初中八年级数学下册第十七章勾股定理单元检测复习题二(含答案) (82)

合集下载

八年级下册数学第17章《勾股定理》单元测试题(含答案)

八年级下册数学第17章《勾股定理》单元测试题(含答案)

⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。

人教版八年级下册数学 第17章 勾股定理 单元检测卷(含答案)

人教版八年级下册数学 第17章 勾股定理 单元检测卷(含答案)

第17章勾股定理单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(每小题3分;共33分)1.下列各组数中,属于勾股数的是()A. 2.5,6,6.5B. 5,7,10C. ,,D. 6,8,102.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A. 25B. 14C. 7D. 7或253.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm4.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A. (4+)cmB. 9cmC. 4cmD. 6cm5.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、66.如图,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定7.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A. B. C. D. 28.如图,有一只棱长为20厘米的正方形盒子,一只蚂蚁从A点出发,沿着正方体木箱的外表面爬行到C′D′的中点P的最短路线长为()A. 10厘米B. 50厘米C. 10厘米D. 30厘米9.如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A. 2πB. 3πC. 4πD. 8π10.现有一只蜗牛和一只乌龟从同一点分别沿正东和正南方向爬行,蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,5分钟后,蜗牛和乌龟的直线距离为()A. 300厘米B. 250厘米C. 200厘米D. 150厘米11.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A. a=1.5,b=2,c=3B. a=3,b=4,c=5C. a=6,b=8,c=10D. a=7,b=24,c=25二、填空题(共11题;共33分)12.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:________14.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.15.等腰△ABC,其中AB=AC=17cm,BC=16cm,则三角形的面积为________ cm2.16.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.17.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________18.在Rt△ABC中,AC=9,BC=12,则AB=________.19.一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距________千米.20.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为________ 米.21.一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为________ cm.22.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.三、解答题(共4题;共34分)23.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.25.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2 ,求:(1)AB的长为________;(2)S△ABC=________.26.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?参考答案一、选择题D D C C C A C C A B A二、填空题12. 2 d 13. 13、84、85 14. 415. 120 16. 4.8 17.18. 15或3 19. 10 20. 1521. 22. 12三、解答题23.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.24.解:∵AD⊥AC,AC=20,AD=15,∴CD= =25∴BD=BC﹣CD=32﹣25=725.(1)4(2)2+226.(1)解:由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE= =2.4米(2)解:由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE= =1.5(米),∴BD=0.8米。

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a ,b ,斜边为c )与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则44a b +的值为( )A .68B .89C .119D .1302.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198 B .2 C .254 D .743.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为54.如图,点A 表示的实数是( )AB C D5.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .86.△ABC 的三边长a ,b ,c (b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .267.如图,Rt ABC 中,90,4,6B AB BC ∠=︒==,将ABC 折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段CN 的长为( ).A .73B .83C .3D .1038.如图,在ABC 中,△B =22.5°,△C =45°,若AC =2,则ABC 的面积是( )A B .C . D .9.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c 能表示为两个正整数a ,b 的平方和,即22c a b =+,那么称a ,b ,c 为一组广义勾股数,c 为广义斜边数,则下面的结论:△m 为正整数,则3m ,4m ,5m 为一组勾股数;△1,2,3是一组广义勾股数;△13是广义斜边数;△两个广义斜边数的和是广义斜边数;△若2222,12,221a k k b k c k k =+=+=++,其中k 为正整数,则a ,b ,c 为一组勾股数;△两个广义斜边数的积是广义斜边数.依次正确的是( )A .△△△B .△△△△C .△△△D .△△△10.为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB =2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC =0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )A .1.0 米B .1.2 米C .1.25 米D .1.5 米11.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:△20是“整弦数”;△两个“整弦数”之和一定是“整弦数”;△若c 2为“整弦数”,则c 不可能为正整数;△若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n 之积为“整弦数”;△若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图,三角形纸片ABC 中,点D 是BC 边上一点,连接AD ,把△ABD 沿着直线AD 翻折,得到△AED ,DE 交AC 于点G ,连接BE 交AD 于点F .若DG =EG ,AF =4,AB =5,△AEG 的面积为92,则2BD 的值为( )A .13B .12C .11D .10二、填空题(本大题共8小题,每小题3分,共24分)13.无理数可以用数轴上的点表示.如图,数轴上点A 表示的数是______.14.我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离P A 的长为1尺,将它向前水平推送10尺时,即10P C '=尺,秋千踏板离地的距离P B '就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.15.如图,在Rt ABC △中,9068C AC BC ∠=︒==,,,将ABC 按如图方式折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为________.16.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是____________米.17.如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为_____ m.18.观察下列几组勾股数,并填空:△6,8,10,△8,15,17,△10,24,26,△12,35,37,则第△组勾股数为______.19.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是______cm20.如图,在△ABC中,AB=AC,BD△AC于点D,把线段AC绕点C旋转得到线段CE,点E恰好落在AB的延长线上,12BE CD,△BCD的面积是8,则BC的长为________.三、解答题(本大题共5小题,每小题8分,共40分)21.某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且△CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C作CF△AB交AB的延长线于点F,求BFBC值.22.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离12PP=式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.23.某天,暴雨突然来袭,两艘搜救艇接到消息,在海面上有遇险船只从A、B两地发出求救信号.于是,第一艘搜救艇以20海里/时的速度离开港口O沿北偏东40°的方向向A地出发,同时,第二艘搜救艇也从港口O出发,以15海里/时的速度向B地出发,2小时后,他们同时到达各自的目标位置.此时,他们相距50海里.的大小)(1)求第二艘搜救艇的航行方向是北偏西多少度?(求BOD(2)由于B地需要被援救的人数较多,故需要搭载人数较少的第一艘搜救艇改道去到B地支援,在从A地前往到B 地的过程中,与港口O最近的距离是多少?24.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?25.【阅读思考】已知0<x<1分析:如图,我们可以构造边长为1的正方形ABCD,P为BC边上的动点.设BP=x,则PC=1-x,那么可以用含x的式子表示AP、DP,问题可以转化为AP与PD的和的最小值,用几何知识可以解答(1)AP+PD的最小值为________(2)的最小值,其中x、y为两正数,且x+y=6(3)参考答案1.B2.D3.D4.B5.C6.C7.D8.D9.D10.A11.C12.A13.214.14.515.7 416.817.118.16,63,6519.1620.1021.(1)33.4海里(2)72522.(1)AB=13(2)AB=5(3)△DEF是等腰三角形,23.(1)50度(2)24海里24.这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.25.5(2)(3)。

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.已知三角形的三条边分别为a,b,c,则下列不能判断三角形为直角三角形的是A. B. C. D.2.下列各组数是勾股数的是A. ,,B. 1,1,C. ,,D. 5,12,133.如图,中,,,,点P是BC边上的动点,则AP的长不可能是A. B. 4 C. D. 7(第3题图)(第4题图)4.如图,矩形ABCD中,,,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为A. 2B.C.D.5.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是A. B. C. D.(第5题图)(第6题图)6.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A. 5米B. 6米C. 7米D. 8米7.如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是的高,则BD的长为A. B. C. D.(第7题图)(第9题图)8.下列命题中正确的是A. 在直角三角形中,两条边的平方和等于第三边的平方B. 如果一个三角形两边的平方差等于第三边的平方,那么这个三角形是直角三角形C. 在中,,,的对边分别为a,b,c,若,则D. 在中,若,,则9.如下图,在长方形ABCD中,,,将此长方形折叠,使点D与点B 重合,折痕为EF,则的面积为A. B. C. D.10.如下图,在中,,,,CD平分交AB于点D ,E是AC的中点,P是CD上一动点,则的最小值是A. B. 6 C. D.(第10题图)(第11题图)11.如图,透明的圆柱形容器容器厚度忽略不计的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部的点A处,则蚂蚁吃到饭粒需爬行的最短路程是A. B. C. D.12.勾股定理是几何中的一个重要定理,在我国古算书周髀算经中就有“若勾三、股四、则弦五”的记载。

