七年级上册数学期末模拟试卷及答案-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学期末模拟试卷及答案-百度文库
一、选择题
1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107
C .6.5×108
D .65×106
2.下列每对数中,相等的一对是( )
A .(﹣1)3和﹣13
B .﹣(﹣1)2和12
C .(﹣1)4和﹣14
D .﹣|﹣13|和﹣(﹣
1)3
3.计算32a a ⋅的结果是( ) A .5a ;
B .4a ;
C .6a ;
D .8a .
4.若21(2)0x y -++=,则2015()x y +等于( ) A .-1
B .1
C .20143
D .20143-
5.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角
∠ACF ,以下结论:
①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
6.﹣2020的倒数是( ) A .﹣2020
B .﹣
1
2020
C .2020
D .
1
2020
7.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 8.已知∠A =60°,则∠A 的补角是( ) A .30°
B .60°
C .120°
D .180°
9.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .
2
123
x -=,变形为232x -= D .21x =,变形为2x =
10.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2 B .4 C .﹣2 D .﹣4 11.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6 B .6- C .6-或6 D .无法确定 12.已知105A ∠=︒,则A ∠的补角等于( )
A .105︒
B .75︒
C .115︒
D .95︒
二、填空题
13.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为
2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 14.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.
15.若方程
11
222
m x x --=++有增根,则m 的值为____. 16.若a a -=,则a 应满足的条件为______.
17.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 18.当x= 时,多项式3(2-x )和2(3+x )的值相等.
19.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 20.方程x +5=
1
2
(x +3)的解是________. 21.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 22.材料:一般地,n 个相同因数a 相乘
n a a a a
⋅⋅⋅个
:记为n a . 如328=,此时3叫做
以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.
23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.
24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
三、压轴题
25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、
2Q 、3Q 的位置如图2所示.
解决如下问题:
(1)如果4t =,那么线段13Q Q =______;
(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.
26.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .
(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?
(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 27.问题:将边长为
的正三角形的三条边分别等分,连接各边对应的等分点,则
该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;
边长为2的正三角形一共有1个.
探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有
个;边长为
2的正三角形共有个.
探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
28.如图1,线段AB的长为a.
(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)
(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.
(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.
29.(1)探究:哪些特殊的角可以用一副三角板画出?
在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)
(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.
①当OB 平分EOD ∠时,求旋转角度α;
②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 30.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?
31.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.
(1)求出数轴上B 点对应的数及AC 的距离.
(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)
②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .
③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数
32.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同
时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)
(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)
(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】
分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 详解:65 000 000=6.5×107. 故选B .
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
2.A
解析:A 【解析】 【分析】
根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】
A.(﹣1)3=﹣1=﹣13,相等;
B.﹣(﹣1)2=﹣1≠12=1,不相等;
C.(﹣1)4=1≠﹣14=﹣1,不相等;
D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.
3.A
解析:A 【解析】
此题考查同底数幂的乘法运算,即(0)m
n
m n
a a a
a +⋅=>,所以此题结果等于325a a +=,
选A;
4.A
解析:A
【解析】
(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.
故选A
5.C
解析:C
【解析】
①∵AD平分△ABC的外角∠EAC,
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正确.
②由(1)可知AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②正确.
③在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°−∠ABD,
故③正确;
④∵∠BAC+∠ABC=∠ACF,
∴1
2
∠BAC+
1
2
∠ABC=
1
2
∠ACF,
∵∠BDC+∠DBC=1
2
∠ACF,
∴1
2
∠BAC+
1
2
∠ABC=∠BDC+∠DBC,
∵∠DBC=1
2
∠ABC,
∴1
2
∠BAC=∠BDC,即∠BDC=
1
2
∠BAC.
故④错误.
故选C.
点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.
6.B
解析:B
【解析】
【分析】
根据倒数的概念即可解答.
【详解】
解:根据倒数的概念可得,﹣2020的倒数是
1 2020 ,
故选:B.
【点睛】
本题考查了倒数的概念,熟练掌握是解题的关键.
7.A
解析:A
【解析】A. 3x+1=4x是一元一次方程,故本选项正确;
B. x+2>1是一元一次不等式,故本选项错误;
C. x2−9=0是一元二次方程,故本选项错误;
D. 2x−3y=0是二元一次方程,故本选项错误。
故选A.
8.C
解析:C
【解析】
【分析】
两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.
【详解】
设∠A的补角为∠β,则∠β=180°﹣∠A=120°.
故选:C.
【点睛】
本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.A
【解析】 【分析】
根据等式的基本性质对各项进行判断后即可解答. 【详解】
选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由
2
123
x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =1
2
,选项D 错误. 故选A. 【点睛】
本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.
