x m yn同的和是单项式, m=(
3 2 2
1 x2 y2 x x y 1 四 三 项式,最高次项是 ( 2) 是 _____次 _____ _________ _________ ; 3 3 ,常数项是
2 2
2ab、2ah、2bh
πR 和- πr
2 2
三项式 二项式 二项式 二项式
5x-4
1 2rh πr 2 2
5x、-4
1 2rh和 πr 2 2
注意:指出每一项时必须包含前面的符号.
知识要点
多项式的次数
多项式里次数最高项的次数,就是
这个多项式的次数.
指出下列多项式的次数.
2ab+2ah+2bh
m 2
如果的次数为4次,则m为多少? 如果多项式只有二项,则m为多少? 2.一个关于字母x的二次三项式的二次项 系数 为4,一次项系数为1,常数项为7 则这个二次三项式为_______. 4x2+x+7
提高探究
• 已知n是自然数,多 n+1 3 项式 y +3x -2x 是三次三项式,那 么n可以是哪些数?
练 习(二):
1、下列各组是不是同类项:
(1) 4abc 与 4ab
不是
是
–4a )
(2) -5 m2 n3 与 2n3 m2 2、合并下列同类项:
(1)
是
–2xy
(3) -0.3 x2 y 与 y x2
3xy – 4 xy – xy = (
)
(2) -a-a-2a=(
a3 b+0.2ab3 =( ab3 - a3 b ) 3、若5x2 y与是 x m yn同类项,则m=( 2 ) n=( 若5x2 y与 x m yn同的和是单项式, m=(
3 2 2
1 x2 y2 x x y 1 四 三 项式,最高次项是 ( 2) 是 _____次 _____ _________ _________ ; 3 3 ,常数项是
整式的复习数学七年级人教版(上册)学习课件
![整式的复习数学七年级人教版(上册)学习课件](https://img.taocdn.com/s3/m/9bfc8a9d0342a8956bec0975f46527d3250ca667.png)
2. 数字与字母相乘时,数字写在字母
的前面;
(1) 4a
(4) 5m 2
(5) x 2 7 x 12
2 3 2 5 3 2
1 x y x y .
3
3
3. 除法运算写成分数形式;
4. 若系数是“ 1”或“1”,则 1 常
省略不写;
➢ 带分数与字母相乘时,系数要化
成假分数.
二、典型例题
例 列式表示:
4a
(1) 边长为 a cm的正方形的周长可表示为_______cm.
(2) 一个三位数,百位数字为 a,十位数字为 b,个位数字为 c,则这个三
100a 10b c
位数可表示为 _______________.
此处乘号“×”
通常省略不写.
二、典型例题
例 列式表示:
3m 6 2m 4
5m 2.
此处应加上括号
二、典型例题
例 列式表示:
(4) 一种商品每件进价为 a 元,若按进价提高30%标价,再按标价的八五
0.85 1 0.3 a 元. (用含a的式子表示)
折出售,那么每件商品的售价是 _______________
分析:先明确进价、标价、实际售价的关系
3
2a 2, 5a 3b, 3
例如,2a 2 5a 3b 3 的项是 ____________,其中,常数项是
___.
四次三项式
4
2a 2 5a 3b 3 的次数是 ____,它是
_____________;
x 2 2 xy 的次数是 ____,它是
二次二项式
2
_____________.
一次二项式;
第4章整式的加减整理与复习 复习课件(共35张PPT)
![第4章整式的加减整理与复习 复习课件(共35张PPT)](https://img.taocdn.com/s3/m/6c05904c0166f5335a8102d276a20029bc646311.png)
单项式
系数 次数
项,项数,常数项,最高次项 多项式
次数 同类项与合并同类项
去括号
化简求值
用字母来表示生活中的量
知识点梳理1
单项式:
定义: 由_数__字__或__字__母__的__乘__积__组成的式子. 单独的 一个数 或 一个字母也是单项式.
系数: 单项式中的_数__字__因__数__.
次数: 单项式中的_所__有__字__母__的__指__数__和___.
课堂小结
考点分析
多项式的项与次数
例4:请说出下列各多项式是几次几项式,并写出多项式的 最高次项和常数项.