八年级数学(下)第十七章《勾股定理》测试题含答案

八年级数学(下)第十七章《勾股定理》测试题含答案

八年级数学(下)第十七章《勾股定理》测试题(测试时间:90分钟满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是().A. ,,B. ,,C. ,,D. ,,2.设直角三角形的两条直角边长分别为a和b,斜边长为c.已知b=8,c=10,则a的值为( ) A. 2 B. 6 C. 5 D. 363.在△ABC中,AB=1,AC=2,BC=5,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形4.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形().A. 仍是直角三角形B. 可能是锐角三角形C. 可能是钝角三角形D. 不可能是直角三角形5.如图字母所代表的正方形的面积是().A. B. C. D.6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A. 4米B. 8米C. 9米D. 7米7.如图,AC是电线杆的一根拉线,测得BC=6米,∠ACB=60°,则AB的长为( )A. 12米B. 63米C. 6米D. 23米8.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10mB. 15mC. 18mD. 20m9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A、B、C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A. 102B.104C.105D. 510.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()24二.填空题(共10小题,每题3分,共30分)11.已知直角三角形的两直角边长分别为5和12,则其斜边长为________.12.斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是_______.13.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m,木板顶端向下滑动了0.9m,则小猫在木板上爬动了_____________m.14.如图,数轴上点A所表示的实数是______________.15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.16.如图,若要建一个蔬菜大棚,棚宽3.2 m,高2.4 m,长15 m,请你计算,覆盖在顶上的塑料薄膜需要____m2.17.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_______厘米.18.如图,在△ABC中,∠C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的距离为__________.19.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m220.如图是一个三级台阶,每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,若一只壁虎从A 点出发沿着台阶面爬到B 点,则壁虎爬行的最短路线的长是________.三、解答题(共60分)21.(8分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.DACB(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. (2)求这块地的面积.22.(6分)飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?23.(6分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.24.(6分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米?25.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.26.(8分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?27.(8分)一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗?28.(10分)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m、8 m.现要将其扩建成等腰三角形,且扩充部分是以8 m为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A. ,, B. ,,C. ,, D. ,,【答案】D2.设直角三角形的两条直角边长分别为a 和b ,斜边长为c .已知b =8,c =10,则a 的值为( ) A. 2 B. 6 C. 5 D. 36 【答案】B【解析】a =22c b -=22108-=6.故选B .3.在△ABC 中,AB =1,AC =2,BC =5,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形 【答案】B【解析】在△ABC 中,AB =1,AC =2,BC =5.∵()222125+=,∴△ABC 是直角三角形.故选B .4.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形( ). A. 仍是直角三角形 B. 可能是锐角三角形 C. 可能是钝角三角形 D. 不可能是直角三角形 【答案】A【解析】将直角三角形三条边的长度都扩大同样的倍数后得到的三角形只是改变大小,不会改变它形状,故选A.5.如图字母所代表的正方形的面积是( ).A. B. C. D.【答案】C【解析】∵图中三角形为,∴,∴.故选C.6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A. 4米B. 8米C. 9米D. 7米【答案】D7.如图,AC是电线杆的一根拉线,测得BC=6米,∠ACB=60°,则AB的长为( )A. 12米3 C. 6米3【答案】B8.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m 【答案】C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴AC=22AB BC +=22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m. 故选:C. 学@科网9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A 、B 、C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A.102 B. 104 C. 105D. 5 【答案】A10.如图,在△ABC 中,有一点P 在直线AC 上移动,若AB =AC =5,BC =6,则 BP 的最小值为( )A. 24B. 5C. 4D. 4.8 【答案】D【解析】根据垂线段最短,得到BP ⊥AC 时,BP 最短,过A 作AD ⊥BC ,交BC 于点D ,∵AB =AC ,AD ⊥BC ,∴D 为BC 的中点,又BC =6,∴BD =CD =3.在Rt △ADC 中,AC =5,CD =3,根据勾股定理得:AD =22AB BD -=2253-=4.又∵S △AB C =12BC •AD =12BP •AC ,∴BP =BC AD AC ⋅=645⨯=4.8.故选D .二.填空题(共10小题,每题3分,共30分)11.已知直角三角形的两直角边长分别为5和12,则其斜边长为________. 【答案】13【解析】∵直角三角形的两直角边长分别是5和12,∴斜边长=22512 =13.故答案为:13.12.斜边的边长为17cm ,一条直角边长为8cm 的直角三角形的面积是_______. 【答案】60cm 213.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m ,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m ,木板顶端向下滑动了0.9m ,则小猫在木板上爬动了_____________m .【答案】2.5 【解析】如图所示:14.如图,数轴上点A所表示的实数是______________.【答案】【解析】由勾股定理,得斜线的为=,由圆的性质,得点表示的数为,故答案为:. 学科%网15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米, ∴CD=2米, ∴CE===1.5(米),∴AE=AC-EC=0.5(米). 故答案为:0.5.16.如图,若要建一个蔬菜大棚,棚宽3.2 m ,高2.4 m ,长15 m ,请你计算,覆盖在顶上的塑料薄膜需要____m 2.【答案】6017.如图,将一根长24厘米的筷子,置于底面直径为6厘 米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_______厘米.【答案】14【解析】如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形, ∴勾股定理求得圆柱形水杯的最大线段的长度,即2268 =10cm ,∴筷子露在杯子外面的长度至少为24-10=14cm , 故答案为14.18.如图,在△ABC 中,∠C=90°,AD 是角平分线,AC=12,AD=15,则点D 到AB 的距离为__________.【答案】919.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m 2【答案】24【解析】如图,连接AC .由勾股定理可知:AC=2222435AD CD +=+=,又∵AC 2+BC 2=52+122=132=AB 2, ∴△ABC 是直角三角形这块地的面积为=△ABC 的面积-△ACD 的面积=12×5×12- 12×3×4=24(m 2). 学#科网20.如图是一个三级台阶,每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,若一只壁虎从A 点出发沿着台阶面爬到B 点,则壁虎爬行的最短路线的长是________.【答案】130cm三、解答题(共60分)21.(8分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.DC(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. (2)求这块地的面积.【答案】(1)以点A 、点B 、点C 为顶点的三角形是直角三角形; (2)这块地的面积24m 2. 【解析】试题分析:(1)根据勾股定理求得AC的长,再根据勾股定理的逆定理判定△ABC为直角三角形,考点:勾股定理的逆定理.22.(6分)飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?【答案】飞机每小时飞行540千米.学科%网【解析】试题分析:先画出图形,构造出直角三角形,利用勾股定理解答.试题解析:设A点为男孩头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2-AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),即飞机每小时飞行540千米.考点:勾股定理的应用.23.(6分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.【答案】旗杆的高度是12米. 【解析】考点:勾股定理24.(6分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米? 【答案】它们离开港口半小时后相距10千米 【解析】试题分析:根据已知条件,构建直角三角形,利用勾股定理进行解答. 试题解析:如图,由已知得,OB=16×0.5=8海里,OA=12×0.5=6海里,在△OAB 中,∵∠AOB=90°,由勾股定理得OB 2+OA 2=AB 2, 即82+62=AB 2,AB=2286 =10海里.考点:勾股定理25.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【答案】(1)作图见解析;(2)作图见解析.【解析】考点:1.勾股定理;2.作图题.26.(8分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.学%科网(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?【答案】(1)20s;(2)可以通行.【解析】考点:勾股定理的应用.27.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗?【答案】(1)24;(2)不是. 【解析】试题分析:(1)应用勾股定理求出AB 的高度; (2)应用勾股定理求出BE 的距离即可解答. 试题解析:(1)如图:∠B=90°,在Rt △ABC 中,222225724AC BC -=-=,∴这个梯子的顶端A 距地面有24米高.(2)如果梯子下滑4米,则:BD=24-4=20,在Rt △BDE 中,2222252015DE BD -=-=, ∴CE=15-7=8,即:梯子的底部在水平方向也是滑动了8 m ,而不是滑动4m. 考点:勾股定理的应用. 学!科网28.(10分)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m 、8 m .现要将其扩建成等腰三角形,且扩充部分是以8 m 为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.【答案】48或40或1003.【解析】考点:1.勾股定理的应用;2.等腰三角形的性质.。

