九年级数学上册 旋转几何综合单元测试与练习(word解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册 旋转几何综合单元测试与练习(word 解析版)
一、初三数学 旋转易错题压轴题(难)
1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.
(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;
(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.
【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=
492. 【解析】
【分析】 (1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12
PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;
(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12
PM BD =,12
PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;
(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.
【详解】
解:(1)点P ,N 是BC ,CD 的中点,
//PN BD ∴,12
PN BD =, 点P ,M 是CD ,DE 的中点,
//PM CE ∴,12
PM CE =, AB AC =,AD AE =,
BD CE ∴=,
PM PN ∴=,
//PN BD ,
DPN ADC ∴∠=∠,
//PM CE ,
DPM DCA ∴∠=∠,
90BAC ∠=︒,
90ADC ACD ∴∠+∠=︒,
90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,
PM PN ∴⊥,
故答案为:PM PN =,PM PN ⊥;
(2)PMN ∆是等腰直角三角形.
由旋转知,BAD CAE ∠=∠,
AB AC =,AD AE =,
()ABD ACE SAS ∴∆≅∆,
ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12
PM CE =, PM PN ∴=,
PMN ∴∆是等腰三角形,
同(1)的方法得,//PM CE ,
DPM DCE ∴∠=∠,
同(1)的方法得,//PN BD ,
PNC DBC ∴∠=∠,
DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,
MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠
BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠
ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,
90BAC ∠=︒,
90ACB ABC ∴∠+∠=︒,
90MPN ∴∠=︒,
PMN ∴∆是等腰直角三角形;
(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,
MN ∴最大时,PMN ∆的面积最大,
//DE BC ∴且DE 在顶点A 上面,
MN ∴最大AM AN =+,
连接AM ,AN ,
在ADE ∆中,4AD AE ==,90DAE ∠=︒,
22AM ∴=
在Rt ABC ∆中,10AB AC ==,52AN =
22522MN ∴=最大,
222111149(72)22242
PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12
PM PN BD ==, PM ∴最大时,PMN ∆面积最大,
∴点D 在BA 的延长线上,
14BD AB AD ∴=+=,
7PM ∴=,
2211497222
PMN S PM ∆∴==⨯=最大. 【点睛】
此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出
12PM CE =,12
PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.
2.直线m ∥n ,点A 、B 分别在直线m ,n 上(点A 在点B 的右侧),点P 在直线m 上,AP =
13
AB ,连接BP ,将线段BP 绕点B 顺时针旋转60°得到BC ,连接AC 交直线n 于点E ,连接PC ,且ABE 为等边三角形. (1)如图①,当点P 在A 的右侧时,请直接写出∠ABP 与∠EBC 的数量关系是 ,AP 与EC 的数量关系是 .
(2)如图②,当点P 在A 的左侧时,(1)中的结论是否成立?若成立,请给予证明;若
不成立,请说明理由.
(3)如图②,当点P在A的左侧时,若△PBC的面积为93,求线段AC的长.
67
【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3
【解析】
【分析】
(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;
(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;
(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.
【详解】
解:(1)∵△ABE是等边三角形,
∴∠ABE=60°,AB=BE,
∵将线段BP绕点B顺时针旋转60°得到BC,
∴∠CBP=60°,BC=BP,
∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,
即∠ABP=∠EBC,
∴△ABP≌△EBC(SAS),
∴AP=EC;
故答案为:∠ABP=∠EBC,AP=EC;
(2)成立,理由如下,
∵△ABE是等边三角形,
∴∠ABE=60°,AB=BE,
∵将线段BP绕点B顺时针旋转60°得到BC,
∴∠CBP=60°,BC=BP,
∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,
即∠ABP=∠EBC,
∴△ABP≌△EBC(SAS),
∴AP =EC ;
(3)过点C 作CD ⊥m 于D ,
∵将线段BP 绕点B 顺时针旋转60°得到BC ,
∴△PBC 是等边三角形,
∴34
PC 293 ∴PC =3,
设AP =CE =t ,则AB =AE =3t ,
∴AC =2t ,
∵m ∥n ,
∴∠CAD =∠AEB =60°,
∴AD =12
AC =t ,CD 33, ∵PD 2+CD 2=PC 2,
∴(2t )2+3t 2=9,
∴t 37(负值舍去), ∴AC =2t =
77
. 【点睛】 本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.
3.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.
(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;
(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC
=,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,
在BE左侧作矩形BEFG且始终保持
BE n
BG m
=,设AB=
33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.
【答案】(1)
5
π;(2)
3
;(3)存在,63
+
【解析】
【分析】
(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出
∠ABA1,得到旋转角即可解决问题;
(2)由△BCE∽△BA2D2,推出22
2
A D
CE n
CB A B m
==,可得CE=2n
m
,由161
A E
EC
=-推出16
A C
EC
=,推出A1C=
2
6
n
m
•,推出BH=A1C=
2
6
n
m
•,然后由勾股定理建立方程,解方程即可解决问题;
(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到
3
FG
F
FM FE
D
==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.
【详解】
解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.
∴AD=HA1=n=1,
在Rt△A1HB中,∵BA1=BA=m=2,
∴BA1=2HA1,
∴∠ABA1=30°,
∴旋转角为30°, ∵BD=22125+=

