观紫镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

观紫镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()
A. B. C. D.
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:,
②−①,得3a+b=3④
①×3+③,得5a−2b=19⑤
由④⑤可知,选项D不符合题意,
故答案为:D.
【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。

2、(2分)若x2m-1-8>5是一元一次不等式,则m的值为()
A.0
B.1
C.2
D.3
【答案】B
【考点】一元一次不等式的定义
【解析】【解答】解:根据一元一次不等式的定义得:,故答案为:B.
【分析】一元一次不等式的定义:只含有一个未知数,未知数的最高次数是1,不等号的两边都是整式,且一次项的系数不为0的不等式。

根据定义可知2m-1=1,解方程即可求出m的值。

3、(2分)学校买来一批书籍,如图所示,故事书所对应的扇形的圆心角为()
A. 45°
B. 60°
C. 54°
D. 30°
【答案】C
【考点】扇形统计图
【解析】【解答】解:15÷(30+23+15+32)×360°=54°.
故答案为:C
【分析】计算故事书所占的百分比,然后乘以360°可得对应的圆心角的度数.
4、(2分)若m<0,则m的立方根是()
A.
B.-
C.±
D.
【答案】A
【考点】立方根及开立方
【解析】【解答】因为任何一个数都有一个立方根,所以无论m取何值,m的立方根都可以表示
故答案为:A
【分析】正数有一个正的立方根,零的立方根是零,负数有一个负的立方根,所以无论m为何值,m的立方根都可以表示为
5、(2分)若方程组中的x是y的2倍,则a等于()
A. ﹣9
B. 8
C. ﹣7
D. ﹣6
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:由题意可得方程组,
把③代入①得,
代入②得a=﹣6.故答案为:D.
【分析】根据x是y的2倍,建立三元一次方程组,根据方程①③求出x、y的值,再将x、y的值代入方程②,建立关于a的方程求解即可。

6、(2分)下列计算不正确的是()
A. |-3|=3
B.
C.
D.
【答案】D
【考点】实数的运算
【解析】【解答】A、|-3|=3,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、,符合题意.
故答案为:D.
【分析】(1)由绝对值的性质可得原式=3;
(2)由平方的意义可得原式=;
(3)根据有理数的加法法则可得原式=-;
(4)由算术平方根的意义可得原式=2.
7、(2分)关于x的不等式-x+a≥1的解集如图所示,则a的值为()
A.-1
B.0
C.1
D.2
【答案】D
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:解不等式得:,由图形可知,不等式的解集为,,则得:
a=2.
故答案为:D.
【分析】先用a表示出不等式的解集,在根据数轴上x的取值范围可得关于a的方程,解方程即可求出答案。

8、(2分)已知等腰三角形的两边长x、y,满足方程组则此等腰三角形的周长为()
A.5
B.4
C.3
D.5或4
【答案】A
【考点】解二元一次方程组,三角形三边关系,等腰三角形的性质
【解析】【解答】解:解方程组,得,
所以等腰三角形的两边长为2,1.
若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.
若腰长为2,底边长为1,则三角形的周长为5.
所以,这个等腰三角形的周长为5.
故答案为:A
【分析】首先解方程组得出x,y的值,由于x,y是等腰三角形的两条边,但没有明确的告知谁是等腰三角形的底边,谁是腰长,故需要分①若腰长为1,底边长为2,②若腰长为2,底边长为1,两种情况再根据三角形三边的关系判断能否围成三角形,能围成三角形的由三角形周长的计算方法算出答案即可。

9、(2分)下列方程组是二元一次方程组的是()
A.
B.
C.
D.
【答案】D
【考点】二元一次方程组的定义
【解析】【解答】解:A、是二元二次方程组,故A不符合题意;
B、是分式方程组,故B不符合题意;
C、是二元二次方程组,故C不符合题意;
D、是二元一次方程组,故D符合题意;
故答案为:D.
【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且未知数的最高次数是2的整式方程,再对关系逐一判断,可得出答案。

10、(2分)某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根
据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()
A. 46人
B. 38人
C. 9人
D. 7人
【答案】D
【考点】扇形统计图
【解析】【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1﹣9%﹣46%﹣38%=7%,
所以100名顾客中对商场的服务质量不满意的有100×7%=7人.
故答案为:D
【分析】先根据扇形统计图计算D所占的百分比,然后乘以顾客人数可得不满意的人数.
11、(2分)4的平方的倒数的算术平方根是()
A.4
B.
C.-
D.
【答案】D
【考点】算术平方根
【解析】【解答】解:∵42=16,16的倒数=,。

故答案为:D.
【分析】根据平方、倒数、算术平方根的意义即可解答。

12、(2分)若关于的方程组无解,则的值为()
A.-6
B.6
C.9
D.30
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:
由×3得:6x-3y=3
由得:(a+6)x=12
∵原方程组无解
∴a+6=0
解之:a=-6
故答案为:A
【分析】观察方程组中同一未知数的系数特点:y的系数存在倍数关系,因此利用加减消元法消去y求出x 的值,再根据原方程组无解,可知当a+6=0时,此方程组无解,即可求出a的值。

二、填空题
13、(1分)二元一次方程组的解为________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:,
①×3﹣②×2得:11x=33,即x=3,
将x=3代入②得:y=2,
则方程组的解为.
【分析】y的系数-4,-6,把y的系数变的相同,需要①×3,②×2,然后①×3﹣②×2得x=3。