四三
知识点梳理4
同类项的定义: 1. 字母 相同,
2. 相同的字母的指数也相同. 1.与系___数_无关
同类项:
2.与_字__母__的__位__置_无关.
注意:几个常数项也是_同__类__项_.
合并同类项概念:
“去括号,看符号. 是 ‘+’号,不变号,是‘-’号,全变号”.
(二)计算
1. 找同类项,做好标记.
找
2. 利用加法的交换律和结合律把同类项放在一起. 搬
3. 利用乘法分配律计算结果.
并
4. 按要求按“升”或“降”幂排列. 排
考点分析
去括号
例9:已知A=x3+2y3-xy2,B=-y3+x3+2xy2,
(两相同) (两无关)
把多项式中的同类项合并成一项 .
1._系__数___相加减; 合并同类项法则:
2._字__母__和__字__母__的__指__数__不变.
考点分析
同类项
例5:(2024•内江)下列单项式中,ab3的同类项是( )
A.3ab3
人教版九年级中考数学总复习课件第3课时 整式(共20张PPT)
![人教版九年级中考数学总复习课件第3课时 整式(共20张PPT)](https://img.taocdn.com/s3/m/a063d1fbf12d2af90342e696.png)
【考点 4】整式的乘除
把它们的系数、同底数幂分别 相乘
,对于只
单×单 在一个单项式里含有的字母,则连同它的指数作为积
的一个因式.
就是用单项式去乘多项式的 每一项 ,再把
单×多 所得的积 相加 ,即 a(b c) ab ac .
先用一个多项式的 每一项
乘另一个多项
多× 式的 每一项 ,再把所得的积 相加 .
2x2 y x2 y
2.
12.[变式]若 (x k)(x 5) 的积中不含有 x 的一次项,
则 k 的值是 5.
13.[变式]有若干张如图所示的正方形 A 类、B 类卡片和长方形 C 类卡片,如果要拼成一个长为 (2a b) ,宽为 (3a 2b) 的大长 方形,则需要 C 类卡片多少张?
【考点 5】乘法公式
平方差公式 (a b)(a b) a 2 b2 .
完全平方公式 (a b)2 a 2 2ab b2 .
14.[教材原题]运用乘法公式计算: (x 2y 3)(x 2y 3) .
解:原式 x2 (2 y 3)2
x2 4 y2 12 y 9
2
a2 a 1
当 a 1 时,原式 12 1 1 1 .
点悟: 准确把握同类项定义中的三个“相同”,关注字 母的先后顺序,合并同类项的目的就是使多项 式得到简化.
【考点 3】幂的运算
同底数幂相乘 am an a m n .
幂的乘方
(am )n a mn .
积的乘方
(ab)n anbn .
解:都不对,改正如下:
(1) b6 ; (2) x8 ; (3) a10 ;
(4) a3b6 ; (5) 4a2 .
a 8.[2017 济宁中考]计算(a2 )3 a2 a3 a2 a3 的结果为 6 .