人教版八年级数学下册《第17章勾股定理》单元检测卷含答案

 人教版八年级数学下册《第17章勾股定理》单元检测卷含答案

人教版八年级数学下册《第17章勾股定理》单元检测卷含答案一、选择题:1.下列长度的3条线段能构成直角三角形的是()①8,15,17;②4,5,6;③7.5,4,8.5;④24,25,7;⑤5,8,17.A.①②④B.②④⑤C.①③⑤D.①③④2.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.1254.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6B.4C.4.8D.55.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形6.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则( )A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20B.22C.24D.268.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为()米A.4米B.5米C.7米D.8米9.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )A.30B.40C.50D.6010.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米11.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3:4B.5:8C.9:16D.1:212.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为()A.6B.7C.8D.9二、填空题:13.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为__________.14.三边为9、12、15的三角形,其面积为 .15.一个直角三角形的周长为60,一条直角边和斜边的长度之比为4:5,这个直角三角形三边长从小到大分别为_______.16.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.17.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB=.18.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为.三、解答题:19.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c=75cm,求a、b;(2)若a:c=15:17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.20.如图,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.21.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.22.已知在△ABC中,a=m2-n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n.试判断:△ABC是否为直角三角形?23.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.24.如图,C为线段BD上一动点,分别过点B、D作AB BD,ED BD,连结AC、EC,已知线段AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.参考答案1.D2.B3.B4.D5.C6.A7.C9.A10.C11.B12.C13.答案为:2.4cm;14.3615.答案为:15,20,25;16.答案为:少走了4步.17.答案为:1.518.答案为:126或66.19. (1)a=45cm.B=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.20.解:如图,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,∴AO==5cm.则在直角△AFO中,由勾股定理得到:FO==13cm,∴图中半圆的面积=π×()2=π×=(cm2).答:图中半圆的面积是cm2.21.22.∵a=m2-n2,b=2mn,c=m2+n2,∴a2+b2=(m2-n2)2+4m2n2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.23.24.。

人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)

人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)

人教版八年级数学下册《第十七章勾股定理》单元测试题一.选择题(共10小题,满分40分,每小题4分)1.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.1442.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3244.如图是一个直角三角形,它的未知边的长x等于()A.13B.C.5D.5.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)6.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,77.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,98.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:159.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4B.4πC.8πD.810.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.2D.4二.填空题(共4小题,满分20分,每小题5分)11.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为.12.一个直角三角形的两条直角边长分别为3,4,则第三边为.13.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.14.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形三.解答题(共9小题,满分90分)15.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.16.如图,在△ADC中,∠C=90°,AB是DC边上的中线,∠BAC=30°,若AB=6,求AD的长.17.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B25m,结果他在水中实际划了65m,求该河流的宽度.18.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.19.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?20.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.21.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的边.(1)若b=2,c=3,求a的值;(2)若a:c=3:5,b=16,求△ABC的面积.22.如图所示,四边形ABCD ,∠A =90°,AB =3m ,BC =12m ,CD =13m ,DA =4m .(1)求证:BD ⊥CB ; (2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB 、AD 所在直线为x 轴、y 轴建立直角坐标系,点P 在y 轴上,若S△PBD=S 四边形ABCD ,求P 的坐标.23.如图,一艘轮船以30km /h 的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km /h 的途度由南向北移动,距台风中心200km 的圆形区域(包括边界)都属台风影响区.当这艘轮船接到台风警报时,它与台风中心的距离BC =500km ,此时台风中心与轮船既定航线的最近距离BA =300km . (1)如果这艘轮船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航行速度和航向不变,轮船受到台风影响一共经历了多少小时?人教版八年级数学下册《第十七章勾股定理》单元测试题参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:第三边长的平方是52+122=169.故选:A.2.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.4.【解答】解:∵x==,故选:B.5.【解答】解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.6.【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选:C.7.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.8.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.9.【解答】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.10.【解答】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S=102﹣4×24=4,△ABE∴正方形EFGH的边长=2,故选:C.二.填空题(共4小题,满分20分,每小题5分)11.【解答】解:∵点A(﹣3,4),∴它到坐标原点的距离==5,故答案为:5.12.【解答】解:由勾股定理得:第三边为:=5,故答案为:5.13.【解答】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.14.【解答】解:当第三条线段为直角边时,5cm为斜边,根据勾股定理得,第三条线段长为=4cm;当第三条线段为斜边时,根据勾股定理得,第三条线段长为=cm.故答案为4或cm.三.解答题(共9小题,满分90分)15.【解答】解:如图所示:设AB=x,则BC=x﹣1,故在Rt△ACB中,AB2=AC2+BC2,故x2=52+(x﹣1)2,解得;x=13,即AB=13.∴BC=12,∴S=•AC•BC=×5×12=30.△ABC16.【解答】解:在Rt△ABC中,∠C=90°,∠BAC=30°,AB=6,∴BC=AB=3,在Rt△ABC中,AC==3,∵AB是DC边上的中线,∴DB=BC=3,所以CD=6,在Rt△ACD中,AD===3.答:AD的长是317.【解答】解:根据图中数据,由勾股定理可得:AB===60(米).∴该河流的宽度为60米.18.【解答】解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.19.【解答】解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21﹣x)cm,依题意有x2+(21﹣x)2=152,解得x1=9,x2=12.故运动9秒或12秒时,它们相距15cm.20.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°.在Rt△ABD中,∠ADB=90°,AB=10,BD=8,∴AD==6.(2)∵AD⊥BC,∠ACD=45°,∴△ACD为等腰直角三角形,又∵AD=6,∴CD=6,AC=6,=AB+BD+CD+AC=24+6.∴C△ABC21.【解答】解:(1)∵△ABC中,∠C=90°,b=2,c=3,∴a==;(2)∵a:c=3:5,∴设a=3x,c=5x,∵b=16,∴9x2+162=25x2,解得:x=4,∴a=12,∴△ABC的面积=×12×16=96.22.【解答】(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC =12m ,CD =13m , ∴BD 2+BC 2=CD 2. ∴BD ⊥CB ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=×3×4+×12×5 =6+30 =36(m 2).故这块土地的面积是36m 2;(3)∵S △PBD =S 四边形ABCD ,∴•PD •AB =×36,∴•PD ×3=9, ∴PD =6,∵D (0,4),点P 在y 轴上, ∴P 的坐标为(0,﹣2)或(0,10).23.【解答】解:(1)根据题意得:轮船不改变航向,轮船会进入台风影响区; (2)如图所示:设x 小时后,就进入台风影响区,根据题意得出: CE =30x 千米,BB ′=20x 千米, ∵BC =500km ,AB =300km ,∴AC ===400(km ),∴AE =400﹣30x ,AB ′=300﹣20x , ∴AE 2+AB ′2=EB ′2,即(400﹣30x )2+(300﹣20x )2=2002,解得:x 1=≈8.3,x 2=≈19.3,∴轮船经8.3小时就进入台风影响区;(3)由(2)知,从8.3小时到19.3小时轮船受到台风影响, ∴轮船受台风影响的时间=19.3﹣8.3=11(小时),答:轮船受到台风影响一共经历了11小时.。

