河南省濮阳市2019-2020学年中考第二次大联考数学试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省濮阳市2019-2020学年中考第二次大联考数学试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下图是某几何体的三视图,则这个几何体是( )
A .棱柱
B .圆柱
C .棱锥
D .圆锥
2.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( ) A .0.8x ﹣10=90
B .0.08x ﹣10=90
C .90﹣0.8x=10
D .x ﹣0.8x ﹣10=90
3.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯
B .62.110⨯
C .52110⨯
D .72.110⨯
4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( ) A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105
5.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A .8
B .9
C .10
D .11
6.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )
A .∠2=20°
B .∠2=30°
C .∠2=45°
D .∠2=50°
7.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y (km )与客车行驶时间x (h )间的函数关系如图,下列信息: (1)出租车的速度为100千米/时; (2)客车的速度为60千米/时;
(3)两车相遇时,客车行驶了3.75小时; (4)相遇时,出租车离甲地的路程为225千米.
其中正确的个数有()
A.1个B.2个C.3个D.4个
8.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=k
x
(x<0)
的图象经过点D、E.若△BDE的面积为1,则k的值是()
A.﹣8 B.﹣4 C.4 D.8
9.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0
(a≠0)有一个根为﹣1
a
;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则
y1>y1.其中正确的结论有()
A.1个B.3个C.4个D.5个10.2
(3)
-的化简结果为()
A.3 B.3-C.3±D.9 11.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()
A.B.C.D.
12.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()
A.63B.63C.6 D.4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:
则,y2=_____,第n次的运算结果y n=_____.(用含字母x和n的代数式表示).
14.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.
15.如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将△OAB缩小得到△OA′B′,若△OAB与△OA′B′的相似比为2:1,则点B(3,﹣2)的对应点B′的坐标为_____.
16.关于x的分式方程
721
5
11
x m
x x
-
+=
--
有增根,则m的值为__________.
17.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.
问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x 斗,买普通酒y 斗,则可列方程组为______________. 18.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP uuu r 可以用点P 的坐标表示为OP uuu r
=(m ,n ),
已知:OA u u u r =(x 1,y 1),OB uuu r =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r 互相垂直,下列四组向量:
①OC u u u r =(2,1),OD uuu r =(﹣1,2);②OE uuu r =(cos30°,tan45°),OF uuu r =(﹣1,sin60°);③OG u u u r =(3﹣
2,﹣2)
,OH u u u r
=(3+2,1
2
);④OC u u u r =(π0,2),u u u r ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算:﹣22﹣12+|1﹣4sin60°
| 20.(6分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下
如图(1)∠DAB=90°,求证:a 2+b 2=c 2
证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-a S 四边形ADCB =211
22ADC ABC S S b ab +=-+V V S 四边形ADCB =211
()22
ADB BCD S S c a b a +=+-V V ∴
221111
()2222
b ab
c a b a +=+-化简得:a 2+b 2=c 2 请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a 2+b 2=c 2 21.(6分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?
22.(8分)如图,△ABC 是⊙O 的内接三角形,点D 在»BC 上,点E 在弦AB 上(E 不与A 重合),且
四边形BDCE 为菱形. (1)求证:AC=CE ;
(2)求证:BC 2﹣AC 2=AB•AC ;
(1)已知⊙O的半径为1.
①若AB
AC
=
5
3
,求BC的长;
②当AB
AC
为何值时,AB•AC的值最大?
23.(8分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.
(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;
(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);
(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.
24.(10分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:
(1)∠C=°;
(2)此时刻船与B港口之间的距离CB的长(结果保留根号).
25.(10分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.
(1)若点A′落在矩形的对角线OB上时,OA′的长=;
(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;
(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).
26.(12分)解不等式组,并将解集在数轴上表示出来.
273(1)1
5(4)2
x x x x -<-⎧⎪
⎨-+≥⎪⎩①② 27.(12分)如图,一次函数y 1=kx +b(k≠0)和反比例函数y 2=
m
x
(m≠0)的图象交于点A(-1,6),B(a ,-2).求一次函数与反比例函数的解析式;根据图象直接写出y 1>y 2 时,x 的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【详解】
由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥. 故选D . 【点睛】
本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识. 2.A 【解析】
试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,
可得:0.8x﹣10=90
考点:由实际问题抽象出一元一次方程.
3.B
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】210万=2100000,
2100000=2.1×106,
故选B.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.A
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2180000的小数点向左移动6位得到2.18,
所以2180000用科学记数法表示为2.18×106,
故选A.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.A
【解析】
分析:根据多边形的内角和公式及外角的特征计算.
详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.