整式及其运算复习课件
![整式及其运算复习课件](https://img.taocdn.com/s3/m/e290ec5011a6f524ccbff121dd36a32d7375c792.png)
在进行整式混合运算时,应先进行乘 法和除法运算,然后再进行加法和减 法运算。
运算技巧:利用分配律简化计算
分配律是整式混合运算中的重要 技巧,它可以简化复杂的计算过
程。
分配律是指将一个数与一个多项 式相乘,等于将这个数分别与多 项式的各项相乘,再把所得的积
相加。
利用分配律可以简化整式的混合 运算,提高计算的效率和准确性
多项式与多项式的乘法
总结词
分别相乘,合并同类项
详细描述
多项式与多项式的乘法需要将每一项分别与另一个多项式的每一项相乘,然后合 并同类项。例如,$(x + y) times (x^2 - y^2) = x^3 - xy^2 + xy^2 - y^3 = x^3 - y^3$。
整式的除法运算
总结词
转化为乘法,约分
。
答案解析
答案解析1:基础题目解析 答案解析2:提高题目解析
答案解析3:综合题目解析
THANKS FOR WATCHING
感谢您的观看
在去括号时,需要注意符号的变化和运算的优先级。
整式的加减法法则
整式的加减法法则是整式运算 的基本法则之一。
整式的加减法法则是通过合并 同类项和去括号来完成的。
在进行整式的加减运算时,需 要注意符号的变化和运算的优 先级。
03
整式的乘除运算
单项式与单项式的乘法
总结词
直接相乘,系数相乘,相同字母的幂 相加
题目5
若关于$x$、$y$的多项式 $(2x + y) + (x - y)m(m$ 是常数)合并同类项后结 果为$0$,则$m$的值是 ____。
题目6
已知整式$(2x - 1) + (x 3)m = 7x - 2$,当$m =$____时,整式为零。
初二数学《整式》复习课件
![初二数学《整式》复习课件](https://img.taocdn.com/s3/m/a873955d6ad97f192279168884868762caaebb90.png)
整式的除法运算
总结词
通过乘法的逆运算实现整式的除法,通常使用长除法或商的公式。
详细描述
整式的除法运算可以通过乘法的逆运算实现,通常使用长除法或商的公式。例如,$frac{x^4 + x^2}{x^2} = x^2 + 1$。
04
幂的运算
同底数幂的乘法
总结词
掌握规则,理解意义
意义
幂的乘法可以用来表示相同量的不同情况,例如速度、价格等。
理解实际问题中的数量关系,建立整式模型,解决实 际问题。
详细描述
整式是数学中表示数量关系的代数式,通过理解实际问 题中的数量关系,我们可以建立整式模型,从而解决实 际问题。例如,在路程问题中,我们可以利用整式表示 速度、时间和距离之间的关系,从而解决实际问题。
利用整式进行方案选择
总结词
通过比较不同方案的成本和效益,利用整式进行方案选择。
详细描述
在方案选择中,我们可以利用整式表示不同方案的成本和效益,通过比较这些整 式的值,选择最优的方案。例如,在投资方案选择中,我们可以利用整式表示不 同方案的收益和成本,通过比较这些整式的值,选择最优的投资方案。
利用整式进行规律探究
总结词
通过观察和分析整式的变化规律,探究数学中的规律。
详细描述
整式是数学中表示数量关系的代数式,通过观察和分析整式 的变化规律,我们可以探究数学中的规律。例如,在数列问 题中,我们可以利用整式表示数列的项,通过观察和分析整 式的变化规律,探究数列的通项公式。
03
整式的乘除法
单项式乘以单项式
总结词
这是整式乘除法中最基础的运算,主要涉及系数、相同字母 的幂次相加。
详细描述
单项式乘以单项式时,将两个单项式的系数相乘,并将相同 字母的幂次相加。例如,$2a^3b times 3ab^2 = 6a^4b^3$。
整式ppt课件
![整式ppt课件](https://img.taocdn.com/s3/m/df83bd86db38376baf1ffc4ffe4733687f21fc7f.png)
合并同类项法
将方程中未知数的同类项合并,常数项合并,使方程简化,然后求解未知数。
二元一次整式方程求解方法
代入法
将一个未知数用另一个未知数表示,代入原方程 中求解。