人教版八年级下第十七章《勾股定理》单元检测题含答案

人教版八年级下第十七章《勾股定理》单元检测题含答案

《勾股定理》单元检测题、选择题(每小题只有一个正确答案)1.在△ ABC中,AB=、、2,BCh.5,AC N .3,则( )A. / A=90B. / B=90C. / C=90D./ A=/B2 .已知四个三角形分别满足下列条件:①三角形的三边之比为 1: 1: ■■一 2 :②三角形的三边分别是 9、40、41;③三角形三内角之比为 1: 2: 3;④三角形一边上的中线等于这边的一半•其中直角三角形有( )个.A. 4B. 3C. 2D. 13 •在下列四组数中,不是勾股数的一组数是( )A. a = 15, b=8, c=17B. a=9, b = 12, c = 15C. a = 7, b = 24, c = 25D. a = 3, b = 5, c = 74 .如图,一艘船以 6海里/小时的速度从港口 A 出发向东北方向航行,另一艘船以2.5海里/小时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距5•下列选项中,不能用来证明勾股定理的是()6•如图,在 ABC 中,AB=AC, BAC=60 , BC 边上的高AD =8 , E 是AD 上 的一个动点,F 是边AB 的中点,贝U EB EF 的最小值是()A. 5B. 6C. 7D. 8 7 .如图,一个工人拿一个2.5米长的梯子,底端 A 放在距离墙根 C 点0.7米处,另头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?()C. 6.5海里D. 5海里B.D.;;爬行的最短路线的长是(9 .已知a 、b 、c 是三角形的三边长,如果满足(a —6 j + Jb —8 +|c —10| = 0,则三角形的形状是()A.底与腰不相等的等腰三角形B.直角三角形C •钝角三角形D.等边三角形10 •直角三角形两直角边长为 a ,b ,斜边上高为h ,则下列各式总能成立的是(二、填空题11•把一根30米长的细绳折成 3段,围成一个三角形,其中一条边的长度比较短边长 7米,比较长边短1米,则这个三角形是 ___________三角形. 12 .一种盛饮料的圆柱形杯子 (如图),测得它的内部底面半径为 2.5 cm 高为12 cm吸管放进杯子里,杯口外面至少要露出4.6 cm 则吸管的长度至少为 _______ cm13 .如图所示的一块地, 已知/ ADC = 90° AD = 12m , CD = 9m , AB = 25m , BC = 20m , 则这块地的面积为 _______________ .14 .如图,从点A (0, 2)发出的一束光,经 x 轴反射,过点B (4, 3),则这束光从点 A 到 点B 所经过路径的长为 _________ .15 •如图,OP=1,过P 作PR 丄OP 且PR=1,根据勾股定理,得 OR=J2 ;再过R 作 PP 2 丄OR 且 PP 2=1,得 OP 2 = J3 ;又过 R 作 P 2R 丄OR 且 RF 3 =1 ,得 OP 3=2;… 依此继续,得0巳018 = _________ , 0巳= ___________ (n 为自然数,且n >0).A. 2B. .3C. .5D. 222 2 21 1 1 A.ab=hB. a +b =2hC.=—a bh1 1 1D. —22a b h三、解答题116 .如图,已知正方形ABCD的边长为4 ,E为AB中点,F为AD上的一点,且AF= AD,417 .有一块空白地,如图,/ ADC=90°, CD=6 m , AD=8 m , AB=26 m , BC=24 m .试求这块空白地的面积.18 •龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙、1梅的速度是一米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和2一 2 -龙梅成直角,她的速度是—米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距3200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?•19 . (2017黑龙江齐齐哈尔第23题)如图,在―二中,…二一于0,霭「朋,鯛二號,二,「分别是城.:,艇的中点.(1)求证:腿口瘀,阳I.陳(2)连接£;'『,若J 「,求耕的长.20 .已知:如图,四边形ABCD, AD// BC, AB=4, BC=6, CD=5, AD=3. 求:四边形ABCD的面积.参考答案1. A2. A3. D4. A5. D6. D7. D8. C9. B10. D11 .直角12. 17.613. 96m214. .4115. .2019 . n 116. 解:T E为AB中点,••• BE=2.二cE=BW+BC=22+42=20.同理可求得,EF2=A^+AF f=22+12=5, CF=D F+CD=32+42=25.••• C E+EF"=C F,•△ EFC是以/ CEF为直角的直角三角形.217. 96 m .解:连接AC•••/ ADC= 90°•△ ADC是直角三角形.•AD2+ CD^= AC2, 即82+ 62= AC?,解得AC= 10.又••• AC2+ CB2= 102+ 242= 262= AB2,•△ ACB是直角三角形,/ ACB= 90°--S 四边形ABCD= S Rt^ ACB—S Rt^ ACD1 1=-X 10 X 24 ---------- X 6 X 82 2=96(m 2).故这块空白地的面积为96 m2.318. 她们走的方向成直角,如果她们想讲和,按原来的速度相向而行,171 秒后能相遇.71解析:龙梅走的路程:一X 4 X 60=120米),22玉荣走的路程:X 4 X 60=160米),32 2 2T 120 +160 =200 ,•••她们走的方向成直角,1 2 7 1200 3以原来的速度相向而行相遇的时间:200+( 1 +2) =200- 7= 1200=171 3(秒);2 3 6 7 73答:她们走的方向成直角,如果她们想讲和,按原来的速度相向而行,171 秒后能相遇.7 19 .解析:(1)T AD 丄BC , •••/ ADB= / ADC=90 , 在△ BDG和△ ADC中,(BD^AD,(DG = DC•••△BDG ◎△ ADC ,••• BG=AC,/ BGD= / C,•••/ ADB= / ADC=90 , E, F 分别是BG , AC 的中点,1 1•DE= BG=EG , DF= AC=AF ,i 2•DE=DF,/ EDG= / EGD,/ FDA= / FAD,•••/ EDG+ / FDA=90 ,•DE丄DF;(2 )T AC=10 ,•DE=DF=5 ,由勾股定理得,一岳炉=5■.血.20. 18.解:作DE// AB,连结BD,则可以证明△ABD^A EDB (ASA)•DE=AB=4, BE=AD=3.•/ BC=6,二EC=EB:3.••• DE2+C呂=32+42=25=C D\•△ DEC为直角三角形.又••• EC=E=3,•△ DBC为等腰三角形,DB=DC=5. 在厶BDA 中AD2+AB2=32+42=25=BD2,•△ BDA是直角三角形.、1 1它们的面积分别为S ABDA=—X 3X 4=6DBc=—X 6 X 4=12.2 2--S 四边形ABCD=S A BDA+S A DBC=6+12=18.。

人教版八年级数学下册第十七章《勾股定理》单元同步检测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元同步检测试题(含答案)

第十七章《勾股定理》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:(每题3分,共30分)1.下列各组数中,是勾股数的是()A.9,40,41 B.2,2,2 C.5,4,41D.3,2,52.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为203.在三边分别为下列长度的三角形中,不是直角三角形的是()A.6,8,10 B.1,2,3C.2,3,5D.4,5,74.如图,在数轴上点A,B所表示的数分别为-1,1,CB⊥AB,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D(点D在点B的右侧),则点D所表示的数是()A.5B.51-C.2D.25-5.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.4 B.3 C.2 D.56. 如图,在正方形网格中,每个正方形的边长为1,则在△ABC 中,边长为无理数的边数是( )A .0 B.1 C .2 D.37.如图,数轴上的点A 表示的数是1,OB ⊥OA ,垂足为O ,且BO=1,以点A 为圆心,AB 为半径画弧交数轴于点C ,则C 点表示的数为( )A .﹣0.4B .﹣2C .1﹣2D .2﹣18.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以20米/秒的速度行驶时,A 处受噪音影响的时间为( )A .16秒B .18秒C .20秒D .22秒9.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形10.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .4二、填空题:(每题3分,共30分)11.如图,O 为数轴原点,数轴上点A 表示的数是3,AB ⊥OA ,线段AB 长为2,以O 为圆心,OB 为半径画弧交数轴于点C .则数轴上表示点C 的数为_________.12.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.13.已知△ABC 的三边长分别为1,3,10,则△ABC 的面积为_____. 14.如图,已知Rt ABC 中,90ABC ∠=︒,5AB =,12BC =,点D 在AC 上,ABD △是等腰三角形且AB BD ≠,则AD =__________.15.所谓的勾股数就是使等式222a b c +=成立的任何三个正整数.我国清代数学家罗士林钻研出一种求勾股数的方法,对于任意正整数m ,n(m >n),取a =22m n -,b =2mn ,c =22m n +,则a ,b ,c 就是一组勾股数.请你结合这种方法,写出85(三个数中最大),84和________组成一组勾股数.16.如图,一架梯子AB 长2.5m ,顶端A 靠墙AC 上,这时梯子下端B 与墙角C 距离为1.5m ,梯子滑动后停在DE 的位置上,测得BD 长为0.5m ,则梯子顶端A 下落了_______m.17.有一个棱长为1m且封闭的正方形体纸箱,一只蚂蚁沿纸箱表面从顶点A爬到顶点B,那么这只蚂蚁爬行的最短路程是 m.18.如图,已知矩形ABCD中,AB=4,AD=3,P是以CD为直径半圆上的一个动点,连接BP,则BP最大值是.19.如图,正方形的边长均为1,可以计算出,图(1)中正方形的对角线长为2;图(2)中长方形的对角线长为5;图(3)中长方形对角线的长为10,那么第n个长方形的对角线的长为_____.20.有一块田地的形状和尺寸如图,则它的面积为_________.三、解答题:(共60分)21.(10分)A,B两个居民楼在公路同侧,它们离公路的距离分别为AE=200米,BF =70米,它们的水平距离EF =390米.现欲在公路旁建一个超市P ,使超市到两居民楼的距离相等,则超市应建何处?为什么?22.(10分)已知某实验中学有一块四边形的空地ABCD ,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m ,BD=12m ,CB=13m ,DA=4m ,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?23.(10分)如图,ABC 中,10,8,6AB cm AC cm BC cm ===,若点P 从点A 出发,以每秒2cm 的速度沿折线A C B A ---运动一周,设运动时间为t 秒()0t >.问:当t 为何值时,PA PB =?24. (10分)如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m.假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?25. (10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.26. (10分)如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.参考答案一、选择题:1.A2.A3.D4.B5.A6.D7.C8.A9.C10.C二、填空题:11.13 12.213.3 214.5或13 215. 答案:1316.答案为:0.517.18.答案为:+2.1921n.20.96.三、解答题21.超市应建在距离E处150米的位置. 22.学校需要投入10800元买草坪23.t=258或19224.解:作AB⊥MN,垂足为B。

初中数学八年级下册《勾股定理》单元测试卷(整理含答案)

