传感器概述

合集下载

简述传感器定义

简述传感器定义

简述传感器定义传感器是一种能够感知和测量环境中各种物理量并将其转化为可供人类理解或机器处理的信号的设备。

传感器的作用类似于人类的感官系统,能够帮助我们感知世界并做出相应的反应。

传感器广泛应用于各个领域,如工业生产、医疗保健、环境监测、交通运输等,发挥着重要的作用。

传感器的工作原理基本上是通过将某种物理量转化为电信号,然后通过电路处理这些信号并输出结果。

传感器可以感知的物理量包括温度、压力、光线强度、声音等,不同的传感器可以感知不同的物理量。

传感器的种类也非常多样,包括光学传感器、压力传感器、温度传感器、声音传感器等等。

每种传感器都有其特定的工作原理和应用场景。

在工业生产领域,传感器被广泛应用于监测生产过程中的各种参数,如温度、压力、流量等,以确保生产过程稳定运行并提高生产效率。

在医疗保健领域,传感器被用于监测患者的生理参数,如心率、血压等,帮助医生及时了解患者的健康状况并采取相应的治疗措施。

在环境监测领域,传感器被用于监测大气污染、水质污染等环境参数,以帮助监管部门及时采取措施保护环境。

在交通运输领域,传感器被用于监测交通流量、道路状态等信息,以帮助交通管理部门优化交通流动并提高交通效率。

随着科技的不断发展,传感器技术也在不断创新和进步。

传感器不仅变得更加精确和灵敏,还变得更加智能化和多功能化。

例如,智能手机上的各种传感器可以实现重力感应、光线感应、陀螺仪等功能,为用户提供更加便利的体验。

随着物联网技术的普及,传感器还可以实现设备之间的互联互通,实现智能家居、智慧城市等应用,为人们的生活带来更多的便利和舒适。

总的来说,传感器作为一种重要的感知设备,已经深入到人类社会的各个角落。

它不仅帮助人类更好地了解和控制周围的环境,还推动了社会的科技进步和发展。

随着科技的不断发展和创新,传感器技术也将不断进步,为人类创造出更加美好的未来。

传感器的定义可能会随着技术的不断发展而有所变化,但其作为一种感知和测量设备的基本作用将不会改变。

传感器概述

传感器概述

被测信息 敏感元件
转换元件
输出信息 信号调理电路
辅助电源Байду номын сангаас路
图1. 2 传感器组成框图
1.3 传感器分类
传感器是一门知识密集型技术,传感器原理 各异,学科广泛,种类繁多,分类方法如下:
(1)按照传感器的工作机理,可分为物理型、 化学型、生物型等。
(2)从构成原理分为结构型和物性型两类。
(3)按照物理原理分类,可分为电参量式传 感器(包括电阻式、电感式、电容式等基本型 式)、磁电式传感器(包括磁电感应式、霍尔式、 磁栅式等)、压电式传感器、光电式传感器、气 电式传感器、波式传感器(包括超声波
式、微波式等)、射线式传感器、半导体式传 感器、其他原理的传感器(如振弦式和振筒式 传感器等)。
(4)按传感器的能量转换情况,可分为能量 控制型传感器和能量转换型传感器。
(5)从传感器应用分类,分为位移传感器、 压力传感器、振动传感器、温度传感器。
另外,根据传感器输出是模拟信号还是数 字信号,可分为模拟传感器和数字传感器;根 据转换过程可逆与否,可分为双向传感器和单 向传感器等…。
传感检测技术基础
传感器概述
1.1 传感器定义
传感器是一种以一定的精确度把被测量转 换为与之有确定对应关系、便于应用的某种物 理量的测量装置
1.2 传感器构成
传感器一般是利用物理、化学和生物等学 科的某些效应或机理按照一定的工艺和结构研 制出来的。因此,传感器的组成的细节有较大
差异。但是,总的来说,传感器应由敏感元件、转 换元件和信号调理电路组成,有些包含有辅助电源 电路,如图1.2所示。
1.4 传感器技术的基本概况
1.传感器的基本要求
可靠性;静态特性;动态性能;量程;抗干扰能 力;通用性;轮廓尺寸;成本;能耗;对被测对象的 影响等。

简述传感器定义

简述传感器定义

简述传感器定义
传感器是一种能够感知、检测并接收外部环境信息的设备,它能够将物理量或化学量转换成电信号或其他可以辨识的形式。

传感器的作用在于将各种不同的物理量转换成电信号,从而实现对环境的监测和控制。

传感器在现代科技中扮演着至关重要的角色,它们被广泛应用于各个领域,如工业生产、医疗保健、环境监测、交通运输等。

通过传感器,人们可以实时地获取到各种环境参数,从而更好地了解和控制周围的环境。

传感器的种类繁多,根据其工作原理和应用领域的不同,可以分为多种类型。

常见的传感器包括温度传感器、湿度传感器、压力传感器、光敏传感器、声音传感器等。

这些传感器能够实现对不同物理量的监测和检测,从而为人们提供了更多的信息和数据支持。

传感器的工作原理也各不相同,但基本原理是一致的:通过特定的传感元件将感知到的物理量转换成电信号,再通过信号处理电路将其转换成人们可以理解的形式。

这样,人们就可以通过传感器获取到所需的信息,从而实现对环境的监测和控制。

随着科技的不断发展,传感器的应用范围也在不断扩大。

人们不仅可以通过传感器监测环境的温度、湿度、压力等基本参数,还可以通过传感器实现对生物体的监测,如心率、血压等。

传感器的应用
不仅提高了生产效率,还为人们的生活带来了便利与安全。

总的来说,传感器作为一种能够感知、检测并接收外部环境信息的设备,在现代科技中扮演着至关重要的角色。

通过传感器,人们可以实时获取各种环境参数,从而更好地了解和控制周围的环境。

传感器的应用范围越来越广泛,其在各个领域的作用也越来越重要,可以说传感器已经成为现代社会不可或缺的一部分。

传感器概述

传感器概述

第一章传感器概述1.1 传感器的组成与分类1.1.1 传感器的定义✧传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。

