山东省青岛实验初级中学数学有理数综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)
1.阅读下面的材料:
如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.
请用上面的知识解答下面的问题:
如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.
(1)请你在数轴上表示出A.B.C三点的位置:
(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;
(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,
试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.
【答案】(1)解:如图所示:
(2)5;﹣5或3
(3)﹣1+x
(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:
根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,
∴CA﹣AB=(5+3t)﹣(2+3t)=3,
∴CA﹣AB的值不会随着t的变化而变化
【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);
设D表示的数为a,
∵AD=4,
∴|﹣1﹣a|=4,
解得:a=﹣5或3,
∴点D表示的数为﹣5或3;
故答案为5,﹣5或3;
( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;
故答案为﹣1+x;
【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.
2.已知数轴上有A,B,C三个点,对应的数分别为﹣36,﹣12,12;动点P从A出发,以每秒1个单位的速度向终点C移动,设运动时间为t秒
(1)若点P到A点的距离是到点B距离的2倍,求点P的对应数;
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q 两点之间的距离为4?请说明理由.
【答案】(1)解:当P在A、B之间,PA+PB=AB,因为点P到A点的距离是到点B距离的2倍,所以PA=2PB,
故2PB+PB=AB,
代数可得PB=8,
故P点对应数为﹣12﹣8=﹣20;
当P在B、C之间,PA﹣PB=AB,
所以2PB﹣PB=AB,
故PB=AB=24,
故P点对应数为﹣12+24=12,与点C重合.
(2)解:分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度.PA﹣QA=4,设时间为t1, AB+t1×1﹣3t1=4,故24+t1×1﹣3t1=4,则t1=10;
第二种情况:当Q超过P时,两点相距4个单位长度.QA﹣PA=4,设时间为t2,
3t2﹣(t2+AB)=4,
故3t2﹣(t2+24)=4,
则t2=14;
第三种情况:当Q从C点返回未和P相遇时,两点相距4个单位长度.设时间为t3,
3t3+t3+4+AB=2AC,
故3t3+t3+4+24=2×48,
则t3=17;
第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.设时间为t4,
3t4+t4+AB=2AC+4,
故3t4+t4+24=2×48+4,
则t4=19.
【解析】【分析】(1)P从A运动到C,存在两种情况:1.P在A、B之间2.P在B、C之间,后计算发现此点与C重合;(2)分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度. 第二种情况:当Q超过P时,两点相距4个单位长度. 第三种情况:当Q 从C点返回未和P相遇时,两点相距4个单位长度,第四种情况:当Q从C点返回和P相
遇后,两点相距4个单位长度.
3.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为
.
[问题情境]
已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).
[综合运用]
(1)运动开始前,A、B两点的距离为________;线段AB的中点M所表示的数________.
(2)点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;(用含t的代数式表示)
(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)
【答案】(1)18;-1
(2)﹣10+3t;8﹣2t
(3)解:设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,
解得x= ,
﹣10+3x= .
答:A、B两点经过秒会相遇,相遇点所表示的数是;
(4)解:由题意得, =0,
解得t=2,
答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒
个单位长度.
故答案为18,﹣1;﹣10+3t,8﹣2t.
【解析】【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB
的中点M所表示的数为 =﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;
【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线
段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中点表示的数为0列出方程,解方程即可.
4.若有理数在数轴上的点位置如图所示:
(1)判断代数式的符号;
(2)化简:
【答案】(1)解:因为
所以
(2)解:因为
所以
原式
.
【解析】【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.
5.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .
(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.
(2)若点A到原点的距离为3,B为AC的中点.
①用b的代数式表示c;
②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.
【答案】(1)解:∵a=﹣2,b=4,c=8,
∴AB=6,BC=4,
∵D为AB中点,F为BC中点,
∴DB=3,BF=2,
∴DF=5
(2)解:①∵点A到原点的距离为3且a<0,
∴a=﹣3,
∵点B到点A,C的距离相等,
∴c-b=b-a,
∵c﹣b=b﹣a,a=﹣3,
∴c=2b+3,
答:b、c之间的数量关系为c=2b+3.