消元法
通过两个方程的相加或相减,消去其中一个未知 数,得到一个一元一次方程,然后求解。
矩阵法
将二元一次方程组写成矩阵形式,通过矩阵运算 求解未知数。
整式ppt课件Leabharlann 目录CONTENTS
• 整式基本概念 • 整式运算规则 • 整式化简技巧 • 整式方程求解方法 • 整式在数学中的应用 • 整式计算注意事项及易错点分析
01
整式基本概念
定义与性质
定义
整式是由常数、变量和代数运算 符号(加、减、乘、除、乘方) 组成的代数式,其中变量的指数 均为非负整数。
计算顺序与符号问题
遵循先乘除后加减的原则
在计算整式时,首先要遵循先乘除后加减的原则,确保计算顺序 正确。
注意括号的使用
括号可以改变运算顺序,因此在计算整式时要注意括号的使用,确 保计算过程准确无误。
注意符号问题
整式中涉及正负数运算时,要特别注意符号问题,避免出现符号错 误导致计算结果错误。
合并同类项时易错点分析
7x^2 - x + 3。
提取公因式法
定义
从整式中提取出公共因子,从而将整式分解为几个因式的乘积, 达到简化的目的。
方法
观察整式中的各项,找出它们的最大公因式,并将其提取出来。
示例
对于整式 2x^3 - 6x^2 + 4x,可以提取公因式 2x,得到 2x(x^2 - 3x + 2)。
公式化简法
性质
整式具有加法、减法、乘法等运 算性质,满足交换律、结合律和 分配律等基本数学定律。
将方程中未知数的同类项合并,常数项合并,使方程简化,然后求解未知数。
二元一次整式方程求解方法
代入法
将一个未知数用另一个未知数表示,代入原方程 中求解。
消元法
通过两个方程的相加或相减,消去其中一个未知 数,得到一个一元一次方程,然后求解。
矩阵法
将二元一次方程组写成矩阵形式,通过矩阵运算 求解未知数。
整式ppt课件Leabharlann 目录CONTENTS
• 整式基本概念 • 整式运算规则 • 整式化简技巧 • 整式方程求解方法 • 整式在数学中的应用 • 整式计算注意事项及易错点分析
01
整式基本概念
定义与性质
定义
整式是由常数、变量和代数运算 符号(加、减、乘、除、乘方) 组成的代数式,其中变量的指数 均为非负整数。
计算顺序与符号问题
遵循先乘除后加减的原则
在计算整式时,首先要遵循先乘除后加减的原则,确保计算顺序 正确。
注意括号的使用
括号可以改变运算顺序,因此在计算整式时要注意括号的使用,确 保计算过程准确无误。
注意符号问题
整式中涉及正负数运算时,要特别注意符号问题,避免出现符号错 误导致计算结果错误。
合并同类项时易错点分析
7x^2 - x + 3。
提取公因式法
定义
从整式中提取出公共因子,从而将整式分解为几个因式的乘积, 达到简化的目的。
方法
观察整式中的各项,找出它们的最大公因式,并将其提取出来。
示例
对于整式 2x^3 - 6x^2 + 4x,可以提取公因式 2x,得到 2x(x^2 - 3x + 2)。
公式化简法
性质
整式具有加法、减法、乘法等运 算性质,满足交换律、结合律和 分配律等基本数学定律。
整式复习课件ppt
![整式复习课件ppt](https://img.taocdn.com/s3/m/21d2e6e1f424ccbff121dd36a32d7375a517c643.png)
在进行整式的加减乘除混合运 算时,需要注意运算的顺序和 符号,避免出现计算错误。
整式的乘方运算
整式的乘方运算是指将一个数或一个 代数式自乘若干次的运算。
整式的乘方运算可以用来简化复杂的 数学表达式,提高计算的效率和准确 性。
在进行整式的乘方运算时,需要注意 指数的符号和底数的取值范围,确保 运算的正确性。
单项式除以多项式
将单项式除以多项式的每一项,再将所得的商相加。例如, $frac{2x}{x^2 + 3x - 4} = frac{2x}{x^2} + frac{2x}{3x} - frac{2x}{4}$ 。
多项式除以多项式
将一个多项式除以另一个多项式,相当于将第一个多项式的每一项除以 第二个多项式的每一项,再将所得的商相加。例如,$frac{x+y}{m+n} = frac{x}{m} + frac{x}{n} + frac{y}{m} + frac{y}{n}$。
整式的分类
单项式