通常由敏感元件和转换元件组成。

敏感元件指传感器中能直接感受被测量的部分,转换元件指传感器中能将敏感元件输出转换为适于传输和测量的电信号部分。

✧传感器输出信号有很多形式,如电压、电流、频率、脉冲等,输出信号的形式由传感器的原理确定。

1.1.2 传感器的组成✧一般讲传感器由敏感元件和转换元件组成。

但由于传感器输出信号一般都很微弱,需要有信号调节与转换电路将其放大或转换为容易传输、处理、记录和显示的形式。

因此调节信号与转换电路及所需电源都应作为传感器组成的一部分。

如图1-1所示。

传感器组成方块图✧常见的调节信号与转换电路有放大器、电桥、振荡器、电荷放大器等,他们分别与相应的传感器相配合。

1.1.3 传感器的分类✧表1-1 按输入量分类、按工作原理分类、按物理现象分类、按能量关系分类和按输出信号分类。

1.2 传感器在科技发展中的重要性1.2.1 传感器的作用与地位将计算机比喻人的大脑,传感器比喻为人的感觉器官。

功能正常完美的感觉器官,迅速准确地采集与转换获得的外界信息,使大脑发挥应有的作用。

自动化程度越高,对传感器的依赖性就越大。

1.2.2 传感器技术是信息技术的基础与支柱现代信息技术的基础是信息采集、信息传输与信息处理,它们就是传感器技术、通信技术和计算机技术。

传感器在信息采集系统中处于前端,它的性能将影响整个系统的工作状态和质量。

1.2.3 科学技术的发展与传感器有密切关系传感器的重要性还体现在已经广泛应用于各个学科领域。

如工业自动化、农业现代化、军事工程、航天技术、机器人技术、资源探测、海洋开发、环境监测、安全保卫、医疗诊断、家用电器等领域。

1.3 传感器技术的发展动向✧传感器技术共性是利用物理定律和物质的物理、化学和生物特性,将非电量转换成电量。

✧传感器技术的主要发展方向一是开展基础研究,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化与智能化。

传感器详细介绍范文

传感器详细介绍范文

传感器详细介绍范文传感器是一种能够感知环境、参数和物体特征的设备。

它能够将收集到的信息转换为电信号或其他形式的输出信号,以供其他设备或系统进行处理和分析。

传感器广泛应用于各个领域,如工业、农业、医疗、交通、航空航天等,是现代化技术的重要组成部分。

传感器的工作原理基于一系列物理、化学或生物现象。

不同类型的传感器具有不同的工作原理,常见的传感器类型包括光传感器、温度传感器、压力传感器、湿度传感器、加速度传感器、磁场传感器、声音传感器、气体传感器等。

光传感器是一种能够感知光线强度的传感器。

它能够将收集到的光信号转换为电信号,从而用于测量光强度、检测物体的存在和位置等。

光传感器被广泛应用于自动照明控制、家电设备、相机和光电耦合等领域。

温度传感器是一种用于测量环境或物体温度的传感器。

它可以感知温度的变化并将其转换为电信号。

温度传感器有多种类型,如热电偶、热电阻和半导体温度传感器等。

它们在工业生产、气象、医疗、汽车等领域具有广泛的应用。

压力传感器是一种用于测量气体或液体压力的传感器。

它能够感知压力的变化并将其转换为电信号。

根据工作原理的不同,压力传感器可以分为压阻传感器、电容传感器和压电传感器等。

压力传感器广泛应用于工业自动化、机械制造、航空航天等领域。

湿度传感器是一种用于测量环境或物体湿度的传感器。

它能够感知湿度的变化并将其转换为电信号。

湿度传感器通常采用电容传感器或电阻传感器的工作原理。

它们在农业、气象、冷链物流等领域具有广泛的应用。

加速度传感器是一种用于测量物体加速度的传感器。

它能够感知物体的加速度并将其转换为电信号。

加速度传感器通常是基于压电效应、电容效应或磁效应的工作原理。

它们在汽车安全、运动检测、物体定位等领域具有重要的应用。

磁场传感器是一种用于测量磁场强度的传感器。

它能够感知磁场的变化并将其转换为电信号。

磁场传感器通常采用霍尔效应或磁阻效应的工作原理。

它们在导航、电子罗盘、磁共振成像等领域具有广泛的应用。

常用传感器及芯片

常用传感器及芯片

常用传感器及芯片摘要:一、传感器概述1.传感器定义与作用2.传感器的分类二、常见传感器介绍1.温度传感器2.湿度传感器3.压力传感器4.光线传感器5.距离传感器6.指纹传感器三、传感器与芯片的关联1.传感器芯片的定义与作用2.常见传感器芯片的类型与特点四、传感器在我国的应用与发展1.我国传感器产业的现状2.我国传感器产业的发展趋势五、传感器在未来的展望1.新型传感器的研发与应用2.传感器在物联网、人工智能等领域的潜力与应用正文:一、传感器概述传感器是一种能够感受到被测量的信息,并按照一定的规律转换成可用输出的器件或装置。