初中数学八年级下册《勾股定理》单元测试卷(整理含答案)

初中数学八年级下册《勾股定理》单元测试卷一(时间90分钟满分100分)一、填空题(共14小题,每题2分,共28分)1.△ABC,∠C=90°,a=9,b=12,则c=__________.2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.8.等腰三角形的两边长为2和4,则底边上的高为__________.9.若等腰直角三角形斜边长为2,则它的直角边长为_______.10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC 是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .A B C D13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是___ _.第19题②第19题①二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是 ( )A .1,2,5B .1,2,3C .3,4,5D .6,8,1216.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于 ( )A .6B .6C . 5D .417.已知三角形的三边长之比为1∶1∶2,则此三角形一定是 ( )A .锐角三角形B .钝角三角形C .等边三角形D .等腰直角三角形 18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )A .4 cmB .8 cmC .10 cmD .12 cm三、解答题(共60分)19.(5分)如图,每个小正方形的边长是1.①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.第13题 第16题20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 k m,请根据上述数据,求出隧道BC的长(精确到0.1 k m).22.(6分)如图,△ABC中,AB=15 cm,AC=24 cm,∠A=60°.求BC的长.2.8米9.6米23.(6分)如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.B CAD24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A正前方30米B处,过了2秒后,测得小汽车C与车速检测仪A间距离为50米,这辆小汽车超速了吗?25.(6分)如图,△ABC中,CD⊥AB于D.(1)图中有__________个直角三角形;A.0 B.1 C.2 D.3(2)若AD=12,AC=13则CD=__________.(3)若CD2=AD·DB,求证:△ABC是直角三角形.26.(6分)小明把一根长为160 cm的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40 cm,你知道小明是怎样弯折铁丝的吗?27.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c = mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+b²c²(填写“ >”,“ <”或“ =”).(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.(1)(2)参考答案 一、填空题1.15 2.10 3.33cm 4.1∶3∶2 5.13606.12+63 7. 96 8.159 10.30cm 2 11.直角 12.A A 不是直角三角形,B 、C 、D 是直角三角形 13.2+23 14. 5或7 二、选择题15.D 16.B 17.D 18.C 三、解答题19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²初中数学八年级下册《勾股定理》单元测试卷二(时间90分钟 满分100分)一、填空题(共14小题,每题2分,共28分)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A 处架设一条缆车线路到另一山峰C 处,若在A 处测得∠EAC =30°,两山峰的底部BD 相距900米,则缆车线路AC 的长为_______米.3.已知,如图所示,Rt △ABC 的周长为4+23,斜边AB 的长为23,则Rt △ABC •的面积为_____. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.6.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.第2题 第3题第4题3220A第7题8.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________. 11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .13.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是 ( ) A .5B .25C .7D .5或716.已知Rt △ABC 中,∠C=90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是 ( )A .24cm 2B .36cm 2C .48cm 2D .60cm 260 12014060BAC第8题第11题第12题第13题图17.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B. 800米 C. 1000米 D. 不能确定三、解答题(共60分)19.(5分)如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?20.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(5分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB =8cm ,BC =10cm ,求EC 的长.22.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和3是多少?AB41.524.50.524.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?25.(6分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?26.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.AB小河北牧童小屋ACB 27.(7分)如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少?28.(8分)如图,A市气象站测得台风中心在A市正东方向300千米的B处,以107千米/时的速度向北偏西60°的BF方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?参考答案一、填空题601.5..1 4.2 5.50 6.直角 7.25 8.10 9.13 10.6,8,10 11.24 12.100mm 13.③ 14.2m二、选择题15.D 16.A 17.C 18.C三、解答题19.15米 20.5米 21.3cm 22.AB=6.5km 23.5cm 24.64米处,最低造价为480元 25.17km 26.22. 3.75尺 27.12海里/时 28.(1)会受影响;(2)10小时。

人教版数学八年级第十七章勾股定理单元测试精选(含答案)2

人教版数学八年级第十七章勾股定理单元测试精选(含答案)2
试卷第 6页,总 13页
(1)若∠BAC=50°,求∠AEB 的度数;
(2)求证:∠AEB=∠ACF;
(3)试判断线段 EF、BF 与 AC 三者之间的等量关系,并证明你的结论.
【答案】(1)20°;(2)证明见解析;(3)EF2+BF2=2AC2.理由见解析.
31.如图 1,在△ABC 中,∠ACB=90°,AC=BC,E 为∠ACB 平分线 CD 上一动点
C.∠C=90°
D.∠A=∠B
【答案】A
6.如图,已知点 E 在正方形 ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是
()
A.48
B.60
C.76
D.80
【答案】C
7.在 Rt△ABC 中,∠B=90°,BC=1,AC=2,则 AB 的长是( )
A.1B. 3C来自2D. 5【答案】(1) 3+1 (2)证明见解析
39.如图,在正方形 ABCD 中,点 E 是 BC 的中点,连接 DE ,过点 A 作 AG ED 交 DE 于点 F ,交 CD 于点 G . (1)证明: ADG≌DCE ; (2)连接 BF ,证明: AB=FB .
【答案】(1)见解析;(2)见解析.
A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣
n2=0
【答案】C
14.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是( )
A.7、24、25
B.5、12、13
C.3、4、5
D.2、3、 7
【答案】D
15.下列各组数,可以作为直角三角形的三边长的是( )

人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)

人教版八年级数学下册第17章《勾股定理》单元测试卷  (word版,含解析)

人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。

初中八年级数学下册第十七章勾股定理单元复习试题二(含答案) (82)

初中八年级数学下册第十七章勾股定理单元复习试题二(含答案) (82)