∴D 到点D 1所经过路径的长度=
30551806
ππ⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m
==, ∴2
n CE m
=, ∵
161EA EC =-, ∴16A C EC
=, ∴A 1C=2
6n m
⋅, ∴BH=A 1C=2
22
6n m n m -=⋅, ∴4
22
26n m n m
-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴24
2416n n m m
-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;
由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,
∴3
FG FE =, ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,
∴∠DFG=∠MFE ,
∵DF ⊥PF ,即∠DFM=90°,
∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,
∴∠FDG=∠FME ,
∴△FDG ∽△FME ,
∴3
FG F FM FE D ==,
∵∠DFM=90°,tan FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,
∴FM DM =;
在矩形ABCD 中,有
3AD AB =
=3AD =, ∵MN ⊥AB ,
∴四边形ANMD 是矩形,
∴MN=AD=3,
∵∠NPM=∠DMF=30°,
∴PM=2MN=6,
∴NP=AB =,
∴DM=AN=BP=2,
∴222
FM DM ==⨯=
∴6PF PM MF =+=+
【点睛】
本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.
4.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平
分线CE 于点E ,AE 交CD 于点F ,连结PQ .
(1)求证:APQ QCE ∆∆≌;
(2)证明:DF BQ QF +=;
(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.
【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.
【解析】
【分析】
(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;
(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;
(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明
()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.
【详解】
(1)∵四边形ABCD 是正方形,
∴AB BC =,90B BCD DCM ∠=∠=∠=︒,
∵BP BQ =,
∴PBQ ∆是等腰直角三角形,AP QC =,
∴45BPQ ∠=︒,
∴135APQ ∠=︒
∵CE 平分DCM ∠,
∴45DCE ECM ∠=∠=︒,
∴135QCE ∠=︒,
∴135APQ QCE ∠=∠=︒,
∵AQ QE ⊥,
∴90AQB CQE ∠+∠=︒.
∵90AQB BAQ ∠+∠=︒.
∴BAQ CQE ∠=∠.
∴()APQ QCE ASA ∆≌.
(2)由(1)知APQ QCE ∆∆≌.
∴QA QE =.
∵90AQE ∠=︒,
∴AQE ∆是等腰直角三角形,
∴45QAE ∠=︒.
∴45DAF QAB ∠+∠=︒,
如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆, 其中点D 与点B 重合,且点F '在直线BQ 上, 则45F AQ '∠=︒,F A FA '=,AQ AQ =,
∴()F AQ FAQ SAS '∆∆≌.
∴QF QF BQ DF '==+.
(3)连结AC ,若QF CE , 则45FQC ECM ∠=∠=︒.
∴QCF ∆是等腰直角三角形,
∴2CF CQ x ==-,
∴DF BQ x ==.
∵AB AD =,90B D ∠=∠=︒,
∴()ABQ ADF SAS ∆∆≌.
∴AQ AF =,22.5QAB DAF ∠=∠=︒,
∴AC 垂直平分QF ,
∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =, ∴22FQ BQ x ==.
在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=. 解这个方程,得1222x =-+ 2222x =--(舍去).
当222x =-+时,QF CE .
此时,QCF QEF S S ∆∆=,∴212QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==
, ∴()
2222111222AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=-=- ()
222112(2)4244222x x x x ⎡⎤=+--=⋅==-+⎣⎦ 【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.
5.(1)观察猜想
如图(1),在△ABC 中,∠BAC=90°,AB=AC,点D 是BC 的中点.以点D 为顶点作正方形DEFG ,使点A ,C 分别在DG 和DE 上,连接AE ,BG ,则线段BG 和AE 的数量关系是_____;
(2)拓展探究
将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE 为最大值时,直接写出AF 的值.
【答案】(1)BG =AE .
(2)成立.
如图②,
连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.
正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如图②,连接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]
因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋转过程中,当AE为最大值时,AF=.
6.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
操作发现
(1)某小组做了有一个角是120︒的等腰三角形DAC 和等边三角形GEB 纸片,
DA DC =,让两个三角形如图①放置,点C 和点G 重合,点D ,点E 在AB 的同侧,AC 和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________;
数学思考
(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;
类比探索
(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明; ②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.
【答案】(1)3EF DF =,DF EF ;
(2)3EF DF =,DF
EF ,理由见解析; (3)①3EF DF =,DF
EF ;②旋转过程中3EF DF =,DF EF 始终成立.
【解析】
【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;
(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;
②由题意可知结合①猜想可知旋转过程中3EF DF =,DF
EF 始终成立. 【详解】
解:(1)3EF DF =,DF EF ;
如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,
AD CD =,EGB 为等边三角形.
AM MC ∴=,GN BN =.
又点F 为AB 的中点,
AF BF ∴=.
()12
MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.
设DM a =,2GB b =,
120ADC ∠=︒,DA DC =,
3AM a ∴=,3FN a =,MF NC NB b ===.
tan 33EGB NE GN GN b =⋅==∠.
在DMF 和FNE 中,
333DM FN a
==, 333MF NE b
==, 又
90DMF FNE ∠=∠=︒,
DMF FNE ∴∽.
MDF NFE ∴∠=∠,33
DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,
90DFM NFE ∴∠+∠=︒.
90DFE ∴∠=︒.
3EF DF ∴=且DF EF . (2)3EF DF =,DF EF . 理由如下:
如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,
CF BF ∴=.
又CE EB =,
EF ∴垂直平分BC.同理,DF 垂直平分AC ,
∴四边形LCMF 为矩形,
90DFE ∴∠=︒.
DF EF ∴⊥,//AC EF .
DA DC =,120ADC =∠︒,30DCA ∴∠=︒.
GEB 为等边三角形,
60ECB ∴∠=︒.
∴∠DCA+∠ACB+∠ECB=180^∘
∴D ,C ,E 三点共线.
30DCA DEF ∴∠=∠=︒.
∴在Rt DEF △中,3tan 3
3
DE DF F F E DF ===∠; (3)①3EF DF =,DF
EF .
选择题图进行证明:
如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,
在ADF和BNF中,
AF BF
AFD BFN
DF NF
=