点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.6.D
【解析】
【分析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】
∵直线EF ∥GH ,
∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 7.D 【解析】 【分析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题. 【详解】 由图象可得,
出租车的速度为:600÷
6=100千米/时,故(1)正确, 客车的速度为:600÷
10=60千米/时,故(2)正确, 两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确, 相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确, 故选D . 【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 8.B 【解析】 【分析】
根据反比例函数的图象和性质结合矩形和三角形面积解答. 【详解】
解:作EH OA H 于⊥,连接AE .
22
ABE BDE BD AD S S =∴==V V Q
∵四边形AHEB ,四边形ECOH 都是矩形,BE =EC , ∴ABEH ECOH S S 矩形矩形==24ABE S ∆=
||4,04
k k k ∴=<∴=-Q 故选B . 【点睛】
此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键. 9.D 【解析】 【分析】
根据抛物线的图象与系数的关系即可求出答案. 【详解】
解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2b
a
->0,∴b >0,∴abc >0,故①正确;
令x=3,y >0,∴9a+3b+c >0,故②正确; ∵OA=OC <1,∴c >﹣1,故③正确; ∵对称轴为直线x=1,∴﹣
2b
a
=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41
a a
+-,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1
a
-,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧, ∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,
即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确. 故选D . 【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型. 10.A 【解析】
3==.故选A . 考点:二次根式的化简 11.A
【解析】
试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
故选A.
【考点】简单组合体的三视图.
12.C
【解析】
【分析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.
【详解】
解:∵BE平分∠ABC,
∴∠CBE=∠ABE,
∵ED垂直平分AB于D,
∴EA=EB,
∴∠A=∠ABE,
∴∠CBE=30°,
∴BE=2EC,即AE=2EC,
而AE+EC=AC=9,
∴AE=1.
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.
4
31
x
x+
2
(21)1
n
n
x
x
-+
【解析】
【分析】
根据题目中的程序可以分别计算出y2和y n,从而可以解答本题.【详解】
∵y1=
2
1
x
x+
,∴y2=1
1
2
1
y
y+=
2
2
1
2
1
1
x
x
x
x
⨯
+
+
+
=
4
31
x
x+
,y3=
8
71
x
x+
,……
y n=
2
211
n
n
x
x
-+
()
.
故答案为:
42
31211
n
n
x x
x x
+-+
,
()
.
【点睛】
本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和y n.
14.2 3
【解析】
【分析】
画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.【详解】
解:画树状图如下:
由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,
所以两次摸到的球上数之和是负数的概率为62 93 =,
故答案为:2
3
.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
15.(-3
2
,1)
【解析】
【分析】
根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k进行解答.
【详解】
解:∵以原点O为位似中心,相似比为:2:1,将△OAB缩小为△OA′B′,点B(3,−2)
则点B(3,−2)的对应点B′的坐标为:(-3
2
,1),
故答案为(-3
2
,1).
【点睛】
本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.
【解析】
去分母得:7x+5(x-1)=2m-1,
因为分式方程有增根,所以x-1=0,所以x=1,
把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,
解得:m=1,
故答案为1.
17.2501030x y x y +=⎧⎨+=⎩
【解析】
【分析】
设买美酒x 斗,买普通酒y 斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.
【详解】
依题意得:2501030x y x y +=⎧⎨+=⎩
. 故答案为2501030x y x y +=⎧⎨
+=⎩. 【点睛】
考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.
18.①③④
【解析】
分析:根据两个向量垂直的判定方法一一判断即可;
详解:①∵2×(−1)+1×2=0,
∴OC u u u v 与OD u u u v 垂直;
②∵cos301tan45sin60⨯+⋅==o o o ∴OE uuu v 与OF u u u v 不垂直.
③∵()1202+-⨯=, ∴OG u u u v 与OH u u u v 垂直. ④∵()02210π⨯+⨯-=,
∴OM u u u u v 与ON u u u v
垂直.
故答案为:①③④.
点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-1
【解析】
【分析】
直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】
解:原式=
3 42341
2
--+⨯-
=423231
--+-
=﹣1.
【点睛】
此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.
20.见解析.
【解析】
【分析】
首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
【详解】
证明:连结BD,过点B作DE边上的高BF,则BF=b-a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=1
2
ab+
1
2
b1+
1
2
ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=1
2
ab+
1
2
c1+
1
2
a(b-a),
∴1
2
ab+
1
2
b1+
1
2
ab=
1
2
ab+
1
2
c1+
1
2
a(b-a),
∴a1+b1=c1.
此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
21.120
【解析】
【分析】
设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.
【详解】
解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,
由题意得,×2=,
解得:x=120,
经检验:x=120是原分式方程的解,且符合题意.
答:第一批水果每件进价为120元.