10.B
解析:B 【解析】 【分析】
利用相反数的性质列出方程,求出方程的解即可得到x 的值. 【详解】
解:根据题意得:3x ﹣9﹣3=0, 解得:x =4, 故选:B . 【点睛】
此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.
11.C
解析:C 【解析】 【分析】
由题意直接根据根据绝对值的性质,即可求出这个数. 【详解】
解:如果一个有理数的绝对值是6,那么这个数一定是6-或6. 故选:C . 【点睛】
本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
12.B
解析:B 【解析】
由题意直接根据互补两角之和为180°求解即可.
【详解】
解:∵∠A=105°,
∴∠A的补角=180°-105°=75°.
故选:B.
【点睛】
本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.
二、填空题
13.684×1011
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
解析:684×1011
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将 2684 亿用科学记数法表示为:2.684×1011.
故答案为:2.684×1011
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
14.-3
【解析】
【分析】
根据题意将代入方程即可得到关于a,b的代数式,变形即可得出答案.
【详解】
解:将代入方程得到,变形得到,所以=
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方
【解析】
【分析】
根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.
【详解】
解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以
241a b -+=2(2)1 3.a b -+=-
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 15.2
【解析】
【分析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值
【详解】
去分母得:m-1-1=2x+4
将x=-2代入得:m-2=-4
解析:2
【解析】
【分析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值
【详解】
去分母得:m-1-1=2x+4
将x=-2代入得:m-2=-4+4
解得:m=2
故答案为:2
【点睛】
此题考查分式方程的增根,掌握运算法则是解题关键
16.【解析】
【分析】
根据绝对值的定义和性质求解可得.
【详解】
解:,
,
故答案为.
本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.
解析:a 0≥
【解析】
【分析】
根据绝对值的定义和性质求解可得.
【详解】 解:a a -=,
a 0∴≥,
故答案为a 0≥.
【点睛】
本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.
17.>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:,,
.
故答案为:
【点睛】
本题考查了多重符号化简和有理数的大小比较,
解析:>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:(9)9--=,(9)9-+=-,
(9)(9)∴-->-+.
故答案为:>
【点睛】
本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
18.【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
解析:【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
19.5或11
【解析】
【分析】
由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】
由于C点的位置不确定,故要分两种情况讨论:
当C点在B点右侧时,如图所示:
AC=AB+
解析:5或11
【解析】
【分析】
由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.
【详解】
由于C点的位置不确定,故要分两种情况讨论:
当C点在B点右侧时,如图所示:
AC=AB+BC=8+3=11cm;
当C点在B点左侧时,如图所示:
AC=AB﹣BC=8﹣3=5cm;
所以线段AC等于11cm或5cm.
20.x=-7
【解析】
去分母得,2(x+5)=x+3,
去括号得,2x+10=x+3
移项合并同类项得,x=-7.
解析:x=-7
【解析】
去分母得,2(x+5)=x+3,
去括号得,2x+10=x+3
移项合并同类项得,x=-7.
21.正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考
解析:正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 22.2
【解析】
根据定义可得:因为,所以,故答案为:2.
解析:2
【解析】
根据定义可得:因为239=,所以3log 92=,故答案为:2.
23.40
【解析】
【分析】
由OA 恰好是
COD 的三等分线可得或,旋转角为,求出其度数取最小值即可.
【详解】
解:因为,OC 、OD 是AOB 的两条三分线,所以
因为OA 恰好是
COD 的
解析:40
【解析】
【分析】 由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.
【详解】
解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=
因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,
当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=
当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,
综上所述将∠COD 顺时针最少旋转40︒.
故答案为:40︒
【点睛】
本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.
24.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.
三、压轴题
25.(1)4;(2)
12或72;(3)27或2213或2 【解析】
【分析】
(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.
(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由
(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.
(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =
【详解】
解:(1)∵t+2t+3t=6t,
∴当t=4时,6t=24,
∵24122=⨯,
∴点3Q 与M 点重合,
∴134Q Q =
(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2
= (3)情况一:3t+4t=2, 解得:2t 7
= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=
情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)
综上所述:t的值为,2或2
7
或
22
13
.
【点睛】
本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.
26.(1)10
7
秒或10秒;(2)
14
13
或
114
13
.
【解析】
【分析】
(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;
(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,
由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.
【详解】
(1)∵|a-20|+|c+10|=0,
∴a-20=0,c+10=0,
∴a=20,c=﹣10.
设点B对应的数为b.
∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).
解得:b=10.
当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.
∵Q到B的距离与P到B的距离相等,
∴|﹣10+5t﹣10|=|20+2t﹣10|,
即5t﹣20=10+2t或20﹣5t=10+2t,
解得:t=10或t=10
7
.