∠=∠

⎪=


()
SAS
ADF BNF
∴≅.
AD NB
∴=,ADF BNF
∠=∠.
//
AD NB
∴.
18060
O ADC
∴∠=︒-∠=︒.
又CPO BPE
∠=∠,60
O CEB
∠=∠=︒,
OCP OBE
∴∠=∠.
DCE NBE
∴∠=∠.
又GEB是等边三角形,
GE BE
∴=,
又AD BN CD
==,
()
SAS
DCE NBE
∴≅.
DE NE
∴=,BEN CED
∠=∠.
BEN BED CED BED
∴∠+∠=∠+∠,
即60
NED BEC
∠=∠=︒.
DEN
∴是等边三角形.
又DF FN
=,
DF EF
∴⊥,60
FDE
∠=︒.
tan3
E E
F DF DF
FD
∴∠
=⋅=.
或选择图进行证明,证明如下:
如解图,延长DF并延长到点N,使得FN DF
=,
连接NB,DE,NE,NB与CD交于点O,EB与CD相交于点J,在ADF和BNF中,
AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩

()SAS ADF BNF ∴≅.
AD NB ∴=,ADF BNF ∠=∠.
//AD NB ∴.
120NOC ADC ∴∠=∠=︒.
60BOJ ∴∠=︒,60JEC ∠=︒.
又OJB EJC ∠=∠,
OBE ECJ ∴∠=∠.
AD CD =,AD NB =,
CD NB ∴=.
又GEB 是等边三角形,
CE BE ∴=.
()SAS DCE NBE ∴≅.
DE NE ∴=,BEN CED ∠=∠.
BEN BED CED BED ∴∠-∠=∠-∠,
即60NED BEC ∠=∠=︒.
DEN ∴是等边三角形.
又DF FN =,
DF EF ∴⊥,60FDE ∠=︒.
tan E E F DF FD ∴∠=⋅=.