②依题意,得x﹣c<0,x-a>0,
∴|x﹣c|=c﹣x,|x-a|=x-a,
∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,
∵c=2b+3,
∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,
∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,
∴3b﹣3=0,
∴b=1.
答:b的值为1
【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;
②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值.
6.阅读理解:
若A,B,C为数轴上的三点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点。
例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点,又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点。
知识运用:
(1)如图2,M,N为数轴上的两点,点M所表示的数为-2,点N所表示的数为4.
①在点M和点N中间,数________所表示的点是【M,N】的好点;
②在数轴上,数________和数________所表示的点都是【N,M】的好点。
(2)如图3,A,B为数轴上的两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以每秒4个单位长度的速度向左运动,到达点A时停止,则经过几秒后,P,A和B中恰有一个点为其余两点的好点?
【答案】(1)2;0;-8
(2)解:由题意设PB=4t,AB=40+20=60,则PA=60-4t,
点P走完所用的时间为60÷4=15(秒)
分四种情况:
①当PA=2PB时,即2×4t=60-4t,t=5,P是【A,B】的好点;
②当PB=2PA时,即4t=2(60-4t),t=10,P是【B,A】的好点;
③当AB=2PB时,即60=2×4t,t=7.5,B是【A,P】的好点;
④当AB=2AP时,即60=2(60-4t),t=7.5,A是【B,P】的好点,
即当经过5秒或7.5秒或10秒时,点P,A和B中恰有一个点为其余两点的好点。
【解析】【解答】解:(1)①设设所求的数为x,由题意得:
x-(-2)=2(4-x)
解之:x=2;
②在数轴上,数0和数-8所表示的点都是【N,M】的好点。
故答案为:2,0,-8
【分析】(1)①设所求的数为x,再根据好点定义,列出关于x的方程,解方程求出x 的值;②根据好点的定义可以得到结论。
(2)由已知条件用含t的代数式表示出PB,AB,PA的长,再求出点P走完所用的时间,然后分情况讨论:①当PA=2PB时;②当PB=2PA时;③当AB=2PB时;④当AB=2AP 时,由此分别建立关于t的方程,解方程求出t的值即可。
7.如图,点A从原点出发沿数轴向左运动,同时点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒)
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上点A时,C点立即停止运动,若C点一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
【答案】(1)解:设点A的速度为每秒x个单位长度,则点B的速度为每秒4x单位长度依题意得3x+3×4x=15
解之得x=1
所以点A的速度为每秒1个单位长度,点B的速度为每秒4单位长度
如图,
(2)解:设y秒时原点恰好在A、B两点的中间,依题意得
3+y=12-4y
解之得y=1.8
所以A、B两点运动1.8秒时,原点就在点A、点B的中间
(3)解:设点B追上点A的时间为z秒,依题意得
4z=15+z
解之得z=5
所以C行驶的路程为:5×20=100单位长度。
【解析】【分析】(1)根据两点的运动速度,设点A的速度为每秒x个单位长度,则点B 的速度为每秒4x单位长度,再根据两点之间相距15个单位长度,建立关于x的方程,解
方程求出x的值即可。
(2)由题意设y秒时原点恰好在A、B两点的中间,由此建立关于y的方程,解方程求出y的值。
(3)设点B追上点A的时间为z秒,根据已知条件建立关于z的方程,解方程求出z的值,然后求出C行驶的路程即可。
8.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.
(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;
(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?
(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【答案】(1)1
(2)解:设点P运动x秒时,在点C处追上点R(如图)
则:AC=6x BC=4x AB=10
∵AC-BC=AB
∴ 6x-4x=10
解得,x=5
∴点P运动5秒时,追上点R
(3)解:线段MN的长度不发生变化,理由如下:
分两种情况:
点P在A、B之间运动时:
MN=MP+NP=AP+BP=(AP+BP)=AB=5
点P运动到点B左侧时:
MN=MP-NP=AP-BP=(AP-BP)=AB=5
综上所述,线段MN的长度不发生变化,其长度为5.
【解析】【解答】解:(1)∵A,B表示的数分别为6,-4,
∴AB=10,
∵PA=PB,
∴点P表示的数是1,
【分析】(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.