初中八年级数学下册第十七章勾股定理单元复习试题二(含答案)1.下列是勾股数的是()A.12,15,18 B.6,10,7C.11,60,61 D【答案】C【解析】试题分析:勾股数是指两个较小的数的平方和等于最大数的平方.222116061+≠,222+=≠,则11,60,61能1215186710+≠,222构成勾股数.2.如图,由四个全等的直角三角形拼成的图形,设CE a=,HG b=,则斜边BD的长是()A.+a b B.⋅a b C D【答案】C【解析】【分析】根据全等三角形的性质,设CD=AH=x,DE=AG=BC=y,由CE a=,HG b=建立方程组,求解即可得出,22a b a b CDx BC y ,然后借助勾股定理即可表示BD.【详解】 解:根据图象是由四个全等的直角三角形拼成,设CD=AH=x ,DE=AG=BC=y ,∵CE a =,HG b =,∴x y a y x b +=⎧⎨-=⎩解得:22a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, 故,22a b a b CD BC在Rt BCD ∆中,根据勾股定理得:2222222222a b a b a b BD BC CD +-+⎛⎫⎛⎫=+=+= ⎪⎪⎝⎭⎝⎭, ∴BD =. 故选:C.【点睛】本题考查勾股定理,全等三角形的性质,能借助方程思想用含a ,b 的代数式表示CD 和BC 是解决此题的关键.3.如图,做一个宽80厘米,高60厘米的长方形木框,需在相对角顶点加一根加固木条,则木条长为( )A.90厘米B.100厘米C.105厘米D.110厘米【答案】B【解析】【分析】由于长方形木框的宽和高与所加固的木板正好构成直角三角形,故可利用勾股定理解答.【详解】设这条木板的长度为x厘米,由勾股定理得:x2=802+602,解得:x=100厘米.故选B.【点睛】本题考查了勾股定理在实际生活中的运用,属较简单题目,注意细心运算即可.4.刘徽是我国三国时期杰出的数学大师,他的一生是为数学刻苦探究的一生,在数学理论上的贡献与成就十分突出,被称为“中国数学史上的牛顿”.刘徽精编了九个测量问题,都是利用测量的方法来计算高、深、广、远问题的,这本著作是().A.《周髀算经》B.《九章算术》C.《孙子算经》D.《海岛算经》【答案】D【解析】【分析】运用《九章算术注》相关知识即可直接解答.【详解】解:由于《九章算术注》是我国学者编撰的最早的一部测量数学著作,该书第一卷的第一个问题是求海岛上的山峰的高度,故本书的名称是《海岛算经》.故答案为D.【点睛】本题主要考查了数学常识,了解一定的数学史以及数学著作是解答本题的关键.5.下列图形是四棱柱的侧面展开图的是()A.B.C.D.【答案】A【解析】【分析】根据四棱柱是由四个大小相同的长方形和两个全等的正方形构成的解答即可.【详解】四棱柱的侧面是由四个同样大小的长方形围成的,故选:A.【点睛】此题考查了简单几何体的侧面展开图,正确掌握几何体的构成是解题的关键.6.如图,在55⨯的正方形网格中,每个小正方形的边长均为1,则下列各图的三角形不是直角三角形的是()A.B.C.D.【答案】C【解析】【分析】根据勾股定理求出三角形各边的长,再根据勾股定理的逆定理即可求解.【详解】A==)2)2=(22,三角形是直角三角形;B==22)2,三角形是直角三角形;C==,2+(2≠52,三角形不是直角三角形;D=,()2+()2=42,三角形是直角三角形.故选:C.【点睛】考查了勾股定理,勾股定理的逆定理,关键是求出三角形各边的长.7.一个带盖的长方体盒子的长,宽,高分别是8cm,8cm,12cm,已知蚂蚁想从盒底的A点爬到盒顶的B点,则蚂蚁要爬行的最短行程是()A.28cm B.C.D.20cm【答案】D【解析】【分析】将长方体的盒子按不同方式展开,得到不同的矩形,根据勾股定理求出不同矩形的对角线,最短者即为正确答案.【详解】如图1,把长方体侧面展开,根据勾股定理得,20=cm;如图2,把长方体侧面展开,根据勾股定理得,=cm.∵20<,∴蚂蚁要爬行的最短行程是20cm.故选D【点睛】此题考查了两点之间线段最短,解答时要进行分类讨论,利用勾股定理是解题的关键.8.如图,△ABC 中,DE 是AC 的垂直平分线,AD=5,AE=4,则△ADC 的周长是()A.9 B.13 C.14 D.18【答案】D【解析】【分析】由DE 是AC 的垂直平分线,根据线段垂直平分线的性质,可得AD=CD =5,AC=2AE=8,继而求得△ADC 的周长.【详解】∵DE 是AC 的垂直平分线,∴AD=CD=5,AC=2AE=8,∴△ADC 的周长是:AD+CD+AC=18.故选D.【点睛】本题主要考查线段垂直平分线的性质.注意垂直平分线上任意一点到线段两端距离相等.9.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4 B.5 C.6 D.7【答案】A【解析】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.点睛:勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里,边的平方的几何意义就是以该边为边的正方形的面积.10.如图,在△ABC中,AB=AC,以AB为直径的△O交BC于点D,连结OD,AD.以下结论:△△ADB=90°;△D是BC的中点;△AD是△BAC 的平分线;△OD∥AC,其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】D【解析】【分析】由AB=AC,得到∠B=∠C,由于AB为⊙O的直径,得到∠ADB=90°,得到①正确,再根据等腰三角形三线合一性质得到②③正确,由于OB=OD,于是得到∠B=∠ODB,从而∠C=∠ODB,根据同位角相等,两直线平行即可得到④正确.【详解】解:∵AB=AC,∴∠B=∠C,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∴BD=CD,∠BAD=∠CAD,∴D是BC的中点,AD是∠BAC的平分线,∴①②③正确,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴④正确,故选:D.【点睛】本题考查了等腰三角形的判定与性质,圆周角定理,平行线的判定,熟练掌握等腰三角形的性质-三线合一是解题的关键.。

人教版初2数学8年级下册 第17章(勾股定理)单元复习测试(含答案)

人教版初2数学8年级下册 第17章(勾股定理)单元复习测试(含答案)

专题复习提升训练卷《勾股定理》单元训练人教版八年级数学下册一、选择题1、下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=2、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1、2、3B.2223,4,53、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A. 7,24,25B. 312,412,512C. 3,4,5D. 4,712,8124、如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =()A .125B .95CD .1655、如图,在四边形ABCD 中,2AB BC ==,DC =AD =,90ABC ∠=︒,则四边形ABCD 的面积是().A .6B .8C .10D .126、如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )y C .x y < D .不确定7、已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A . 32B . 332 C . 32D . 不能确定8、七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A. B. C. D.9、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A. 42B. 32C. 42或32D. 37或3310、如图,等边ABC 的边长为8.P ,Q 分别是边,AC BC 上的点,连结,AQ BP ,交于点O .以下结论:①若AP CQ =,则BAP ACQ ≌;②若AQ BP =,则120AOB ∠=︒;③若,7AP CQ BP ==,则5PC =;④若点P 和点Q 分别从点A 和点B 同时出发,以相同的速度向点C运动(到达点C 就停止),则点O经过的路径长为.其中正确的()A .①②③B .①④C .①②D .①③④二、填空题11、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.12、如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为13、如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C到旗杆底部B 的距离为14、已知△ABC 的三边a,b,c 满足(a-5)2+(b-12)2+|c-13|=0,则△ABC 是__________三角形.15、如图是一棵勾股树,它是由正方形和直角三角形排成的,若正方形A ,B ,C ,D 的边长分别是4,5,3,4,则最大正方形E 的面积是___.16、若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为17、如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=BC .如果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要 cm.18、如图,P 是等边ABC ∆中的一个点,2,4PA PB PC ===,则ABC ∆的边长是.19、如图,在Rt △ABC 中,∠C=30°,以直角顶点A 为圆心,AB 长为半径画弧交BC 于点D ,过D 作DE ⊥AC于点E .若DE=a ,则△ABC 的周长用含a 的代数式表示为________________.CBA PCBA20、已知ABC ∆是边长为1的等腰直角三角形,以Rt ABC ∆的斜边AC 为直角边,画第二个等腰Rt ACD ∆,再以Rt ACD ∆的斜边AD 为直角边,画第三个等腰Rt ADE ∆,……,依此类推,第n 个等腰直角三角形的斜边长是 .三、解答题21、如图,在吴中区上方山动物园里有两只猴子在一棵树CD 上的点B 处,且5BC m =,它们都要到池塘A处吃东西,其中一只猴子甲沿树爬至C 再沿CA 走到离树24m 处的池塘A 处,另一只猴子乙先爬到树顶D 处后再沿缆绳DA 线段滑到A 处.已知猴子甲所经过的路程比猴子乙所经过的路程多2m ,设BD 为xm .(1)请用含有x 的整式表示线段AD 的长为 m ;(2)求这棵树高有多少米?22、如图,△ABC ≌△DBE ,∠CBE =60°,∠DCB =30°.求证:DC 2+BE 2=AC 2.23、如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD=45°,AD 与BE 交于点F ,连接CF .(1)求证:BF=2AE ;(2)若,求AD 的长.24、如图,在ABC ∆中,90ACB ∠=︒,AC BC =,P 是ABC ∆内的一点,且123PB PC PA ===,,,求BPC ∠的度数.GFED CBA25、如图,在ABC ∆中,21AC =,13BC =,D 是AC 边上一点,12BD =,16AD =,(1)若E 是边AB 的中点,求线段DE 的长;(2)若E 是边AB 上的动点,求线段DE 的最小值.26、如图,长方形纸片中,,将纸片折叠,使顶点落在边上的 点处,折痕的一端点在边上. (1)如图(1),当折痕的另一端在边上且AE=4时,求AF 的长 (2)如图(2),当折痕的另一端在边上且BG=10时,①求证:EF=EG . ②求AF 的长. (3) 如图(3),当折痕的另一端在边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2cm,且BG=10时,求AF 的长.(图1) (图2) (图3)ABCD 8AB =B AD E G BC F AB F AD F AD GFED C B A HAE F BGC D ABG CDEFH专题复习提升训练卷 《勾股定理》单元训练 人教版八年级数学下册一、选择题1、下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【解析】在直角三角形中,才可应用勾股定理.其次,要注意边和角的对应.故选D.2、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A.1、2、3B.2223,4,5【解析】因为222+=,故选C.3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A. 7,24,25B. 312,412,512C. 3,4,5D. 4,712,812【解析】 按照勾股数的规律计算.选B.4、如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =()A .125B .95C D .165解:∵90ACB ∠=︒,3AC =,4BC =,∴AB 5===,设BD=x ,AD=5-x ,∵CD AB ⊥,∴∠CDA=∠CDB=90°,2222AC AD BC BD -=-,22223(5)4x x --=-, 解得,x=165,故选D5、如图,在四边形ABCD 中,2AB BC ==,DC =AD =,90ABC ∠=︒,则四边形ABCD 的面积是().A .6B .8C .10D .12解:连接AC ,如图:∵90ABC ∠=︒,2AB BC ==,∴AC =;∵在ADC 中,222226AC DC +=+=,226AD ==,∴222A C D C A D +=,ADC 是直角三角形,12222S ABC =⨯⨯= ,162S ADC =⨯= ,268S ABCD S ABC S ADC =+=+= 四边形,故选B6、如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )y C .x y < D .不确定【解析】设AC=BC=a ,=()2220a x y x y -=+>,x y>选B.7、已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A . 32B . 332 C . 32D . 不能确定【解析】如解图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于点H ,则BH =32,AH =AB 2-BH 2=332.连接PA ,PB ,PC ,则S △PAB +S △PBC +S △PCA =S △ABC ,∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH ,∴PD +PE +PF =AH =332. 故选B 8、七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A. B. C. D.【解析】观察可得,选项C 中的图形与原图中的④、⑦图形不符,故选C.9、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A. 42B. 32C. 42或32D. 37或33【详解】情况一:如下图,△ABC 是锐角三角形,∵AD 是高,∴AD⊥BC∵AB=15,AD=12,∴在Rt△ABD 中,BD=9∵AC=13,AD=12,∴在Rt△ACD 中,DC=5,∴△ABC 的周长为:15+12+9+5=42情况二:如下图,△ABC 是钝角三角形,在Rt△ADC 中,AD=12,AC=13,∴DC=5在Rt△ABD 中,AD=12,AB=15,∴DB=9,∴BC=4,∴△ABC 的周长为:15+13+4=32故选:C10、如图,等边ABC 的边长为8.P ,Q 分别是边,AC BC 上的点,连结,AQ BP ,交于点O .以下结论:①若AP CQ =,则BAP ACQ ≌;②若AQ BP =,则120AOB ∠=︒;③若,7AP CQ BP ==,则5PC =;④若点P 和点Q 分别从点A 和点B 同时出发,以相同的速度向点C运动(到达点C 就停止),则点O经过的路径长为.其中正确的()A .①②③B .①④C .①②D .①③④解:①在三角形△BAP 和△ACQ 中:AP CQBAC C AB AC =⎧⎪∠=∠⎨⎪=⎩,则△BAP ≌△ACQ (SAS) ;①正确;②如图1,题中AQ=BP ,存在两种情况:在1P 的位置,∠AOB=120°,在2P 的位置,∠AOB 的大小无法确定;②错误;③本问与AP=CQ 这个条件无关,如图, P 还是会有两个位置即:1P 、2P ,当在1P 时,作BE ⊥AC 于E 点,则E 为AC 中点,∵AB=8,AE=12AC ,∴BE ==,又BP=7,∴1PE ==,∴CP=CE+PE=5,当在2P 时,同理解△BCP ,得CP= CE-PE=3;故③错;④由题可得:AP=BQ ,由对称性可得O 的运动轨迹为△ABCAB 则∵AB=8,∴BC=AB=8,则AB=∴运动轨迹路径长为④正确;∴正确的为①④;故选B二、填空题11、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.【解答】由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1;根据勾股定理得()22213+1x x =+解得84x =,则第⑥组勾股数:13,84,85。