答:运动了10
7
秒或10秒时,Q到B的距离与P到B的距离相等.
(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.
∵点M为线段PR的中点,点N为线段RQ的中点,
∴点M对应的数为22420
2
x x
++-
=
44
2
x
+
,
点N对应的数为205
2
x x
-+
=2x+10,
∴MN =|442
x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.
分三种情况讨论:
①当0<x <4时,12﹣1.5x +20﹣5x =25, 解得:x =1413
; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,
解得:x =
667
>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,
解得:x 31141=. 综上所述:x 的值为
1413或11413
. 【点睛】
本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.
27.探究三:16,6;结论:n²,
;应用:625,300. 【解析】
【分析】
探究三:模仿探究一、二即可解决问题;
结论:由探究一、二、三可得:将边长为
的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有
个;边长为2的正三角形共有
个; 应用:根据结论即可解决问题.
【详解】
解:探究三:
如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有
个;
边长为2的正三角形有
个. 结论:
连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有
个,共有个;
边长为2的正三角形,共有个.
应用:
边长为1的正三角形有=625(个),
边长为2的正三角形有(个).
故答案为探究三:16,6;结论:n², ;应用:625,300.
【点睛】
本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.
28.(1)详见解析;(2)35;(3)﹣5、15、112
3
、﹣7
6
7
.
【解析】
【分析】
(1)根据尺规作图的方法按要求做出即可;
(2)根据中点的定义及线段长度的计算求出;
(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.
【详解】
解:(1)如图所示;
(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有
点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35
(3)设乙从M点第一次回到点N时所用时间为t,则
t=2235
22
MN⨯
==35(秒)
那么甲在总的时间t内所运动的长度为
s=5t=5×35=175
可见,在乙运动的时间内,甲在C,D之间运动的情况为
175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有
5t1=2t1+15,t1=5(秒)
而﹣30+5×5=﹣5,﹣15+2×5=﹣5
这时甲和乙所对应的有理数为﹣5.
②设甲乙第二次相遇时的时间经过的时间t2,有
5t2+2t2=25+30+5+10,t2=10(秒)
此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15
这时甲和乙所对应的有理数为15.
③设甲乙第三次相遇时的时间经过的时间t3,有
5t3﹣2t3=20,t3=20
3
(秒)
此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123
这时甲和乙所对应的有理数为11
23 ④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t 4,有
5t 4﹣1123﹣30﹣15+2t 4=1123
,t 4=91621(秒) 此时甲的位置:5×9
1621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767 这时甲和乙所对应的有理数为﹣7
67. 四次相遇所用时间为:5+10+
203+91621=3137(秒),剩余运行时间为:35﹣3137=347
(秒) 当时间为35秒时,乙回到N 点停止,甲在剩余的时间运行距离为5×3
47=5257⨯=1767
. 位置在﹣7
67+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767
.
【点睛】
本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.
29.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.
【解析】
【分析】
(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;
(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12
×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.
【详解】
解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,
∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;
故选④;
(2)①因为COD 60∠=,
所以EOD 180COD 18060120∠∠=-=-=.
因为OB 平分EOD ∠, 所以11EOB EOD 1206022
∠∠==⨯=. 因为AOB 45∠=,
所以αEOB AOB 604515∠∠=-=-=.
②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.
因为BOC 2AOD ∠∠=,
所以()135α2120α-=-.
解得α105=.
当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.
因为BOC 2AOD ∠∠=,
所以()135α2α120
-=-.
解得α125=.
综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.
【点睛】
本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.
30.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;
(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;
②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.
【详解】
解:(1)∵数轴上点A 表示的数为6,
∴OA =6,
则OB =AB ﹣OA =4,
点B 在原点左边,
∴数轴上点B 所表示的数为﹣4;
点P 运动t 秒的长度为5t ,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P所表示的数为:6﹣5t,
故答案为﹣4,6﹣5t;
(2)①点P运动t秒时追上点Q,
根据题意得5t=10+3t,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+3a﹣5a=8,解得a=1;
当P超过Q,则10+3a+8=5a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
31.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4
【解析】
【分析】
(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;
(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;
②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;
③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC
列出方程,进而求出P点在数轴上对应的数.
【详解】
(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,
∴B点对应的数为60﹣30=30;
∵C点到A点距离是B点到A点距离的4倍,
∴AC=4AB=4×30=120;
(2)①当P点在AB之间运动时,
∵AP=3t,
∴BP=AB﹣AP=30﹣3t.
故答案为30﹣3t;
②当P点是A、B两个点的中点时,AP=1
2
AB=15,
∴3t=15,解得t=5;。