上海六年级第二学期数学知识点梳理(2)(K12教育文档)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海六年级第二学期数学知识点梳理(2)(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(上海六年级第二学期数学知识点梳理(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为上海六年级第二学期数学知识点梳理(2)(word版可编辑修改)的全部内容。

上海六年级第二学期数学知识点
1。

相反意义的量
收入与支出; 增加与减少; 上升与下降; 零上与零下; 高于海平面与低于海平面;前进与后退; 盈利与亏损; ……任意规定一方为正,则另一方为负.
2.正数与负数
比0大的数叫做正数;⎧⎨⎩正整数正数正分数
在正数前面加上“一"号的数(小于零的数)叫做负数;⎧⎨⎩
负整数负数负分数 零既不是正数,也不是负数。

3。

有理数的概念
⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 ⎫⎬⎭
正数非负数零 4。

数轴的概念与画法
数轴是规定了原点、正方向和单位长度的直线;
数轴画法:一直线 + 三要素
5。

数轴的性质
数轴上表示的两个数,右边的数总比左边的数大;
正数都大于零,负数都小于零,正数大于一切负数。

6。

相反数
只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0。

正数的相反数是负数;负数的相反数是正数;零的相反数是它本身.
7.相反数的几何意义
数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。

8.绝对值的定义(几何意义)
在数轴上把表示数a 的点与原点的距离叫做数a 的绝对值,即||a .
||a 是一个非负数,即: ||0a ≥.
9。

绝对值的代数意义(即:求一个数的绝对值的法则)
一个正数的绝对值是它的本身,一个负数的绝对值是它的相反数,0的绝对值是0。

(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩
一对互为相反数的两数的绝对值相等,而绝对值相等的两个数可能相等也可能互为相反数; 求一个数的绝对值,应先判断这个数是正数、负数还是零,再根据绝对值的代数意义确定.
10。

有理数的大小比较
两个负数,绝对值大的反而小;
对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。

比较两个数的大小,还可以用“作差法”,即:
若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
11.有理数加法及加法法则
把两个有理数合成一个有理数的运算,叫做有理数的加法。

分五种情况:①两个正数相加;②两个负数相加;③两个异号数相加;④有理数和零相加;⑤零和零相加.
有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得零;④一个数与零相加,仍得这个数。

注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。

12.有理数加法运算律
加法交换律:a b b a +=+; 加法结合律:()()a b c a b c ++=++
运算律有下列规律:①互为相反数的两数可以先相加;②符号相同的数可以相加;③分母相同的数可以先相加;④几个数相加能得到整数的可以先相加。

13。

有理数的减法法则及运算
法则:减去一个数,等于加上这个数的相反数.
注意:两个“变”字,①改变运算符号;②改变减数的性质符号(变为相反数),
牢记一个“不变”,被减数与减数的位置不变,即没有交换律。

14。

有理数乘法的意义
乘法是加法的特殊运算形式,它可以看作是多个相同的数相加运算的一种简便运算。

如: n 个a 相加等于n a ⨯
15.有理数的乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。

注意:①运算步骤:符号→绝对值相乘;②带分数要化成假分数
16.有理数乘法法则的推广
几个不为0的数相乘,积的符号由负因数的个数决定。

当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

几个数相乘,若其中有一个0,则积为零
17。

有理数的乘法运算律
①乘法交换律:ab ba =;
②乘法结合律:()()ab c a bc =;
③乘法对加法的分配律:().a b c ab ac +=+
18.倒数及求法
乘积是1的两个数叫做互为倒数.零无倒数,对于任意数(0)a a ≠,它的倒数为1a
;
非零整数a 的倒数为1a ;分数b a 的倒数是a b
;带分数化为假分数后再求倒数; 19.有理数除法的意义
已知两个因数的积c 与其中一个因数a ,求另一个因数b 的运算。

即:c b a
=
20.有理数的除法法则
除以一个数等于乘这个数的倒数,1(0)a b a b b ÷=⨯≠; 两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数都得零。