人教版八年级数学下册第17章【 勾股定理】单元测试卷(二)含答案与解析

人教版八年级数学下册第17章【 勾股定理】单元测试卷(二)含答案与解析

人教版八年级数学下册第17章单元测试卷(二)勾股定理学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,∠ACB=90°,AC=40,CB=9,M 、N 在AB 上且AM=AC ,BN=BC ,则MN 的长为( )A .6B .7C .8D .92.如图,AE ,AD 分别是ABC 的高和角平分线,30B ∠=︒,70C ∠=︒,则DAE ∠的度数为( )A .40°B .20°C .10°D .30° 3.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,垂足为E ,AB=23,AC=4,BD=8,则点D 到线段BC 的距离为( )A 3B .3C 221D 421 4.如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB EF =,3FG =,4GC =.有以下四个结论:①BGF CHG ∠=∠;②BFG DHE △△≌;③1tan 3BFG ∠=;④矩形EFGH 的面积是92.其中正确的结论为( )A .①②B .①②③C .①②④D .①②③④ 5.如图:点E 、F 为线段BD 的两个三等分点,四边形AECF 是菱形,且菱形AECF 的周长为20,BD 为24,则四边形ABCD 的面积为( )A .24B .36C .72D .1446.如图,在四边形ABCD 中,如果AD//BC ,AE//CF ,BE=DF ,那么下列等式中错误的是( )A .∠DAE=∠BCFB .AB=CDC .∠BAE=∠DCFD .∠ABE=∠EBC 7.如图,在长方形ABCD 中,点E 在边BC 上,过点E 作EF ⊥AD ,垂足为F ,若EF=BE ,则下列结论中正确的是( )A .EF 是∠AED 的平分线B .DE 是∠FDC 的平分线 C .AE 是∠BAF 的平分线D .EA 是∠BED 的平分线8.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ,则PQ的长为()A.12B.13C.14D.159.如图,⊙O的直径AB与弦CD交于点,AE=6,BE=2,CD=214,则∠AED的度数是()A.30°B.60°C.45°D.36°10.在平面直角坐标系中,已知直线与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是()A.(0,) B.(0,) C.(0,3) D.(0,4)11.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( )A.2016B.2017C.2018D.201912.如图,已知AB∥CD,∠A=60°,∠C =25°,则∠E等于()A .60°B .25°C .35°D .45°二、填空题(本大题共6小题,每小题3分,共18分)13.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,若AB=8,则BD=__________.14.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.15.如图所示,把长方形纸片ABCD 沿EF 折叠后,点D 与点B 重合,点C 落在点C '的位置上若160︒∠=,1AE =.则长方形纸片ABCD 的面积为________.16.如图,将一矩形纸片ABCD 沿着虚线EF 剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE 的长是_____.17.如图,一系列等腰直角三角形(编号分别为①,②,③,④,…)组成了一个螺旋形,其中第 1 个三角形的直角边长为 1,则第 n 个等腰直角三角形的面积为_____________18.如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB′C′D′,若CD =2,DA=2,那么CC′=____________.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.如图,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,AO=CO .(1)求证:四边形ABCD 是平行四边形;(2)若AC ⊥BD ,AB=10,求BC 的长.20.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2,火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连结CF ,AB =a ,BC =b ,AC =c .(1)请你结合图1用文字和符号语言分别叙述勾股定理;(2)请利用直角梯形BCFG 的面积证明勾股定理:222+=a b c .21.如图,一次函数y kx b =+的图象与直线34y x =交于点()4,3A ,与y 轴交于点B ,且OA OB =.(1)求一次函数的表达式;(2)求两直线与y 轴围成的三角形的面积.(3)在x 轴上是否存在点C ,使AOC △是以OA 为腰的等腰三角形,若存在,直接写出C 的坐标;若不存在,说明理由.22.如图,一棵高32m 的大树在一次暴风雨中被刮断,树顶C 落在离树根B 点16m 处.研究人员要查看断痕A 处的情况,在离树根5m 的D 处竖起一架梯子AD ,请问这架梯子的长是多少?23.如图,在平面直角坐标系中,抛物线2y ax bx c =++的图象与x 轴交于A B 、两点(点A在点B 的左边),与y 轴交于点C ,点A 的坐标为()1,0-,抛物线顶点D 的坐标为()1,4-,直线BC 与对称轴相交于点E .(1)求抛物线的解析式;(2)点M 为直线1x =右方抛物线上的一点(点M 不与点B 重合),设点M 的横坐标为m ,记A B C M 、、、四点所构成的四边形面积为S ,若3BCD S S ∆=,请求出m 的值; (3)点P 是线段BD 上的动点,将DEP ∆沿边EP 翻折得到'D EP ∆,是否存在点P ,使得'D EP ∆与BEP ∆的重叠部分图形为直角三角形?若存在,请直接写出BP 的长,若不存在,请说明理由.24.如图,在一条东西走向河流的一侧有一村庄,C 河边原有两个取水点,A ,B 其中,AB AC =由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H A H B (、、在同一条直线上),并新修一条路,CH 测得 1.5CB =千米, 1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路.请通过计算加以说明;(2)求新路CH 比原路CA 少多少千米. 参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。

人教版初中数学八年级下册第十七章《勾股定理》单元检测题(含答案)