14、(1分)如图,有一个长方形纸片,减去相邻的两个角,使∠ABC=90°,如果∠1=152°,那么
∠2=________°.
【答案】118°
【考点】平行公理及推论,平行线的判定与性质
【解析】解:过B作BD FA,
故答案为:118
【分析】过B作BD ∥FA,根据两直线平行,同旁内角互补可得∠1+∠ABD=180°,已知∠1=152°,所以∠ABD=180°−152°=28°,而∠ABC=90°,所以∠CBD=90°−28°=62°,由平行线的传递性可得BD∥EC,根据两直线平行,同旁内角互补可得∠2+∠DBC=180°,所以2=180°−62°=118°。

15、(1分)若2m-1没有平方根,则m的取值范围是________
【答案】
【考点】平方根
【解析】【解答】解:∵负数没有平方根,
∴2m-1<0,
解得:.
故答案为:
【分析】根据负数没有平方根得出不等式,求解即可得出m的取值范围。

16、(1分)已知数轴上的点A、B所对应的实数分别是-1.2和,那么A、B两点之间的距离为________ 【答案】1.95
【考点】实数在数轴上的表示,实数的绝对值
【解析】【解答】∵数轴上的点A、B所对应的实数分别是-1.2和,
∴A、B两点之间的距离为|-1.2-|=1.95
故答案为:1.95
【分析】用点A表示的数减去用点B表示的数的差的绝对值。

计算即可。

17、(6分)已知AB//DE , CD⊥BF,∠ABC=128°,求∠CDF的度数。

解:过点C作CG//AB
∴∠1+∠ABC=180°(________)
∵AB//DE(已知)
∴CG//DE(________)
∴∠CDF=∠2 (________)
∵∠ABC=128°(已知)∴∠1=180°-________=________°
∵CD⊥DF(已知)∴∠DCB=90°,
∴∠2=90°- ∠1= 38°
∴∠CDF=38°(________)
【答案】两直线平行,同旁内角互补;平行的传递性;两直线平行,内错角相等;128°(或∠ABC);52°;等量代换
【考点】平行线的判定与性质
【解析】【解答】解:过点C作CG//AB
∴∠1+∠ABC=180°(两直线平行,同旁内角互补)
∵AB//DE(已知)
∴CG//DE(平行线的传递性)
∴∠CDF=∠2 (两直线平行,内错角相等)
∵∠ABC=128°(已知)∴∠1=180°-128°=52°
∵CD⊥DF(已知)
∴∠DCB=90°,
∴∠2=90°- ∠1= 38°
∴∠CDF=38°(等量代换)
【分析】根据平行线的性质和判定,以及垂直的定义,解答此题。

18、(1分)如果a4=81,那么a=________.
【答案】3或﹣3
【考点】平方根
【解析】【解答】∵a4=81,∴(a2)2=81,
∴a2=9或a2=﹣9(舍),
则a=3或a=﹣3.
故答案为3或﹣3.
【分析】将已知条件转化为(a2)2=81,平方等于81的数是±9,就可得出a2(a2≥0)的值,再求出a的值即
可。

三、解答题
19、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。

(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。

【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。

(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。

20、(5分)
【答案】解:原方程组变形为:

(1)+(2)得:6x=17,
x=,
将x=代入(2)得:
∴y=,
∴原方程组的解为:.
【考点】解二元一次方程组
【解析】【分析】将(1)+(2)用加法消元将二元一次方程组转化成一元一次方程,解之可得出x的值,再将x的值代入(2)式可得出y值,从而得出原方程组的解.
21、(5分)已知2a一1的平方根是的立方根是4,求的平方根.
【答案】解:一1的平方根是的立方根是4,

解得:.

的平方根为.
【考点】平方根,立方根
【解析】【分析】根据平方根和立方根的意义可知2 a 一1的平方根是± 5 ,3 a + b − 1 的立方根是4,所以2 a − 1 == 25 , 3 a + b −1== 64 .
解方程得 a = 13 ,b = 26,代入代数式 a + 2 b + 10=75,所以.
22、(5分)计算
【答案】解:原式= = = =
【考点】算术平方根,立方根
【解析】【分析】根据算术平方根的意义和立方根的意义可求解。

即原式=+2+=2.
23、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:( …);
整数集合:( …);
负分数集合:( …);
无理数集合:( …).
【答案】解:正有理数集合:(3,, -(-2.28), 3.14 …);
整数集合:( 3,0,-∣-4∣ …);
负分数集合:(-2.4,- ,, …);
无理数集合:(, -2.1010010001…… …).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。

逐一填写即可。

24、(5分)解不等式:.
【答案】解:去分母得30-2(2-3x)≤5(1+x),
去括号得30-4+6x≤5+5x,
移项得6x-5x≤5+4-30,
合并得x≤-21
【考点】解一元一次不等式
【解析】【分析】去分母,根据不等式的基本性质,不等式两边都乘以10,约去分母;去括号,移项,合并同类项,得出不等式的解集。

25、(5分)已知a为的整数部分,b-3是81的算术平方根,求.
【答案】解:∵169<170<196,
∴13<<14,
∴a=13,
∵b-3= =9,即b=12,
则= =5
【考点】算术平方根,估算无理数的大小,代数式求值
【解析】【分析】由于的被开方数170介于两个完全平方数169与196之间,从而得出13<
<14,又a为的整数部分,从而得出a的值;根据算数平方根的意义,b-3是81的算术平方根,从而得出b-3==9,求解得出b的值,再代入代数式计算即可。

26、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
第21 页,共21 页。

相关文档
最新文档