21.有理数的乘方
求相同因数的积的运算叫做乘方.乘方的结果叫幂。

n n a a a a a a ⋅⋅⋅
⋅=个,a 叫底数,n 叫做指数,n a 叫做幂。

有理数幂的符号法则:正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数;0的任何非零次幂都是0。

22。

有理数的混合运算
一个算式里含有加、减、乘、除、乘方五种运算中的两种或两种以上的运算称为有理数混合运算。

23.有理数的混合运算顺序
先乘方,再乘除,最后加减; 同级运算,从左到右依次进行; 如有括号先括号(小中大) 第一级运算:加和减;第二级运算:乘和除;第三级运算:乘方和开方
24。

科学记数法
一个数写成10n a ⨯的形式,其中1|a|<10,n ≤是正整数,这种记数方法叫做科学记数法. n 的值 = 原数的整数位数 - 1
25。

等式与方程
等式:用等号把两个值相等的量或式子连接起来的式子.
方程:含有未知数的等式.
26。

方程中的项、系数、次数等概念
①项:在方程中,被“+"“-”号隔开的每一部分(含这部分前面的“+”“-”号在内)称为一项
②未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母.
③项的次数:在一项中,所有未知数的指数和.
④常数项:不含未知数的项。

27.列方程的方法
列方程:为了求未知数,在未知数和已知数之间建立一种等量关系,就是列方程.
列方程步骤:设未知数,找等量关系,列方程.
28。

方程的解和解方程
使方程的左右两边相等的未知数的值叫做方程的解。

求方程的解的过程叫做解方程。

29.一元一次方程的概念
概念:在一个方程中,只含有一个未知数,且未知数的次数是一次的方程。

最简形式:(0)
ax b a
=≠
标准形式:0(0)
ax b a
+=≠
30.等式的基本性质
性质1:等式两边同时加上(或减去)同一个数或同一个代数式,所得结果仍是等式;
性质2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式.
另外性质:①对称性:a b
=
若则b=a;②传递性:a b b c a c
===
若且则(等量代换)
31。

利用等式的基本性质解一元一次方程
解方程:求方程的解的过程.
步骤:0(0)
ax b a ax b
+=≠→=-(等式性质1),
b
ax b x
a
=-→=-(等式性质2)
移项法则:方程中任何一项,在改变符号后,从方程的一边移到另一边,这种变形叫移项. 32。

列方程解应用题步骤
审题;设元;列方程;解方程;检验;作答。

33。

按比例分配问题
已知两个量之比为:a b,则设这两个量分别为ax bx
和.
34.利率问题
利息=本金×利率×期数
本利和=本金+利息=本金×(1+利率×期数)
利息税=利息×税率
税后利息=利息-利息税=利息×(1-税率)
税后本利和=本金+税后利息
35.折扣问题
利润额=成本价×利润率
售价=成本价+利润额
新售价=原售价×折扣
36。

行程问题
路程=速度×时间
相遇路程=速度和×相遇时间
追及路程=速度差×追及时间
37。

工程问题
工作效率×工作时间=1(工作总量)
38.不等式的概念
用不等号“〈”“>”“≤"“≥”“≠”表示不等关系的式子,叫做不等式。

39.常见的不等号及其含义
“≠”即“不等于”; “>”即:大于;“〈"即:小于;
“≤”即:小于或等于; “≥”即:大于或等于
不等式的基本性质1:.a b a m b m >⇒±>±
不等式的基本性质2:0;
a b a b m am bm m m
>>⇒>>且 不等式的基本性质3:0;a b a b m am bm m m ><⇒<<且 41.不等式的基本性质与等式的基本性质的关系
①相同点:不论是等式还是不等式,都可以在它的两边加上(或减去)同一个数(式子). ②不同点:等式在两边乘以(除以)同一个正数或同一个负数,等式成立;
不等式在两边乘以(除以)同一个正数,方向不变,乘以(除以)同一个负数时,方向一定要改变.
42。