人教版初中数学八年级下册第十七章《勾股定理》单元检测题(含答案)
三、解答题
18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .
(1)求AD的长.
(2)求△ABC的周长.
19.如图,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四边形ABCD的面积.
20.如图所示,在 中, , ,在 中, 为 边上的高, , 的面积 .
( )求出 边的长.
《勾股定理》单元检测题
一、选择题(每小题只有一个正确答案)
1.下列数据中不能作为直角三角形的三边长是( )
A。1、1、 B.5、12、13C。3、5、7D。6、8、10
2.已知a、b、c是三角形的三边长,如果满足 ,则三角形的形状是()
A.底与腰不相等的等腰三角形B.直角三角形
C。钝角三角形D。等边三角形
A。3 mB。2。5 mC.2.25 mD。2 m
二、填空题
13.若一个三角形的三边长分别为3 m,4 m,5 m,那么这个三角形的面积为___。
14.如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为米.
15.如图所示的一块地, , , , , ,求这块地的面积__________.
A.锐角弯B。钝角弯C。直角弯D.不能确定
9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD= ,则BC的长为()
A。 B. C. D。
10.下列说法中正确的是()
A.已知 是三角形的三边,则
B.在直角三角形中,两边的平方和等于第三边的平方来自C。在Rt△ 中,∠ °,所以
则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中八年级数学下册第十七章勾股定理单元检测习题二(含答案)如图,已知过A、C、D三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠ABC =24°,那么∠C AB=_____°.
【答案】54
【解析】
【分析】
连接DE、CE,则∠ECD=∠EDC=2∠ABC=48°,进而可知
∠CEA=∠ECD+∠ABC=72°,在△ACE中,根据等腰三角形的性质即可求出∠CAB的度数.
【详解】
连接DE、CE,
∵过A、C、D三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,∴AE=CE=DE=BD,
∴∠DEB=∠ABC=24°,
∴∠ECD=∠EDC=48°,
∴∠AEC=∠ECD+∠ABC=72°,
∵2∠CAE+∠AEC=180°,
∴∠CAE=54°
故答案为54
【点睛】
本题考查的是等腰三角形的性质,三角形内角和定理及三角形外角的性质,根据题意作出辅助线是解答此题的关键.
82.已知x -
1x
=5,则2x +21x =________ 【答案】27
【解析】
【分析】 根据题目将x -1x
=5两边平方,便可求解了. 【详解】 解:x -1x
=5 2x ∴+
2
1x -2=25 2x ∴+21x =27 【点睛】
根据题目特点,进行平方运算,便可找到答案.务必熟悉这类题目,属于常考题.
83.如图,在矩形ABCD 中,AC =6,BC =8,D 是BA 上的一动点,当AD =____________时,∠BDC =2∠BAE .
【答案】11
5
【解析】
分析:取AB的中点F,连接CF,根据∠ACB=90°,得到∠CFA=∠FBF,
∠CFD=2∠ABC=2∠BAE=∠BDC,根据勾股定理求得:AB=10,CG=24
5

CF=5,GD=GF=7
5
,
即可求出AD的长度.
详解:取AB的中点F,连接CF,
∵∠ACB=90°,∴∠CFA=∠FBF,∴∠CFD=2∠ABC=2∠BAE=∠BDC, ∴CD=CF过点C作CG⊥AB于G
∵AC=6,BC=8∴AB=10,CG=24
5
,CF=5,GD=GF=7
5
,
∴AD=
7711 5
555 --=.
故答案为:11.
5
点睛:考查矩形的性质,直角三角形的性质,勾股定理,掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
84..如图,在等腰梯形ABCD中,AD∥BC,对角线AC∥BD于点O,AE∥BC,DF∥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF=
【答案】10
【解析】
过D点作AC的平行线,交BC的延长线于G点,∵AD∵BC,
∵四边形ADGC为平行四边形,
∵DG=AC,
∵AC∵BD,
∵DG∵BD,
∵等腰梯形ABCD,
∵AC=BD,
∵DG=BD,
∵∵DBG为等腰直角三角形,
∵∵G=∵ACE=45°,
∵AE=CE=6,
∵FC=6-4=2,
∵EF=BC-2FC=8-2FC=4,
∵AE+EF=6+4=10.
故选B.
85.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成,//IJ AB ,若6AH ,正方形IJKL 的面积为4,则正方形EFGH 的面积为________.
【答案】100
【解析】
【分析】
先由正方形IJKL 的面积为4得出IJ =2,然后根据全等三角形的性质得出EJ =HI =AH =6,进而得出HJ =8,然后在Rt △HEJ 中利用勾股定理求出EH 2的值即可得出答案.
【详解】
解:∵正方形IJKL 的面积为4,
∴IJ =2,
∵图中的八个直角三角形全等,
∴EJ =HI =AH =6,
∴HJ =HI +IJ =6+2=8.
在Rt △HEJ 中2222286100EH HJ EJ =+=+=,
∴正方形EFGH 的面积为 100.
故答案为:100.
【点睛】
此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形的面积、全等三角形的性质,根据全等三角形的性质和正方形的面积公式得出EJ ,HJ 的长是解决此题的关键.
86.《九章算术》提供了许多整勾股数,如()345,
,,()5,1213,,()7,24,25,()81517
,,等等,并把一组勾股数中最大的数称为“弦数”.后人在此基础上进一步研究,得到如下规律:若m 是大于1的奇数,把它平方后拆成相邻的两个整数,那么m 与这两个整数构成一组勾股数;若m 是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1,加l 得到两个整数,那么m 与这两个整数构成一组勾股数.由上述方法得到的勾股数称为“由m 生成的勾股数”.若“由9生成的勾股数”的“弦数“记为A ,“由20生成的勾股数”的“弦数“记为B ,则A B +=__________.
【答案】142
【解析】
【分析】
根据题述“由m 生成的勾股数”的计算方式,分别求得A 和B 求和即可.
【详解】
解:∵92=81,81=40+41
∴“由9生成的勾股数”的“弦数“记为41,即A=41, ∵220()11012
+=, ∴“由20生成的勾股数”的“弦数“记为101,即B=101,
∴41101142A B +=+=.
故答案为:142.
【点睛】
本题考查勾股数问题.能理解题中的计算方式,并能依此计算是解决此题的关键.需注意在计算“由m 生成的勾股数”时,m 分奇偶计算方式不同.
87.已知一列数1,2,-3,-4,5,6,-7,-8,9,10,-11……按一定规律排列,请找出规律,写出第2019个数是________。

【答案】-2019
【解析】
【分析】
由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.
【详解】
解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,
据此第2019个数的绝对值是2019,
∵2019÷4结果为504余3,
∴第2019个数为负数,
则第2019个数为-2019,
故答案为:-2019.
【点睛】
本题主要考查数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.
三、解答题
88.如图,一架云梯AB长25分米,斜靠在一面墙上,梯子底端B离墙7分米.
(1)这个梯子的顶端A距地面有多高?
(2)如果梯子顶端下滑了4分米,那么梯子的底端在水平方向滑动了多少分米?
【答案】(1)24分米;(2)8分米.
【解析】
【分析】
(1)利用勾股定理可以得出梯子的顶端距离地面的高度.
(2)由(1)可以得出梯子的初始高度,下滑4分米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,即可求得梯子底端水平方向上滑行的距离.【详解】
(1)根据勾股定理: 所以梯子距离地面的高度为:
24AO ===(分米); 答:这个梯子的顶端A 距地面有24分米;
(2)梯子下滑了4分米即梯子距离地面的高度为24420OA =-='(分米), 根据勾股定理:
15OB '==(分米);
所以当梯子的顶端下滑4分米时,梯子的底端水平后移了1578-=(分米), 答:当梯子的顶端下滑4分米时,梯子的底端水平后移了8分米.
【点睛】
本题主要考查了勾股定理的应用以及直角三角形的性质,利用梯子的总长不变得出等式是解题关键.
89.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?
【答案】17.6
【解析】
【分析】
在吸管(杯内部分)、杯底直径、杯高构成的直角三角形中,由勾股定理可求出杯内吸管部分的长度,再加上外露部分的长度即可求出吸管的总长.
【详解】
解:如图;杯内的吸管部分长为AC ,杯高AB=12cm ,杯底直径BC=5cm ; Rt △ABC 中,AB=12cm ,BC=5cm ;
由勾股定理得:AC=13cm 故吸管的长度最少要:13+4.6=17.6cm.
90.在△ABC中,已知∠A=1
3∠B=
1
5
∠C,求∠A、∠B、∠C的度数.
【答案】∠A=20°,∠B=60°,∠C=100°
【解析】
试题分析:此题考查三角形内角和定理,解此题的关键是得出∠B、△C与∠A之间的数量关系.
试题解析:
根据题意,得3∠A=∠B,5∠A=∠C.
由三角形内角和定理,得∠A+∠B+∠C=180°,
则∠A+3∠A+5∠A=180°,
解得∠A=20°.
则∠B=3∠A=60°,
∠C=5∠A=100°.。

相关文档
最新文档