【点睛】
本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
22.(1)证明见解析;(2)证明见解析;(1)①23 2
【解析】
分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,
证△BEF∽△BGA得BE BG
BF BA
=,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代
入可得;
(1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知6k,连接ED交BC于点M,Rt△DMC中
由DC=AC=1k、MC=1
2
6k求得22
CD CM
-3,可知3k,在
Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
详解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴BE BG
BF BA
=,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(1)设AB=5k、AC=1k,
∵BC2﹣AC2=AB•AC,
∴6k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=1k,MC=1
2
6k,
∴223
CD CM k
-=,
∴OM=OD﹣DM=13k,
在Rt△COM中,由OM2+MC2=OC2得(13)2+6k)2=12,
解得:k=
3
3
或k=0(舍),
②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,
AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,
由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣3
4
)2+
81
4
,
∴当d=3
4
,即OM=
3
4
时,AB•AC最大,最大值为
81
4
,
∴DC2=27
2
,
∴AC=DC=36
2
,
∴AB=96
4
,此时
3
2
AB
AC
.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
23.(1);(2)5π;(3)PB的值为或.
【解析】
【分析】
(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;
(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;
(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q 在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.
【详解】
解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.
∴∠DNM=∠AMN=90°,
∵AD∥BC,
∴∠DAM=∠AMN=∠DNM=90°,
∴四边形AMND是矩形,
∴AM=DN,
∵AB=CD=13,
∴Rt△ABM≌Rt△DCN,
∴BM=CN,
∵AD=11,BC=21,
∴BM=CN=5,
∴AM==12,
在Rt△ABM中,sinB==.
(2)如图2中,连接AC.
在Rt△ACM中,AC===20,∵PB=PA,BE=EC,
∴PE=AC=10,
∴的长==5π.
(3)如图3中,当点Q落在直线AB上时,
∵△EPB∽△AMB,
∴==,
∴==,
∴PB=.
如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.
设PB=x,则AP=13﹣x.
∵AD∥BC,
∴∠B=∠HAP,
∴PG=x,PH=(13﹣x),
∴BG=x,
∵△PGE≌△QHP,
∴EG=PH,
∴﹣x=(13﹣x),
∴BP=.
综上所述,满足条件的PB的值为或.
【点睛】
本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.
24.(1)60;(2)26
【解析】
(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;
(2)作AD⊥BC交BC于点D,解Rt△ABD,得出2,解Rt△ACD,得出6,根据BC=BD+CD即可求解.
解:(1)如图所示,
∵∠EAB=30°,AE∥BF,
∴∠FBA=30°,
又∠FBC=75°,
∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.
故答案为60;
(2)如图,作AD⊥BC于D,
在Rt△ABD中,
∵∠ABD=45°,AB=60,
∴AD=BD=302.
在Rt△ACD中,
∵∠C=60°,AD=302,
∴tanC=AD CD
,
∴CD=302
3
=106,
∴BC=BD+CD=302+106.
答:该船与B港口之间的距离CB的长为(302+106)海里.
25.(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).
【解析】
分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;
(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;
(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.
详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.故答案为1;
(Ⅱ)如图2,连接AA′.
∵点A′落在线段AB的中垂线上,∴BA=AA′.
∵△BDA′是由△BDA折叠得到的,
∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,
∴AB=A′B=AA′,∴△BAA′是等边三角形,
∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,
∴AD=ABtan∠ABD=1tan30°=2,
∴OD=OA﹣AD=8﹣2,
∴点D(8﹣2,0);
(Ⅲ)①如图3,当点D在OA上时.
由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,
由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,
则=,即=,
解得:DN=3﹣5,
则OD=ON+DN=4+3﹣5=3﹣1,
∴D(3﹣1,0);
②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,
则MC=BN==2,∴MO=MC+OC=2+1,
由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,
则=,即=,
解得:ME=,则OE=MO﹣ME=1+.
∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,
∴△DOE∽△A′ME,
∴=,即=,
解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).
综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).
点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.
26.原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.
【解析】
分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案
详解:解不等式①,得x >﹣4,
解不等式②,得x≤1,
把不等式①②的解集在数轴上表示如图
,
原不等式组的解集为﹣4<x≤1.
点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.
27.(1)y 1=-2x +4,y 2=-
6x ;(2)x<-1或0<x<1. 【解析】
【分析】
(1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式; (2)找出直线在一次函数图形的上方的自变量x 的取值即可.
【详解】
解:(1)把点A (﹣1,6)代入反比例函数2m y x =
(m≠0)得:m=﹣1×6=﹣6, ∴26y x
=-. 将B (a ,﹣2)代入26y x =-得:62a -=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b 得:632
k b k b -+=⎧⎨+=-⎩,
∴
2
4
k
b
=-
⎧
⎨
=
⎩
,
∴
124
y x
=-+;
(2)由函数图象可得:x<﹣1或0<x<1.
【点睛】
本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.。