不等式的解的定义
能使不等式成立的未知数的值,叫做不等式的解。

43。

不等式的解集的定义
一个含有未知数的不等式的解的全体叫做不等式的解集。

44。

解不等式
求不等式解集的过程叫做解不等式。

解不等式的依据:不等式的三条性质,特别是不等式的性质3,注意不等号方向的改变。

45。

如何用数轴表示不等式的解集
一是确定“界点”:解集包含“界点"则用实心圆点;反之,空心圆圈.
二是确定“方向":大于向右画,小于向左画。

46。

一元一次不等式组的概念
由几个含有同一个未知数的一次不等式组成的不等式组.
47。

一元一次不等式组的解集的概念
一元一次不等式组中各个不等式的解集的公共部分,叫这个一元一次不等式组的解集。

解集的公共部分通常用“数轴”来确定.
解集规律:大大取大;小小取小;大小小大中间找;大大小小是无解.
①求出不等式组中各个不等式的解集;②在数轴上表示各个不等式的解集;
③确定各个不等式解集的公共部分即这个不等式组的解集。

49。

一元一次不等式组的应用
与列方程解应用题类似,列不等式(组)解应用题,求出的通常是一个量的取值范围。

50.二元一次方程
含有两个未知数的一次方程叫做二元一次方程。

51.二元一次方程的解
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值。

记作:x a y b
=⎧⎨=⎩。

二元一次方程的解集:二元一次方程的解有无数个,二元一次方程的解的全体叫做~。

52。

二元一次方程组
方程组中含有两个未知数,且未知数的项的次数都是一次,这样的方程组叫做二元一次方程组。

标准形式:111222
a x
b y
c a x b y c +=⎧⎨+=⎩(其中12,a a 中至少有一个不为0,12,b b 中至少有一个不为0) 53。

二元一次方程组的解
在二元一次方程组,使每个方程都适合的解,叫做二元一次方程组的解。

检验一组数是否为二元一次方程组的解的方法:将这组数值分别代入方程组中每个方程,满足所有方程时,这组数值是此方程组的解,否则不是。

54。

用代入消元法解二元一次方程组
①从方程组中选一个系数较简单的方程,将这个方程中的某个未知数且另一个未知数的式子表示;
②将得到的式子代入另一个方程中,从而消去一个未知数,得到一元一次方程;
③解这个一元一次方程,求出一个未知数的值;
④求出另一个未知数的值.
55。

用加减消元法解二元一次方程组
把两个方程的两边分别加减消去一个未知数的方法,叫做加减消元法。

步骤:①确定要消去的元,并使该元的系数相等或者互为相反数;
②把两个方程的两边分别相加或相减,消去一个元,得到一个一元一次方程;
③解这个一元一次方程,求出一元的值;
④求出另一元的值。

56.三元一次方程组的解法
方程组中含有三个未知数,且含有未知数的项的次数都是一次的方程组叫三元一次方程组解法:类似二元一次方程组的解法。

57.用一次方程组解应用题的建模策略
①利用表格;②利用线形示意图;③利用圆形示意图;④利用柱状图。

详见解应用题专题。

58.线段大小的比较方法
①叠合法:比较两条线段AB、CD的长短,可把它们移到同一条直线上,使一个端点A和C重合,另一端点B和D落在直线上A和C的同侧。

若B与D重合,则AB=CD;若D在AB上,则AB>CD;若D在AB延长线上,则AB〈CD。

②度量法:分别量出每条线段的长度,再比较.
59.线段的性质
两点之间的所有连线中,线段最短。

60.两点之间的距离
联结两点的线段的长度叫做两点之间的距离。

61。

两条线段的和、差
两条线段可以相加(或相减),它们的和(或差)也是一条线段,其长度等于这两条线段的
和(或差)。

62。

线段的倍、分
线段的倍:na(1
n>为正整数,a是一条线段)就是求n条线段a相加所得和的意义.
na也可理解为:线段a的n倍。

线段的中点:将一条线段分成两条相等线段的点叫这条线段的中点.
63。

角的概念
角的定义:①有公共端点的两条射线组成的图形叫做角;(顶点,边)
②一条射线绕着其端点旋转到另一个位置所成的图形。

(始边,终边)
角的表示:,,,1
∠∠∠∠
AOB Oα
64.方位角
①方位角的正方向与地图中一样,
上北下南,左西右东;
②处在四个直角平分线上的方向,
分别称为:东南、东北、西南、西北方向;
③其他方向要用到“偏"字:北偏东α︒,
北偏西β︒,南偏东γ︒,南偏西δ︒。