只包含一个项的整式,如5x、 6ab等。
多项式
包含多个项的整式,如x^2 - 3x + 2、(x + 1)^2等。
整式的加减法
同类项的合并
移项法则
同类项是指所含字母相同,且相同字 母的指数也相同的项。同类项可以合 并,合并时系数相加减,字母和字母 的指数不变。
将含未知数的项移到等号的左边,常 数项移到等号的右边。
多项式的概念与性质
总结词
形式多样,性质丰富
详细描述
多项式是由有限个单项式通过有限次加法运算得到的数学表达式,如x^2 - 3x + 2、2y^3 + 3xy + y等。多项式具有丰富的性质,如次数、根、因式分解等。
《整式的运算复习》课件
![《整式的运算复习》课件](https://img.taocdn.com/s3/m/e5253e0ba9956bec0975f46527d3240c8547a177.png)
02
整式运算的进阶知识
整式的乘法公式
分配律
a(b+c) = ab + ac
积的乘方公式
(ab)^n = a^n * b^n
幂的乘法公式
a^m * a^n = a^(m+n)
乘法结合律
(ab)c = a(bc)
乘法交换律
ab = ba
整式的因式分解
提公因式法
将多项式中的公因式提取出来,简化 多项式。
在电学中,欧姆定律 $V = IR$ 也是一个整式方程,描述 了电压、电流和电阻之间的关系。这些物理问题的建模都 离不开整式的运算。
04
整式运算的常见错误与纠正
符号错误
总结词
符号错误是整式运算中常见的一种错误,主要表现在加减乘除等符号的混淆或遗漏。
详细描述
在进行整式运算时,学生常常会因为粗心或概念不清而混淆加减乘除等符号。例如,将“-”误写作“+”,或将 “÷”误写作“×”。此外,有些学生在进行运算时还会遗漏符号,导致结果出错。
运算结果错误
总结词
运算结果错误是指在整式运算中,由于计算失误或对运算法则理解不准确,导致最终结 果不正确。
详细描述
学生在进行整式运算时,可能会因为粗心或概念不清而得出错误的结果。例如,在计算 多项式的加减时,学生可能会错把“+”当成“-”,或者在计算乘法时错把“10*10”
算成“100”,导致最终结果不正确。
综合练习题
总结词
综合运用知识和解决复杂问题
详细描述
设计一些涉及整式运算的综合题目, 包括混合运算、化简求值、解方程等 ,目的是让学生能够综合运用整式运 算的知识解决复杂问题。
感谢您的观看
THANKS
《整式的乘法复习》课件
![《整式的乘法复习》课件](https://img.taocdn.com/s3/m/16a5b454c381e53a580216fc700abb68a882ad6f.png)
学习建议与展望
深入理解概念
建议学生深入理解整式乘法的 概念和性质,掌握其本质,以
便更好地应用所学知识。
提高运算能力
强调学生应通过多做练习题提 高整式乘法的运算能力,掌握 常用的运算技巧。
拓展应用领域
建议学生将整式乘法的应用拓 展到其他学科领域,如物理、 化学等,以增强跨学科应用能 力。
展望未来发展
$(x+y)(x^2+y^2) = (x^2+y^2)(x+y)$,可用于交换多项式相乘的顺序。
整式乘法的综合练
04
习
基础练习题
总结词
掌握基本概念和规则
详细描述
包括单项式与单项式相乘、单项式与多项式相乘、多项式与 多项式相乘等基础题型,旨在帮助学生掌握整式乘法的基本 概念和规则。
提高练习题
总结词
学习方法总结
主动参与
强调在学习整式乘法过程中,学 生应积极参与课堂讨论,主动思
考问题,提高自主学习能力。
实践应用
建议学生在课后多做练习题,通过 实践应用加深对整式乘法的理解, 提高运算能力和解决问题的能力。
归纳总结
鼓励学生对所学知识进行归纳总结 ,形成知识体系,以便更好地掌握 整式乘法的核心概念和运算规则。
小。
整式乘法的技巧与
03
注意事项
乘法公式的运用
01
02
03
平方差公式
$(a+b)(a-b) = a^2 b^2$,可用于简化整式 乘法。
完全平方公式
$(a+b)^2 = a^2 + 2ab + b^2$,可用于展开整 式和简化整式乘法。
平方差公式
$(a-b)^2 = a^2 - 2ab + b^2$,可用于展开整式 和简化整式乘法。
《整式及其运算 》课件