9.观察下列等式,,,
以上三个等式两边分别相加得:
(1)猜想并写出: ________
(2)计算: ________
(3)探究并计算:
【答案】(1)
(2)
(3)原式=.
【解析】【解答】(1)
故答案为:.
(2)
故答案为:.
【分析】(1)分子为1,分母为相邻2个数的积,结果等于分子为1,分母分别为2个因数的分数的差;
(2)利用(1)规律进行拆项,化简后只剩首位两个数的差,求出结果即可;
(3)根据(1)规律进行变形后然后乘以,求出结果即可.
10.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。
(1)PA=________,PC=________(用含t的代数式表示)
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,
①当P、Q两点运动停止时,求点P和点Q的距离;
②求当t为何值时P、Q两点恰好在途中相遇.
【答案】(1)t;36-t
(2)解:①由数轴可知:BC=10-(﹣10)=20个单位长度,
∴P从B运动到C的时间为:20÷1=20s
∵当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动
∴当P从B运动到C时,Q的运动时间也是20s
∴Q的运动路程为:20×3=60个单位长度,
∵此时P在C处
∴QP=QC=60-AC=60-36=24.
②由数轴可知:AB=(﹣10)-(﹣26)=16个单位长度,
∵当点P运动到B点时,点Q从A点出发,
∴Q比P晚出发了:16÷1=16s
故Q的运动时间为(t-16)s,
由图可知:P和Q运动总路程等于两个AC的长度
∴t+3(t-16)=2×36
解得:t=30
答:当t等于30时,P、Q两点恰好在途中相遇
【解析】【解答】解:(1)由数轴可知:AC=10-(﹣26)=36个单位长度
∵动点P从A出发,以每秒1个单位的速度向终点C移动
PA=t,PC=36-t;
【分析】(1)利用数轴上两点的距离公式求出AC的长度,根据路程=速度×时间,用t表示出AP,再利用PC=AC-AP即可;(2)①先利用数轴上两点的距离公式求出BC的长度,再利用时间=路程÷速度算出P从B运动到C的时间,算出Q的运动路程,最后减去AC即可;②先利用AB的长度算出Q比P晚出发的时间,再利用P和Q运动总路程等于两个AC的长度列方程即可.
11.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.
(1)求时,求点P和点Q表示的有理数;
(2)求点P与点Q第一次重合时的t值;
(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?【答案】(1)解:当时,
点P表示的数为:,
点Q表示的数为:
(2)解:
答:点P与点Q第一次重合时的t值为4
(3)解:点P和点Q第一相遇前,
,
解得,;
当点P和点Q相遇后,点P到达点B前,
,
解得,;
当点P从点B向点A运动时,
,
解得,;
由上可得,当t的值为3,5,9时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.
【解析】【分析】(1)根据题意可以得到当时,点P和点Q表示的有理数;(2)根据题意可以列出相遇关于t的方程,从而可以求得t的值;(3)根据题意可以列出相应的方程,从而可以解答本题.
12.小红和小明在研究绝对值的问题时,碰到了下面的问题:
“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.
小红说:“如果去掉绝对值问题就变得简单了.”
小明说:“利用数轴可以解决这个问题.”
他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,式子|x+1|+|x﹣2|的最小值为3.
请你根据他们的解题解决下面的问题:
(1)当式子|x﹣2|+|x﹣4|取最小值时,相应的x的取值范围是________,最小值是________.
(2)已知y=|x+8|﹣|x-2|,求相应的x的取值范围及y的最大值.写出解答过程.
【答案】(1);2
(2)解:当x>2时y=x+8﹣(x-2)=10,
当−8≤x≤2时,y=x+8+(x-2)=2x+6,当x=2时,y最大=10;
当x<−8,时y=-x-8+(x-2)=-10,
综上所以x≥2时,y有最大值y=10.
【解析】【解答】(1)当x<2时,原式=6−2x,此时6−2x>2;当2≤x≤4时,原式=2;当x>4时,原式=2x−6>2,
∴当2≤x≤4时,|x−2|+|x−4|取最小值时,最小值为2.
故答案为:2≤x≤4;2.
【分析】(1)根据线段上的点与线段的端点的距离最小,可得答案;(2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.。