65.角的大小比较方法
①度量法:用量角器量出角的度数来比较。

②叠合法:把一角放在另一个角上,使它们的顶点重合,并将其中一边也重合,并使两个角的另一边都放在这条边的同侧,就可以比较两个角的大小。

66.画相等的角
①度量法:①对中:将量角器的中心点与角的顶点重合;②对线:将量角器的零度刻线与角
的一边重合;③读数.
②尺规法:用直尺与圆规做图.
67.角的和、差、倍的画法
①度量法:
②尺规作图法:
68.角平分线的概念及画法
概念:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

画法:①用量角器画图:量→算→画;②用直尺与圆规作图
69。

余角、补角
余角:若两个角的度数的和是90︒,这两个角互为余角,简称互余。

其中一个角是另一角的余角;
补角:若两个角的度数和是180︒,这两个角互补。

其中一个角是另一个角的补角.
性质:同角(或等角)的余角相等;同角(或等角)的补角相等。

70.角的度量单位、角的换算及角的分类
角的度量单位:度、分、秒;
角的换算:160',1'60''
︒==,
11
1',1'''
6060
⎛⎫⎛⎫
=︒=
⎪ ⎪
⎝⎭⎝⎭

角的分类:小于90︒且大于0︒的角叫做锐角;等于90︒的角叫直角;大于90︒小于180︒的角叫做钝角。

71.长方体的元素及特征
元素:长方体六个面,十二条棱,八个顶点;
特征:①每个面都是长方形;
②十二条棱可分三组,每组中的四条棱长度相等;
③六个面分三组,每组中的两个面的形状和大小都相同。

72。

平面的概念及表示
平面是平的,无边无沿。

用一个平行四边形来表示。

平面的表示:平面ABCD;平面α;
73。

长方体的直观图画法
斜二侧画法:①画平行四边形ABCD,AB为长方体的长,AD为长方体宽的一半,45
∠=︒;
DAB
②过A、B画AB的垂线AE、BF,过C、D画CD的垂线CG、DH,使它们的长度等于长方体的高;
③顺次联结EFGH;④将被遮住的线段改为虚线。

74。

长方体中棱与棱的位置关系
①相交:若直线AB与CD在同一平面内,且有惟一公共点,则这两条直线相交;
②平行:若直线AB与CD在同一平面内,且没有公共点,则这两条直线平行;
③异面:若两直线AB与CD既不平行,也不相交,则这两条直线异面。

75.直线与平面垂直
直线PQ垂直于平面ABCD,记作:直线PQ⊥平面ABCD;
76。

直线与平面垂直的检验方法
①铅垂线:若铅垂线与直线紧贴,则直线与水平面垂直;
②三角尺:两把三角尺各有一条边紧贴平面且位置相交,另一条直角边都能紧贴细棒,则细棒垂直于平面;
③合面型折纸:如:将合面型折纸立于桌面,折痕紧贴细棒,则细棒垂直于桌面。

77.直线与平面平行
直线PQ平行于平面ABCD,记作:直线PQ//平面ABCD。

直线PQ与平面ABCD无公共点。

78。

直线与平面平行的检验方法
①长方形纸片:
②铅垂线:
79。

平面垂直平面
平面α垂直于平面β,记作:αβ

平面平面。

80。

平面与平面垂直的检验
①铅垂线;②合面型折纸;③三角尺。

检验要点:“铅垂线”、“折痕”、“三角尺的公共边”能否与另一个面紧贴。

81.平面与平面平行
平面α平行于平面β,记作:平面α//平面β;
82。

平面与平面平行的检验
①长方形纸片:把长方形纸片放在两块硬纸板之间,按交叉的方向放两次,使纸片的一边都紧贴一块硬纸板,再观察它的对边,若对边都能与另一块纸板紧贴,则这两块纸板平行。

②铅垂线法:找其中一个平面内找三个不共线的点检验.。

相关文档
最新文档