![《整式及其运算 》课件](https://img.taocdn.com/s3/m/f5c32216302b3169a45177232f60ddccda38e60f.png)
《整式及其运算》ppt课件
目
CONTENCT
录
• 整式的概念 • 整式的乘法 • 整式的除法 • 整式的混合运算 • 整式的简化 • 整式
02
01
03
整式是由常数、变量、加、减、乘、乘方等基本运算 组成的代数式。 整式中不含除法运算或开方运算。
整式可以看作是多项式的特殊情况。
多项式乘多项式
总结词
分别相乘,合并同类项
详细描述
多项式与多项式相乘时,需要将每个多项式的每一项分别相乘,然后合并同类项 。例如,$(x^2 + x) times (x + 1) = x^3 + x^2 + x^2 + x = x^3 + 2x^2 + x$。
乘法公式
总结词
利用公式简化计算
详细描述
整式可以用来解决实际问题,例如计 算路程、时间、速度等,有助于解决 实际问题。
THANK YOU
感谢聆听
整式的分类
单项式
只包含一个项的整式,例如:5x 、6y等。
多项式
包含多个项的整式,例如:x^2 3x + 2、xy - 2y等。
整式的加减法
01
同类项是指具有相同未知数的项 ,例如:x^2和3x^2是同类项。
02
合并同类项是指将它们的系数相 加减,未知数保持不变,例如: x^2 + 3x^2 = 4x^2。
在几何中的应用
整式在几何中也有着广泛的应用,例如在平面几何和立体几何中 ,整式可以用来表示长度、面积、体积等几何量。
整式可以用来解决几何问题,例如求圆的周长、面积等,有助于 解决实际问题。
在日常生活中的应用
整式在日常生活中也有着广泛的应用 ,例如在物理学中,整式可以用来表 示物理量之间的关系和变化规律。
目
CONTENCT
录
• 整式的概念 • 整式的乘法 • 整式的除法 • 整式的混合运算 • 整式的简化 • 整式
02
01
03
整式是由常数、变量、加、减、乘、乘方等基本运算 组成的代数式。 整式中不含除法运算或开方运算。
整式可以看作是多项式的特殊情况。
多项式乘多项式
总结词
分别相乘,合并同类项
详细描述
多项式与多项式相乘时,需要将每个多项式的每一项分别相乘,然后合并同类项 。例如,$(x^2 + x) times (x + 1) = x^3 + x^2 + x^2 + x = x^3 + 2x^2 + x$。
乘法公式
总结词
利用公式简化计算
详细描述
整式可以用来解决实际问题,例如计 算路程、时间、速度等,有助于解决 实际问题。
THANK YOU
感谢聆听
整式的分类
单项式
只包含一个项的整式,例如:5x 、6y等。
多项式
包含多个项的整式,例如:x^2 3x + 2、xy - 2y等。
整式的加减法
01
同类项是指具有相同未知数的项 ,例如:x^2和3x^2是同类项。
02
合并同类项是指将它们的系数相 加减,未知数保持不变,例如: x^2 + 3x^2 = 4x^2。
在几何中的应用
整式在几何中也有着广泛的应用,例如在平面几何和立体几何中 ,整式可以用来表示长度、面积、体积等几何量。
整式可以用来解决几何问题,例如求圆的周长、面积等,有助于 解决实际问题。
在日常生活中的应用
整式在日常生活中也有着广泛的应用 ,例如在物理学中,整式可以用来表 示物理量之间的关系和变化规律。
《整式运算复习》课件
![《整式运算复习》课件](https://img.taocdn.com/s3/m/cd84ba2c793e0912a21614791711cc7931b778a4.png)
《整式运算复习》ppt 课件
目录
• 整式运算的回顾 • 整式运算的进阶知识 • 整式运算的应用 • 整式运算的常见错误与纠正 • 习题与解答
整式运算的回顾
01
整式的定义与表示
总结词:理解整式的定义和表示方法
整式是由数字、字母通过有限次四则运算得到的代数式。
整式可以表示为 $ax^n + bx^{n-1} + cx^{n-2} + ldots + e$ 的形式, 其中 $a, b, c, ldots, e$ 是常数,$x$ 是字母,$n$ 是非负整数。
进阶习题
进阶习题1
计算(2x^2y - xy^2 frac{1}{3}x^3) + (3xy^2 frac{2}{3}x^3 - 4x^2y)的结果