它在我们日常生活中有着广泛的应用,如智能家居、健康医疗、工业生产等。

传感器可以按照不同的分类标准进行分类,如工作原理、测量种类等。

二、常见传感器介绍1.温度传感器:用于测量环境或物体的温度,如热电偶、热敏电阻等。

2.湿度传感器:用于测量环境或物体的湿度,如电容式湿度传感器等。

3.压力传感器:用于测量物体所受到的压力,如硅压阻式压力传感器等。

4.光线传感器:用于测量环境的光线强度,如光敏电阻、光电二极管等。

5.距离传感器:用于测量物体之间的距离,如红外距离传感器、超声波距离传感器等。

6.指纹传感器:用于采集指纹信息,如电容式指纹传感器、光学指纹传感器等。

三、传感器与芯片的关联传感器芯片是将传感器与微处理器、信号处理器等集成在一起的芯片。

它能够实现对传感器的数据采集、处理和传输等功能。

常见的传感器芯片有单片机、微控制器、ASIC 等。

四、传感器在我国的应用与发展我国传感器产业经过多年的发展,已经形成了一定的产业规模和体系。

然而,与发达国家相比,我国传感器产业在技术水平、产品质量等方面仍有一定差距。

未来,我国传感器产业将加大研发投入,提高产业整体水平,以满足国家经济和科技发展的需求。

五、传感器在未来的展望随着科技的进步,新型传感器不断研发成功并投入应用,如量子传感器、生物传感器等。

第1章传感器概述

第1章传感器概述

H max——正反行程输出值间的最大差值。 式中:
1.2 传感器的一般特性
4.重复性
重复性是指传感器在输入量按同一方向作全量 程连续多次变化时,所得特性曲线不一致的程 度,如图所示:
图1-5 重复性
1.2 传感器的一般特性
重复性误差属于随机误差,常用标准偏差σ表示, 也可用正反行程中的最大偏差ΔRmax表示,即:
1.2 传感器的一般特性
以动态测温的问题为例说明传感器动态特性。 在被测温度随时间变化或传感器突然插入被测 介质中以及传感器以扫描方式测量某温度场的 温度分布等情况下,都存在动态测温问题,如 图所示:
动态测温
1.2 传感器的一般特性
传感器的种类和形式很多,但它们一般可以 简化为一阶或二阶系统。 高阶可以分解成若干个低阶环节。 对于正弦输入信号,传感器的响应称为频率 响应或稳态响应;对于阶跃输入信号,则称 为传感器的阶跃响应或瞬态响应。
1.1 基本概念
附:传感器组成示意图
敏感元件的输出作 为转换元件的输入
被测量
敏感 元件
转换 元件
转换 电路
电量
直接感受被测量
转化为电量参数
传感器组成示意图
1.1 基本概念
1.1.3 传感器的分类
按工作机理分类 可分为物理型、化学型、生物型 按构成原理又分为:结构型、物性型和复合型三大类 按能量的转换分类 可分为能量控制型和能量转换型 按输入量分类 常用的有机、光、电和化学等传感器 按输出信号的性质分类 可分为模拟式传感器和数字式传感器
图1-3 传感器的灵敏度
1.2 传感器的一般特性
3.迟滞
传感器在正(输入量增大)反(输入量减小) 行程期间其输出-输入特性曲线不重合的现象 称为迟滞,如下图所示:

传感器的分类和特点

传感器的分类和特点

传感器的分类和特点1. 传感器的概述传感器是一种能够将物理量或化学量转化为电信号的装置,用于感知和测量环境中的各种参数。

传感器在各个领域中都有广泛的应用,如工业自动化、医疗设备、环境监测等。

传感器的分类主要根据其工作原理、测量物理量和应用领域来进行。

本文将对常见的传感器分类及其特点进行详细介绍。

2. 传感器的分类2.1 按工作原理分类2.1.1 电阻式传感器电阻式传感器是利用物质的电阻随温度、压力等物理量变化而变化的原理进行测量。

常见的电阻式传感器有温度传感器、压力传感器等。

温度传感器根据热敏材料(如热敏电阻、热敏电容)的特性来测量环境温度。

压力传感器则利用压敏电阻或压敏薄膜测量介质压力。

2.1.2 容抗式传感器容抗式传感器是利用物质的电容随温度、湿度等物理量变化而变化的原理进行测量。

常见的容抗式传感器有湿度传感器、接近开关等。

湿度传感器通过测量介质中水分含量来得知湿度信息。

接近开关则通过测量物体与传感器之间的电容变化来判断物体是否接近。

2.1.3 感应式传感器感应式传感器是利用物质对磁场或电磁波的敏感性进行测量的传感器。

常见的感应式传感器有磁场传感器、光电传感器等。

磁场传感器通过检测磁场的强度和方向来获得相关信息。

光电传感器则是利用光敏元件对光信号的敏感性进行测量,常用于测距、检测物体颜色等。

2.2 按测量物理量分类2.2.1 温度传感器温度传感器广泛应用于各个领域,如工业控制、气象监测、医疗设备等。

常见的温度传感器有热敏电阻(如铂电阻)、热敏电容、热电偶等。

热敏电阻是一种电阻随温度变化的传感器,常用于测量室内温度、液体温度等。

热敏电容则是利用介质的电容随温度变化来测量温度。

2.2.2 压力传感器压力传感器用于测量气体或液体的压力,广泛应用于工业自动化、汽车行业等领域。

常见的压力传感器有压阻式传感器和压电式传感器。

压阻式传感器利用弹性元件(如金属薄膜)的形变来测量压力。

压电式传感器则是利用壳体上附着的压电材料产生电荷来测量压力。

第1章传感器概述

第1章传感器概述

第1章传感器概述传感器原理及应用第1章传感器概述主要内容:1.1什么是传感器1.2传感器的作用和地位1.3传感器现状和国内外发展趋势1.4检测系统的组成原理1.5传感器的定义、组成和分类方法1.1什么是传感器在我们日常生活中,使用着各种各样的传感器电冰箱、电饭煲中的温度传感器;空调中的温度和湿度传感器;抽油烟机中的煤气泄漏传感器;电视机和影碟机中的红外遥控器;照相机中的光传感器;汽车中燃料计和速度计等等,不胜枚举。

1.1什么是传感器1.1什么是传感器眼(视觉)耳(听觉)鼻(嗅觉)皮肤(触觉)舌(味觉)1.1什么是传感器如果用机器完成这一过程,计算机相当人的大脑,执行机构相当人的肌体,传感器相当于人的五官和皮肤。

传感器又是人体感官的延长,有人又称传感器为“电五官”,它作为替代补充人的感觉器官功能,传感器为人类客观定量认识世界起到重要作用。

1.1什么是传感器1.1什么是传感器1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位第1章传感器概述1.2传感器技术的作用和地位第1章传感器概述第1章传感器概述第1章传感器概述1.2传感器技术的作用和地位第1章传感器概述第1章传感器概述1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位第1章传感器概述1.3传感器现状和国内外发展趋势1.3传感器现状和国内外发展趋势1.3传感器现状和国内外发展趋势1.3传感器现状和国内外发展趋势使现场数据就近登陆,通过Internet网与用户之间异地交换数据远程控制等。

传感器的数字化和网络化1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.6本课程的特点和研究内容1.6本课程的特点和研究内容传感器原理及应用第1章传感器概述传感器发展趋势传感器的历史远比近代科学来得古老,如‘天平’古埃及开始使用、利用液体热膨胀进行温度测量,在16世纪前后实现的。

传 感 器 概 述

传 感 器 概 述

第2章 传 感 器 概 述
4. 重复性
重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所
得特性曲线不一致的程度(见图2-6)。
y YF S Rm ax 2 Rm ax 1 o
图2-6 重复性
x
第2章 传 感 器 概 述
重复性误差属于随机误差,常用标准差σ 计算,也可用正反行程中 最大重复差值Δ Rmax计算,即
第2章 传 感 器 概 述
Lm ax
y YF S
y YF S
Lm ax
L1 = Lm ax
y YF S
y YF S
L3 = Lm ax
L2
o (a )
x
o (b )
x
o (c)
L1
x
o (d )
L2
L3
x
(a) 理论拟合;
(b) 过零旋转拟合;
(c) 端点连线拟合;
特性线性化,所采用的直线称为拟合直线。
传感器的线性度是指在全量程范围内实际特性曲线与拟合直线之 间的最大偏差值Δ Lmax与满量程输出值YFS之比。线性度也称为非线性
误差,用γ L表示,即
Lmax L 100% YFS
式中: Δ Lmax——最大非线性绝对误差; YFS——满量程输出值。
y YF S 实际 特性曲 线
理想 特性曲 线 o
图2-3 线性度
x
第2章 传 感 器 概 述
在实际使用中,为了标定和数据处理的方便,希望得到线性关系, 因此引入各种非线性补偿环节,如采用非线性补偿电路或计算机软件 进行线性化处理,从而使传感器的输出与输入关系为线性或接近线性, 但如果传感器非线性的方次不高, 输入量变化范围较小时,可用一条 直线(切线或割线)近似地代表实际曲线的一段,使传感器输入输出

第1章传感器概述

第1章传感器概述
水的硬度与洗涤剂分配有关,水的硬度测量是利用测量 电导率的传感器来实现的。由于水中的盐类影响,测量 结果还不够精确。
泡沫也是可以测量的,近年来使用相对便宜的红外线传 感器,通过记录红外光的衰减进行泡沫浑浊度测量。但 是,这一领域的最大进步还未到来。
LED 泡沫 管子
感光晶体管
浑浊度传感器测量泡沫质量的工作原理

感官
大脑
肌体



传感器
计算机
执行机构
第1章 传感器概述
1.1 什么是传感器
传感与检测技术
对于各种各样的被测量,有着各种各样的传感器。 下面请看几个传感器应用实例:
智 能 远 程 数 字 压 力 表 机械式弹簧压力表
第1章 传感器概述
1.1 什么是传感器
传感与检测技术
智 能 数 字 压 力 表
传感与检测技术
(3)烘干机: 温度 —— NTC 湿度 —— 电导传感器
(4)制冷机: 温度
(5)烤箱: 温度 —— pt100
(6)微波炉: 温度 —— NTC 湿度 —— 陶瓷传感器 气体
第1章 传感器概述 传感与检测技术
1.2 传感器技术的作用和地位
家用电器
( 7 ) 吹风机: 温度 —— NTC 温度(非接触)—— 红外线热电偶 气流
现代工业生产,尤其是自动化生产过程中,每个生产环 节都需要用各种传感器监视和控制生产过程的各个参数, 一是保证产品达到最好的质量,二是保证设备工作在最 佳状态。传感器是自动控制系统的关键基础器件,直接 影响到自动化技术的水平。
背投电视生产线
调试系统
空调生产线
网络产品生产线
液晶产品生产线
全国最大的插件机群

传感器的概述

传感器的概述

第一章 传感器的概述1.传感器的定义能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置叫做传感器。

2.传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量(位移、速度、加速度、力等)转换成 电量(电压、电流、电容、电阻等)输出。

3.传感器的组成:传感器由有敏感元件、转换元件、信号调理电路、辅助电源组成。

传感器基本组成有敏感元件和 转换元件两部分,分别完成检测和转换两个基本功能。

第二章 传感器的基本特性1.传感器的基本特性:静态特性、动态特性。

2.衡量传感器静态特性的主要指标有:线性度 、灵敏度 、分辨率迟滞 、重复性 、漂移。

3.迟滞产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等。

4.产生漂移的原因:①传感器自身结构参数老化;②测试过程中环境发生变化。

5.例题:1.用某一阶环节传感器测量100Hz 的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少? 解:一阶传感器的频率响应特性: 幅频特性:2.在某二阶传感器的频率特性测试中发现,谐振发生在频率为216Hz 处,并得到最大福祉比为1.4比1,试估算该传感器的阻尼比和固有频率的大小。

3.玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。

现已知某玻璃水银温度计特性的微分方1)(1)(+=ωτωj j H )(11)(ωτω+=A s rad f n n /135********.014.121)(A )(4)(1)(A n max n 21222=⨯=======⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-=-ππωωξξωωωωωξωωω所以,时共振,则当解:二阶系统程是x y dtdy310224-⨯=+ ,y 代表水银柱的高度,x 代表输入温度(℃)。

求该温度计的时间常数及灵敏度。

解:原微分方程等价于:x y dt dy3102-=+ 所以:时间常数T=2S, 灵敏度Sn=10-3第三章 电阻式传感1.应变式电阻传感器的特点: 1)优点:①结构简单,尺寸小,质量小,使用方便,性能稳定可靠;②分辨力高,能测出极微小的应变;③灵敏度 高,测量范围广,测量速度快,适合静、动态测量;④易于实现测试过程自动化和多点同步测量、远距离 测量和遥测;⑤价格便宜,品种多样,工艺较成熟,便于选择和使用,可以测量多种物理量。

传感器工作原理

传感器工作原理

传感器工作原理引言概述:传感器是一种能够感知和测量环境中各种物理量的设备。

它们在现代科技和工业领域中起着至关重要的作用。

本文将详细介绍传感器的工作原理,包括传感器的基本概念、工作原理的分类和具体的工作原理。

一、传感器的基本概念1.1 传感器的定义和作用传感器是一种能够将环境中的物理量转化为可测量的电信号或其他形式的信号的装置。

它们广泛应用于各个领域,如工业自动化、医疗设备、汽车工程等,用于测量温度、压力、湿度、光强等各种物理量。

1.2 传感器的组成和结构传感器通常由感知元件、信号处理电路和输出装置组成。

感知元件是传感器的核心部分,它能够感知并转化物理量为电信号。

信号处理电路对感知元件输出的信号进行放大、滤波和转换等处理,以得到可用的信号。

输出装置将处理后的信号转化为人们能够理解的形式,如数字显示、声音或光信号。

1.3 传感器的特点和分类传感器具有高灵敏度、高精度、快速响应和稳定性等特点。

根据测量的物理量不同,传感器可以分为温度传感器、压力传感器、湿度传感器、光传感器等多种类型。

二、传感器工作原理的分类2.1 电阻型传感器电阻型传感器是一种将物理量转化为电阻变化的传感器。

它利用感知元件的电阻随物理量变化而变化的特性进行测量。

常见的电阻型传感器包括热敏电阻、应变片和光敏电阻等。

2.2 电容型传感器电容型传感器是一种将物理量转化为电容变化的传感器。

它利用感知元件的电容随物理量变化而变化的特性进行测量。

常见的电容型传感器包括湿度传感器和接触式位移传感器等。

2.3 磁感应型传感器磁感应型传感器是一种利用磁场的变化来感知物理量的传感器。

它通过感知元件对磁场的变化进行测量。

常见的磁感应型传感器包括磁敏电阻、霍尔元件和磁电感传感器等。

三、传感器工作原理的具体应用3.1 温度传感器的工作原理和应用温度传感器通常采用热敏电阻或热电偶作为感知元件,利用物质的热膨胀特性或热电效应来测量温度。

它广泛应用于空调、冰箱、汽车引擎等领域。

传感器基础知识课件

传感器基础知识课件
能力。
分辨率
分辨率是指传感器能够检测到的最 小输入变化量。分辨率越高,传感 器能够检测到的信号越微弱。
交叉灵敏度
交叉灵敏度是指传感器对非测量方 向的输入变化的敏锐程度。交叉灵 敏度会影响传感器的测量精度和稳 定性。
分辨率
绝对分辨率
绝对分辨率是指传感器能够检测 到的最小输入变化量。绝对分辨 率反应了传感器对微弱信号的检
新技术
新兴技术如物联网、人工智能等正在与传感器技术深度融会,推动传感器向智能化、网络化方向发展 。
微型化与集成化
微型化
随着微纳加工技术的进步,传感 器正变得越来越微型化,这使得 传感器能够应用于更广泛的领域 ,如生物医疗、环境监测等。
集成化
将多个传感器集成到一个芯片上 ,实现多参数、多功能的测量, 有助于提高传感器的测量效率和 精度。
环境稳定性
环境稳定性是指传感器在不同环境条件下(如温度、湿度 、压力、振动等)的性能表现。环境稳定性是衡量传感器 在不同工作环境下性能稳定性的重要指标。
重复性
重复性是指传感器在相同条件下重复测量同一物理量时, 其输出值的一致程度。重复性是衡量传感器测量精度的重 要指标。
响应时间
响应时间
响应时间是指传感器从接收到输入信号到产生相应输出信号所需 的时间。响应时间是衡量传感器快速响应能力的重要指标。
工作原理
转换机制
传感器的工作原理是将输入的信号转换成电信号。例如,电阻式传感器通过改 变电阻值来测量压力或温度;光电传感器则利用光电效应将光信号转换成电信 号。
放大与调节
传感器内部通常包含放大器和调节器,用于放大和调节转换后的电信号,以便 进行后续处理和测量。
传感器在日常生活中的应用
01

传感器技术简介

传感器技术简介

➢如果敏感元件直接输出的传输是的电可量用,电它信就同时兼为转换元件
➢如果转换元件能直接感受号被测量而输出与之成一定关系的
敏感 元件
电量,它就同时兼为敏感元件。例如压电晶体、热电偶、热
敏感电阻及光电器件等。敏感元件与转换元件两者合二为一
的传20感20器/5/2是6 很多的。
返回本章目录
18
传感器技术简介
传感器技术简介
一、传感器技术概述
传感器有些性能超过人的感官: (1)测量人体无法感知的量
(2)恶劣环境下工作
(3)测量范围宽、精确高、可靠性好
例如:
➢ 温度传感器:-196℃ ~ 1800℃ ➢ 压力传感器:0.01 ~ 10000kPa ➢ 精度:0.1% ~ 0.01% ➢ 可靠度:8 ~ 9 级
传感器技术简介
三、传感器技术的应用
传感器与家用电器
自动电饭锅、吸尘器、空调器、电子热水器、风干器、电熨斗、电风扇、洗衣机 、洗碗机、照相机、电冰箱、电视机、录像机、家庭影院。
传感器技术简介
三、传感器技术的应用
传感器在医疗及人体医学上的应用
医用传感器:人体内部温度、血液、呼吸流量、 肿瘤、心音、腔内压力、心脑电 波。
毫不夸张地说:几乎每个现代化项目,以至各种复杂工程系统,都离不开各种 各样的传感器。
传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。
传感器技术简介
二、传感器技术的作用和地位
4D彩超捕捉到难得一见的胎儿出生前微笑(美联社图片)
传感器技术简介
三、传感器技术的应用
自动检测与自动控制系统
传感器技术简介
• 一、传感器技术概述 • 二、传感器技术的作用和地位 • 三、 传感器技术的应用 • 四、 传感器技术发展趋势 • 五、传感器组成 • 六、传感器分类 • 七、传感器参数

传感器的概述

传感器的概述
图2-1 传感器的组成
传感器的概述
• 在控制系统中,传感器在反馈环节起到了重要的作用,它将控制对象的运动参 数反馈给数字控制器、数字控制器根据这些参数来调整控制参数,如图2-2所 示。
图2-2 传感器及其信号处理电路在系统中的作用
1.1 传感器的分类
• 1.按被测物理量不同 • 按被测物理量不同,传感器分为位移传感器、力传感器、速度传感器、温
传感器的概述
传感器的概述
• 传感器是借助检测元件将一种形式的信息转换成另一种信息的 装置。
• 目前,传感器转换后的信号大多为电信号。因而从狭义上讲, 传感器是把外界输入的非电信号转换成电信号的装置。
传感器的概述
• 传感器包括敏感元件、转换元件和处理电路。敏感元件能够将 被测量转化为另一种物理量;转换元件通常只感受敏感元件输 出的与被测量成确定关系的另一种物理量,并将其转换、传输等处理,传感器的组成如图2-1所示。
度传感器、流量传感器、气体成分传感器、生物传感器等。 • 2.按工作原理不同 • 按工作原理不同,传感器分为电阻式传感器、电感式传感器、电容式传感
器、压电式传感器和光电式传感器等。
1.1 传感器的分类
• 3.按传感器输出信号的性质不同 • 按传感器输出信号的性质不同,传感器分为模拟式传感
器和数字式传感器。 • 4.按被测对象与传感器之间的能量关系不同 • 按被测对象与传感器之间的能量关系不同,传感器分为
能量转换型传感器和能量控制型传感器。 • 5.按构成原理不同 • 按构成原理不同,传感器分为物性型传感器和结构型传
感器。
1.2 传感器的特性
• 传感器的特性分为静态特性和动态特性。 • 1.静态特性 • 1)灵敏度
在稳态工作情况下,当输入量变化△x时,传感器的输出 量变化△y,则把△y与△x之比称为灵敏度,用符号S表示。 传感器的静态特性如图2-3所示。

传感器技术行业概述

传感器技术行业概述

工作原理与技术趋势
智能材料传感器
智能材料传感器具有自感知和自适应能力。例如,压电材料在受力时产生电荷,实现自动 检测。这些传感器可以广泛应用于结构健康监测、智能控制等领域,在减少人工干预方面 具有潜在优势。
传感器技术行业概述
应用领域与案例分析
应用领域与案例分析
医疗健康领域中的传感器创新
医疗领域的传感器应用不断创新,如心率传感器、血糖传感器等,可实时监测患者 的生理数据,帮助医生做出更准确的诊断和治疗方案,提高医疗效率。
传感器精度趋势展望
随着科技的不断发展,传感器技术也在不断进步。未来,传感器精度将越来越高,同时成 本逐渐降低。新型传感器材料、智能化算法等将推动传感器性能的提升,为更广泛的应用 领域带来更准确、可靠的数据支撑。
传感器技术行业概述
信号处理与数据传输
信号处理与数据传输
信号处理概述,
信号处理是传感器技术中至关重要的环节,它涉及信号采集、滤波、放大、采样和量化等 过程。在传感器输出的模拟信号中,可能包含噪声和干扰,信号处理技术能有效滤除这些 干扰,提高信号质量。此外,还可以根据不同传感器类型,采用适当的信号处理算法,如 傅里叶变换、小波变换等,对信号进行特征提取和数据压缩。
传感器定义与分类
传感器是一种能够感知和测量环境中特定物理量或化学量的装置,通过将这些量转化为 可感知的电信号或其他形式输出。传感器根据其工作原理和应用领域可以分为多种类型 。常见的分类包括:按物理量分类(如温度、压力、光线、声音、湿度等)、按工作原 理分类(如电阻型、电容型、感应型、压电型等)、按应用领域分类(如工业自动化、 医疗健康、汽车、航空航天等)、按传感器输出信号类型分类(如模拟输出、数字输出 、频率输出等)。不同类型的传感器具有不同的特点和适用范围,其在各个领域的应用 不断拓展和创新。

传感器概论.ppt

传感器概论.ppt
学习纪律: 考试要求:笔试+实验+平时作业 教师答疑: 联系方式:陈光柱,cgzhu@
压力传感器
光栅传感器
气体传感器
热电偶
CCD传感器 无线传感器
光纤传感器
本书需要掌握的内容
掌握传感器的共性性质 掌握主要传感器的工作原理及特性 掌握传感器的信号调理电路设计 掌握传感器的应用选择 具有初步设计传感器结构的能力
第1章 传 感 器 概 述
1.1 传感器的组成和分类 1.2 传感器的重要性 1.3 传感器技术的发展
/chgq/chap111/cgq001.htm 具体参考书: 1. 传感器与应用电路设计 ,科学出版社,2002 2. 最新传感器实用手册 ,人民邮电出版社, 2004 3. 传感器实用电路设计与制作 ,科学出版社, 2005
课程学习
实验(4学时)课地点:南湖校区机电学 院楼
显 示 装置
数据处理环节
变送器:将非标准信号转换成标准电信号的仪 器
处于信息采集系统的前端,其性能会影响整个 系统的工作状态和质量
1.3 传感器技术的发展
基础研究的促进:新现象、新材料、新加工技术 集成化、智能化、网络化
课程学习
参考资料: 检索相关主题的资料,网络资料 1. 应用:中国传感器网 2. 学习:东南大学,
图0.1 身体与机器人的对应关系
传感器的定义
传感器是能感受规定的被测量并按照一定的规 律转换成可用输出信号的器件或装置。
传感器的作用:把外界输入的非电信号转换成 电信号
传感器又称为敏感元件、检测器、转换器等
说明
1.传感器是测量装置,能完成检测任务 2.它的输入量是某一被测量,可能是物理量,也 可能是化学量、生物量等 3.输出量是某种物理量,这种量要便于传输、转 换、处理、显示等等,这种量可以是气、光、电 量,但主要是电量。 4.输入输出有对应关系,且应有一定的精确度。

传感器技术

传感器技术

传感器技术传感器技术(Sensor Technology)指的是一种能够将各种测量值转化为电信号输出的装置。

传感器技术在各种应用领域均有广泛的应用,如工业、生物医学、环境保护等等。

它能够感知从声音、光、温度等至人的生理变化等多种信号,并将这些信号转换为电信号输出,从而实现对物质世界的感知与控制。

1. 传感器技术概述传感器技术是将物理量、化学量、生理量等转化成为电信号输出,并通过电子技术将这些信号应用到计算机处理和控制系统中的技术。

传感器技术广泛应用于工业自动化、物流管理、环境监测、生物医学等领域,是数字化、信息化社会不可或缺的先进技术。

2. 传感器技术分类传感器技术分为光学传感器、磁性传感器、动力学传感器、压力传感器、温度传感器、湿度传感器、气体传感器、生物传感器等多类。

其中光学传感器是将光特性应用于检测工作中,如激光测距、光学光谱分析、红外热成像等;磁性传感器是基于磁场的感应原理,以磁特性的变化作为物质性质的检测手段,如电感传感器、霍尔传感器、磁敏电阻传感器等;动力学传感器是基于物体运动学的原理,采用变形、加速度、能量等作为检测信号,如惯性传感器、加速度传感器、角度传感器等;压力传感器是一种将压强变形转化为电信号输出的装置,主要应用于压力测量、控制、衡量等领域;温度传感器是将物体温度信息转化为电信号输出,用于温度测量、电器设备保护等场合;湿度传感器测量空气中的湿度,主要应用于制热制冷领域、工业设备、农业生产等;气体传感器则是用于检测和分析气体成分和浓度变化的仪器,用于空气质量检测、工业气体检测等领域;生物传感器利用生物体结构的特殊性质,将生物体的各种变化转化为电信号输出。

3. 传感器技术应用在各个领域,传感器技术都有着广泛的应用。

3.1 工业自动化传感器技术在工业自动化中有着广泛的应用,包括机器人、生产线、自动化控制等。

在自动化生产线上,传感器技术可以实现对生产过程的智能监控和控制,对生产效率和质量起到重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


dy(t ) y(t ) x(t ) dt
1.2 传感器的一般特性
(1)一阶传感器的单位阶跃响应
一阶传感器单位阶跃响应的通式:

dy(t ) y(t ) x(t ) dt
式中 x(t ) 、 (t ) 分别为传感器的输入量和输出 y 量,均是时间的函数,表征传感器的时间常数, 具有时间“秒”的量纲。 一阶传感器的传递函数:
1.1 基本概念
附:传感器组成示意图
敏感元件的输出作 为转换元件的输入
被测量
敏感 元件
转换 元件
转换 电路
电量
直接感受被测量
转化为电量参数
传感器组成示意图
1.1 基本概念
1.1.3 传感器的分类
物质定律如虎克定律 F = k x主要由物 质的性质决定
按工作机理分类 可分为物理型、化学型、生物型 按构成原理又分为:结构型、物性型和复合型三大类 无源传感器 按能量的转换分类 场的定律,如电场、磁场、物质场主 要由其结构参数决定 可分为能量控制型和能量转换型 按输入量分类 有源传感器 常用的有机、光、电和化学等传感器 按输出信号的性质分类 可分为模拟式传感器和数字式传感器
1.2 传感器的一般特性
以动态测温的问题为例说明传感器动态特性。 在被测温度随时间变化或传感器突然插入被测 介质中以及传感器以扫描方式测量某温度场的 温度分布等情况下,都存在动态测温问题,如 图所示:
动态测温
1.2 传感器的一般特性
传感器的种类和形式很多,但它们一般可以 简化为一阶或二阶系统。 高阶可以分解成若干个低阶环节。 对于正弦输入信号,传感器的响应称为频率 响应或稳态响应;对于阶跃输入信号,则称 为传感器的阶跃响应或瞬态响应。
1.2 传感器的一般特性
为了使加载误差最小,测量作用变量时,必须 使输入阻抗很高。 当对一个量 x1进行测量时,总是涉及到另一 个量 x2,乘积具有功率的量纲。 若 x1是作用变量,则得:
第1章 传感器概述
1
2
1.1 1.2 1.3
基本概念 传感器的一般特性 传感器的标定和校准
3
4
1.4
传感器选择的一般原则
1.1 基本概念
1.1.1 传感器的定义
传感器(Sensor/Transducer)是一种以一定的精 确度把被测量转换为与之有确定对应关系的、便 于应用的某种物理量的测量装臵。 它的输入量是某一被测量,可能是物理量,也可 能是化学量、生物量等。 它的输出量是某种物理量,这种量要便于传输、 转换、处理、显示等,主要是电量。 输入输出的转换规律(关系)已知,转换精度要 满足测控系统的应用要求。
时域:瞬态响应法 频域:频率响应法
1.2 传感器的一般特性
1. 瞬态响应特性
传感器的瞬态响应是时间响应。 从时域中对传感器的响应和过渡过程进行分析 称为时域分析法,传感器对所加激励信号的响 应称瞬态响应。 常用激励信号有阶跃函数、斜坡函数、脉冲函 数等。下面以传感器的单位阶跃响应来评价传 感器的动态性能指感器的动态特性
反映输出值真实再现变化 着的输入量的能力。
传感器的动态特性是指其输出对随时间变化的 输入量的响应特性。 动态特性好的传感器,其输出将再现输入量的 变化规律,即具有相同的时间函数。 实际上除了具有理想的比例特性外,输出信号 将不会与输入信号具有相同的时间函数,这种 输出与输入间的差异就是所谓的动态误差。
y a0 a1 x1 a2 x2 ... an xn
x -输入量 ; y -输出量 ; a0 -零位输出 ; a1 -传感器的灵敏度,常用K、S 表 示; a2 ……an -非线性项待定常数。
1.2 传感器的一般特性
实际使用中,为了标定和数据处理的方便,希 望得到线性关系,因此引入了非线性补偿电路 或者计算机软件法等补偿环节。 标定是确定实际物体重量或挂码质量累 计值与仪表测量显示值一一对应的关系 非线性的方次不高,输入量变化范围较小时, 和修正的过程。 可用一条直线(切线或割线)近似地代表实际 曲线的一段。 使传感器输出—输入特性线性化,所采用的直 线称为拟合直线。
返 回 上一页 下一页
1.2 传感器的一般特性
2. 频率响应特性
传感器对正弦输入信号的响应特性,称为频率 响应特性。 频率响应法是从传感器的频率特性出发研究传 感器的动态特性。 (1)一阶传感器的频率响应
1 H ( j ) ( j ) 1
1.2 传感器的一般特性
幅频特性:
A( ) 1 1 ( ) 2
1.2 传感器的一般特性
二阶传感器输出的拉氏变换:
n 2 Y (s) H (s) X (s) s s 2 2n s n 2
图1-8 二阶传感器单位阶跃响应图
1.2 传感器的一般特性
(3)瞬态响应特性指标
给传感器输入一个单位阶跃信号时,其输出特 性如图:
图1-9 瞬态响应特性指标
1.2 传感器的一般特性
线性度计算动画演示
1.2 传感器的一般特性
2.灵敏度
灵敏度S是指传感器的输出量增量 Δy与引起输 出量增量 Δy的输入量增量 Δx的比值,即:
y S x
对于线性传感器,它的灵敏度就是它的静态特 性的斜率。 而非线性传感器的灵敏度为一变量,用S=dy/dx 表示。传感器的灵敏度如图1-3所示。
所谓拟合是指已知某函数的若干离散函数值 {f1,f2,…,fn},通过调整该函数中若干待定系 数f(λ1, λ2,…,λn), 使得该函数与已知点集 的差别(最小二乘意义)最小。
1.2 传感器的一般特性
理论拟合
过零旋转拟合
端点连线拟合 端点平移拟合 图1-2 几种直线拟合方法 选定拟合直线的过程,就是传感器的线性化过程。
“最佳直线” 与正、反行程校准曲线的 法 最小二乘法 正、负偏差相等且最小 与校准曲线的残差平方和 最小
(4)
1.2 传感器的一般特性
实际特性曲线与拟合直线之间的偏差称为传感 器的非线性误差(或线性度),通常用相对误 差rL表示
Lmax rL 100% YFS
Lmax ——最大非线性绝对误差; Full Scale YFS ——满量程输出。
1.2 传感器的一般特性
(2)二阶传感器的单位阶跃响应
二阶传感器的单位阶跃响应的通式为:
d 2 y (t ) dy(t ) 2 2 2n n y (t ) n x(t ) dt 2 dt
n ——传感器的固有频率;
ζ ——传感器的阻尼比。
二阶传感器的传递函数:
n 2 H ( s) 2 s 2n s n 2
( 2 ~ 3 ) rR = 100% YFS
1 Rmax rR 100% 2 YFS
1.2 传感器的一般特性
5.漂移
传感器的漂移是指在外界的干扰下,输出量发 生与输入量无关的、不需要的变化。漂移包括 零点漂移和灵敏度漂移等。 漂移可分为时间漂移和温度漂移。 时间漂移是指在规定的条件下,零点或灵敏度 随时间的缓慢变化。 温度漂移是指环境温度变化而引起的零点或灵 敏度的漂移。
1 H max rH 100% 2 YFS
式中: H max——正反行程输出值间的最大差值。
1.2 传感器的一般特性
4.重复性
重复性是指传感器在输入量按同一方向作全量程 连续多次变化时,所得特性曲线不一致的程度, 如图所示:
FLASH
图1-5 重复性
1.2 传感器的一般特性
重复性误差属于随机误差,常用标准偏差σ表示, 也可用正反行程中的最大偏差ΔRmax表示,即:
H (s) Y (S ) 1 X (S ) s 1
1.2 传感器的一般特性
对阶跃信号,传感器输出的拉氏变换为:
一阶传感器的单位阶跃响应信号为:
1 1 Y(s)= H(s)X(s)= s 1 s
y(t)=1-e

t

一阶传感器的时间常数τ 越小越好。
图1-7一阶传感器的单位阶跃响应
1.1 基本概念
1.1.4 传感器技术的发展方向
开发新的敏感、传感材料 开发研制新型传感器及组成新型测试系统 研究新一代的智能化传感器及测试系统 传感器发展集成化 自学习、自适应、自诊断、自 校准、自调零、 自测试 多功能与多参数传感器的研究 重视非接触式传感器
如光电式传感器、电涡流式传 感器、超声波、核辐射的
1.2 传感器的一般特性
图1-3 传感器的灵敏度
表征传感器对输入量变化的反应能力
1.2 传感器的一般特性
3.迟滞
传感器在正(输入量增大)反(输入量减小) 行程期间其输出-输入特性曲线不重合的现象 称为迟滞,如下图所示:
flash
图1-4迟滞特性
1.2 传感器的一般特性
迟滞大小通常由实验确定。迟滞误差rH可由下式 计算:
1.2 传感器的一般特性
各指标定义如下:
① 上升时间tr 输出由稳态值的10%变化到稳态值 的90%所用的时间。
② 响应时间ts系统从阶跃输入开始到输出值进入 稳态值所规定的范围内所需要的时间。 ③ 峰值时间tp阶跃响应曲线达到第一个峰值所需 时间。 ④ 超调量σ传感器输出超过稳态值的最大值ΔA, 常用相对于稳态值的百分比σ表示。
A( ) 1
H ( j )
1
2 2 1 ( ) (2 )2 n n
2 n ( ) arctan 1 ( )2 n
1.2 传感器的一般特性
二阶传感器的幅频特性、相频特性图:
幅频特性
相频特性
图1-11 二阶传感器频率响应特性
1.2 传感器的一般特性
1.1 基本概念
附: 传感器的定义示意图
物理量、化学量、生物量等
电量(便于传输、转换、 处理、显示)
相关文档
最新文档