旋转过程中EF =,DF EF 始终成立.
【点睛】
本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.
错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.
7.已知,如图:正方形ABCD ,将Rt △EFG 斜边EG 的中点与点A 重合,直角顶点F 落在正方形的AB 边上,Rt △EFG 的两直角边分别交AB 、AD 边于P 、Q 两点,(点P 与点F 重合),如图1所示:
(1)求证:EP2+GQ2=PQ2;
(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;
(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).
【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.
【解析】
【分析】
(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到
EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;
(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证
△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.
【详解】
(1)过点E作EH∥FG,连接AH、FH,如图所示:
∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵FA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PQ2;
(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,
∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵PA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PH2.
在Rt△PFQ中,
∵PF2+FQ2=PQ2,
∴PF2+FQ2=EP2+GQ2.
(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.
【点睛】
本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.
8.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角
形,这条边叫做这个三角形的“等底”。

(1)概念理解:
如图1,在ABC ∆中,6AC = ,3BC =.30ACB ∠=︒,试判断ABC ∆是否是“等高底”三角形,请说明理由.
(2)问题探究:
如图2, ABC ∆是“等高底”三角形,BC 是“等底”,作ABC ∆关于BC 所在直线的对称图形得到A BC '∆,连结AA '交直线BC 于点D .若点B 是123,12z ai z i =-=+的重心,求AC BC 的值. (3)应用拓展:
如图3,已知12l l //,1l 与2l 之间的距离为2.“等高底”ABC ∆的“等底” BC 在直线1l 上,点A 在直线2l 上,有一边的长是BC 的2倍.将ABC ∆绕点C 按顺时针方向旋转45︒得到A B C ∆'',A C '所在直线交2l 于点D .求CD 的值.
【答案】(1)证明见解析;(2)
13AC BC =(3)CD 的值为2103,22,2 【解析】 分析:(1)过点A 作AD ⊥直线CB 于点D ,可以得到AD =BC =3,即可得到结论;
(2)根据 ΔABC 是“等高底”三角形,BC 是“等底”,得到AD =BC , 再由 ΔA ′BC 与ΔABC 关于直线BC 对称, 得到 ∠ADC =90°,由重心的性质,得到BC =2BD .设BD =x ,则AD =BC =2x , CD =3x ,由勾股定理得AC =13x ,即可得到结论;
(3)分两种情况讨论即可:①当AB =2BC 时,再分两种情况讨论;
②当AC =2BC 时,再分两种情况讨论即可.
详解:(1)是.理由如下:
如图1,过点A 作AD ⊥直线CB 于点D ,
∴ΔADC 为直角三角形,∠ADC =90°.
∵ ∠ACB =30°,AC =6,∴ AD =
12
AC =3, ∴ AD =BC =3,
即ΔABC 是“等高底”三角形.
(2)如图2,∵ ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ ΔA′BC与ΔABC关于直线BC对称,∴ ∠ADC=90°.
∵点B是ΔAA′C的重心,∴ BC=2BD.
设BD=x,则AD=BC=2x,∴CD=3x,
∴由勾股定理得AC=13x,

1313
22 AC x
BC x
==.
(3)①当AB=2BC时,
Ⅰ.如图3,作AE⊥l1于点E,DF⊥AC于点F.
∵“等高底” ΔABC的“等底”为BC,l1//l2,
l1与l2之间的距离为2,AB=2BC,
∴BC=AE=2,AB=22,
∴BE=2,即EC=4,∴AC= 25.
∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,∴∠CDF=45°.设DF=CF=x.
∵l1//l2,∴∠ACE=∠DAF,∴
1
2
DF AE
AF CE
==,即AF=2x.
∴AC=3x=25,可得x=2
5
3
,∴CD=2x=
2
10
3

Ⅱ.如图4,此时ΔABC是等腰直角三角形,
∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,∴ΔACD是等腰直角三角形,
∴CD=2AC=22.
②当AC2BC时,
Ⅰ.如图5,此时△ABC是等腰直角三角形.
∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C,∴A′C⊥l1,∴CD=AB=BC=2.
Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,
∴AC=2BC=2AE,∴∠ACE=45°,
∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C时,点A′在直线l1上,
∴A′C∥l2,即直线A′ C与l2无交点.
综上所述:CD的值为2
10
3
,22,2.
点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.
9.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)如图1,求证:△CDE是等边三角形.
(2)设OD=t,
①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
②求t为何值时,△DEB是直角三角形(直接写出结果即可).
【答案】(1)见解析;(2)①见解析;②t=2或14.
【解析】
【分析】
(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;
(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到
C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当
CD⊥AB时,△BDE的周长最小,于是得到结论;
②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.
【详解】
(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,
∴∠DCE=60°,DC=EC,
∴△CDE是等边三角形;
(2)①存在,当6<t<10时,
由旋转的性质得,BE=AD,
∴C△DBE=BE+DB+DE=AB+DE=4+DE,
由(1)知,△CDE是等边三角形,
∴DE=CD,
∴C△DBE=CD+4,
由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,
此时,CD=,
∴△BDE的最小周长=CD+4=;
②存在,∵当点D与点B重合时,D,B,E不能构成三角形,
∴当点D与点B重合时,不符合题意;
当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,
∴∠BED=90°,
由(1)可知,△CDE是等边三角形,
∴∠DEB=60°,
∴∠CEB=30°,
∵∠CEB=∠CDA,
∴∠CDA=30°,
∵∠CAB=60°,
∴∠ACD=∠ADC=30°,
∴DA=CA=4,
∴OD=OA﹣DA=6﹣4=2,
∴t=2;
当6<t<10时,由∠DBE=120°>90°,
∴此时不存在;
当t>10时,由旋转的性质可知,∠DBE=60°,
又由(1)知∠CDE=60°,
∴∠BDE=∠CDE+∠BDC=60°+∠BDC,
而∠BDC>0°,
∴∠BDE>60°,
∴只能∠BDE=90°,
从而∠BCD=30°,
∴BD=BC=4,
∴OD=14,
∴t=14,
综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.
【点睛】
本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.
10.如图,正方形ABCO的边OA、OC在坐标轴上,点B的坐标为(6,6),将正方形ABCO 绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连接CH、CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连接BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
【答案】(1)证明见解析;(2)45°;HG= HO+BG;(3)(2,0).
【解析】
试题分析:(1)求证全等,观察两个三角形,发现都有直角,而CG为公共边,进而再锁定一条直角边相等即可,因为其为正方形旋转得到,所以边都相等,即结论可证.
(2)根据(1)中三角形全等可以得到对应边、角相等,即BG=DG,∠DCG=∠BCG.同第一问的思路容易发现△CDH≌△COH,也有对应边、角相等,即OH=DH,
∠OCH=∠DCH.于是∠GCH为四角的和,四角恰好组成直角,所以∠GCH=90°,且容易得到OH+BG=HG.
(3)四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.由上几问知DG=BG,所以此时同时满足DG=AG=EG=BG,即四边形AEBD为矩形.求H点的坐标,可以设其为(x,0),则OH=x,AH=6﹣x.而BG为AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三边都可以用含x的表达式表达,那么根据勾股定理可列方程,进而求出x,推得H坐标.
(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,
∴CD=CB,∠CDG=∠CBG=90°.
在Rt△CDG和Rt△CBG中,

∴△CDG≌△CBG(HL);
(2)解:∵△CDG≌△CBG,
∴∠DCG=∠BCG,DG=BG.
在Rt△CHO和Rt△CHD中,
∵,
∴△CHO≌△CHD(HL),
∴∠OCH=∠DCH,OH=DH,
∴∠HCG=∠HCD+∠GCD=∠OCD+∠DCB=∠OCB=45°,
∴HG=HD+DG=HO+BG;
(3)解:四边形AEBD可为矩形.
如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.
∵DG=BG,
∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,
∴当G点为AB中点时,四边形AEBD为矩形.
∵四边形DAEB为矩形,
∴AG=EG=BG=DG.
∵AB=6,
∴AG=BG=3.
设H点的坐标为(x,0),则HO=x
∵OH=DH,BG=DG,
∴HD=x,DG=3.
在Rt△HGA中,
∵HG=x+3,GA=3,HA=6﹣x,
∴(x+3)2=32+(6﹣x)2,解得x=2.
∴H点的坐标为(2,0).
考点:几何变换综合题.。

相关文档
最新文档