。
进阶习题2
化简整式:2x^2 - 5x + 3 x^2 + 6x - 4。
进阶习题3
计算整式的乘积:(2x + 3y)(3x + 2y)。
进阶习题4
有按照四则运算法则进行。
02 03
详细描述
在进行整式运算时,应遵循先乘除后加减的原则,同时需要注意括号内 的内容优先进行计算。如果运算顺序出现错误,会导致计算结果不正确 。
纠正方法
在运算过程中,应先进行乘法和除法运算,再进行加法和减法运算,并 注意括号内的内容优先计算。对于复杂的表达式,可以使用括号来明确 运算的顺序。
计算整式的除法:(x^4 - 1)/(x - 1)。
综合习题
综合习题1
求整式2x^2 - 5x + 7的最小值。
综合习题3
求整式(x + 1)^2 - x(x - 7)的值,其中x = 5 。
目录
• 整式运算的回顾 • 整式运算的进阶知识 • 整式运算的应用 • 整式运算的常见错误与纠正 • 习题与解答
整式运算的回顾
01
整式的定义与表示
总结词:理解整式的定义和表示方法
整式是由数字、字母通过有限次四则运算得到的代数式。
整式可以表示为 $ax^n + bx^{n-1} + cx^{n-2} + ldots + e$ 的形式, 其中 $a, b, c, ldots, e$ 是常数,$x$ 是字母,$n$ 是非负整数。
进阶习题
进阶习题1
计算(2x^2y - xy^2 frac{1}{3}x^3) + (3xy^2 frac{2}{3}x^3 - 4x^2y)的结果
。
进阶习题2
化简整式:2x^2 - 5x + 3 x^2 + 6x - 4。
进阶习题3
计算整式的乘积:(2x + 3y)(3x + 2y)。
进阶习题4
有按照四则运算法则进行。
02 03
详细描述
在进行整式运算时,应遵循先乘除后加减的原则,同时需要注意括号内 的内容优先进行计算。如果运算顺序出现错误,会导致计算结果不正确 。
纠正方法
在运算过程中,应先进行乘法和除法运算,再进行加法和减法运算,并 注意括号内的内容优先计算。对于复杂的表达式,可以使用括号来明确 运算的顺序。
计算整式的除法:(x^4 - 1)/(x - 1)。
综合习题
综合习题1
求整式2x^2 - 5x + 7的最小值。
综合习题3
求整式(x + 1)^2 - x(x - 7)的值,其中x = 5 。
整式的加减总复习课件ppt_图文
![整式的加减总复习课件ppt_图文](https://img.taocdn.com/s3/m/dbbac8df0975f46527d3e166.png)
a
6、温度由toc下降5oc后是(t-5)oc。
7、买一个篮球需要x元,买一个排球需 要y 元买一 个足球需要z元,买3个篮球、 5个排球、2个足球共需要(3x+5y+2z)元。 8、如图三角尺的面积为 1 ab r 2 ;
2
知识结构:
整式的加减
整式的概念 整式的计算
单项式 多项式
系数
次数 项,项数,常数项,最高 次项
2,注意外面有系数的,各项都要乘以那个系数;
多项式
定义:几个____单__项__式__的. 和
项: 组成多项式中的________单__项__式_. 有几项,就叫做_________几. 项式
常数项:多项式中_______不__含__字_母__的_. 项 多项式的次数:____多__项_式__中__次__数__最_高__的__项__的__次_.数。
1.当子分母中出现字母时不是单项式。
3.圆周率π是常数,不要看成字母。 4.当单项式的系数是带分数时,通常写成假分数。 5.单项式的系数应包括它前面的性质符号。 6.单项式次数是指所有字母的次数的和,与数字的次数没有关系。
7.单独的数字不含字母, 规定它的次数是零次.
2
点 以拨保:证结最果后中的结有果m, 1最2 m简, 它.正们确是的同写类法项是,(应3 m合并5).
2
1,同类项的判定与合并同类项的法则: 例1 判断下列各式是否是同类项?
(1)2a 2b3与2x 2 y 3 (2) 102与22 (3)2x 2 y 3与3 y 2 x 3 (4)2x 2 y与 3 yx 2
次数
同类项与合并同类项 去括号 化简求值
用字母来表示生活中的量
单项式: 我要提醒: