人教版七年级数学上课件3.3.2利用去分母解一元一次方

合集下载

3.3.2解一元一次方程--去分母2

3.3.2解一元一次方程--去分母2

系数化为1.得
x=84
我们先去掉分母解
起来比较方便.
答:丢番图的年龄为84岁.
4.基础训练 应用拓展
练习:解下列方程:
11 2 2 5 x+ = x- ; (3 ) 9 7 9 7
3 8 (4) ( x+4)=1. 8 3
巩固练习:
一项工作,甲单独做要20小时完成, 乙单独做要12小时完成。现在先由甲单 独做4小时,剩下的部分由甲、乙合作。 剩下的部分需要多少小时完成?
作业:
1、上交作业:P99页8、9题
2、 解下列方程:
x 1 2x 1 (1) 1 4 6
x 5 x 12 2x 4 ( 2) 1 2 6 3
ቤተ መጻሕፍቲ ባይዱ
去分母,得 20x=6+3(12-3x) 去括号,得 20x=6+36-9x
移项,得 20x+9x=6+36
合并同类项,得 29x=42 化系数为1,得
42 x= 29
分母是小数的方程的解法 解方程:
x 0.17 0.2 x 1 0. 7 0.03
解: 原方程可以化成
10 17 20 x x 1 7 3 去分母得,30x-7(17-20x)=21
试一试:一切皆有可能
某水利工地派 48 人去挖土和运土,如果 每人每天平均挖土5方或运土3方,那么应怎样 安排人员,正好能使挖出的土及时运走? 1.题中的等量关系是什么? 挖出的土方量恰好等于运走的土方量 2.该如何列方程解此题呢?
解:设安排 x 人去挖土,则有(48 – x )人运土, 根据题意,得 5 x = 3 ( 48 – x ).
去括号,得
移项及合并,得
5x = 144 –3x.

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT
数转化为整数,然后再去分母.
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)

3.3 第2课时 利用去分母解一元一次方程

3.3 第2课时 利用去分母解一元一次方程
3.3 解一元一次方程(二) 第2课时 利用去分母解一元一次方程
情境引入
英国伦敦博物馆保存着一部极 其珍贵的文物—纸莎草文书.现存 世界上最古老的方程就出现在这部 英国考古学家兰德1858年找到的纸 草上.经破译,上面都是一些方程, 共85个问题.其中有如下一道著名 的求未知数的问题.
纸莎草文书
问题:一个数,它的三分之二,它的一半,它的七 分之一,它的全部,加起来总共是33,求这个数?
3
4
12
答案:(1)x 5 6
(2) y 4 7
课堂小结
变形名称
具体的做法
解 一
去分母 乘各分母的最小公倍数.

依据是等式性质二.
一 次
去括号 先去小括号,再去中括号,最后去大括号.

依据是整式去括号法则.
程 的
移项
把含有未知数的项移到一边,常数项移到另

一边.“过桥变号”,依据是等式性质一.
3
2
7
即 28x+21x+6x+42x=1386
合并同类项,得
97x=1386
系数化为1,得
x 1386 97
总结:像上面这样的方程中有些系数是分数,如果能化去
分母,把系数化为整数,则可以使解方程中的计算更方便些.
合作探究
一 解含分母的一元一次方程
解方程: 3x 1 2 3x 2 2x .
3.去分母与去括号这两步分开写,不要跳步, 防止忘记变号.
二 去分母解方程的应用 例2 火车用26秒的时间通过一个长256米的隧道(即从
车头进入入口到车尾离开出口),这列火车又以16秒的
时间通过了长96米的隧道,求火车的长度.
解:设火车长度为x米,列方程

黑龙江双鸭山人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母(第3课时)(22张PPT)

黑龙江双鸭山人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母(第3课时)(22张PPT)

合并同类项,得 25x=23
系数化为1,得
x= 23 . 25
练习
B
12
3(3y-1)-12=2(5y-7)
3.汛期来临前,滨海新区决定实施海堤加固工程.某 工程队承包了该项目,计划每天加固60米,在施工 前,得到气象部门的预报,近期有台风袭击滨海新区, 于是工程队改变计划,每天加固的海堤长度是原计划 的1.5倍,结果提前10天完成加固任务.若设滨海新区 要加固的海堤长x米,则下面的方程正确的是( )
2
10
5
3x 1-2=3x 2- 2x 3
2
10
5
去分母
5(3x+1)-10 2=(3x-2)-2(2x+3)
去括号
15x+5-20=3x-2-4x-6
移项
15x-3x+4x=-2-6-5+20
合并同类项
16x 7
系数化为1
x= 7 16
归纳与总结
解有分数系数的一元一次方程的步骤:
1.去分母;
2.去括号; 3.移项; 4.合并同类项; 5.系数化为1.
以上步骤是不 是一定要顺序 进行,缺一不 可?
主要依据:等式的性质和运算律等.
3.巩固新知 例题规范
解下列方程:
(1) x+1-1=2+ 2-x
2
4
解:(1)去分母(方程两边乘4),得
2( x+1)-4=8+(2-x)
去括号,得 2x+. 2-4=8+2-x
移项,得 2x+x=8+2-2+4
合并同类项,得 3x=12
系数化为1,得 x=4.
3.巩固新知 例题规范
(2)3x+ x-1=3- 2x-1
2
3
解:(1)去分母(方程两边乘6),得

2020年七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母 第2课时 去分母课件

2020年七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母 第2课时 去分母课件

D.x+4 2=3x
易错点 去分母时漏乘无分母的项导致错误.
自我诊断4. 方程x+2 1-1=2-33x的解为 x=97
.
1.解方程x-3 1-x+6 2=4-2 x的步骤如下,则错误的一步为( B ) A.2(x-1)-(x+2)=3(4-x) B.2x-2-x+2=12-3x C.4x=12 D.x=3
x 2
=3,解为x=2;第2个方程是
x 2

x 3

5程,是解为1x0x+=1x61;=第213个方,程其是解x3为+
x 4
=7,解为x=12,…,根据规律第10个方
x=110
.
10.解方程:
(1)2x5+3=32x-2x3-7;
(2)x-2 4+0.2x0-.5 0.3=00..0021x.
再 见!
C.12-2(5x+7)=-(x+17)
D.12-10x+14=-(x+17)
去分母解方程的应用
自我诊断3. 小华用x元买学习用品,若全买钢笔,刚好买3支,若全买笔记
本刚好买4本.已知一个笔记本比一支钢笔便宜2元,则下列方程中正确的
是( A )
A.x3=x4+2
B.x4=3x+2
C.x4=x+3 2
解:(1)x=-8; (2)x=-2116.
11.已知关于x的方程4x+m=3x+1的解比3x-
3x-m 2
=1的解小3,求m的
值. 3x-m
解:解方程4x+m=3x+1,得x=1-m,解方程3x- 2 =1,得x=
2-m
2-m
3 ,所以有1-m+3= 3 ,解得m=5.
12.某工厂第一车间人数比第二车间人数的
7.如果方程2-
x+1 3

第三章 3.3.2利用去分母解一元一次方程

第三章 3.3.2利用去分母解一元一次方程
移项
15x 3x 4x 2 6 5 20
合并同类项
16x 7
系数化为1
7
x
16
注意:(1)为什么方程
的两边每一项都要
剩以10,小心不要
漏乘;
(2)为什么去分母后
分子要添括号,是
不是所有的分子都
必须填括号
例题讲解
例.解下列方程:
x 1
2 x
(1)
1 2
2
4
解:去分母(方程两边乘4),得
2(x+1) -4=8+ (2 -x)
去括号,得
2x+2 -4=8+2 -x
移项,得 2x+x =8+2 -2+4
合并同类项,得 3x = 12
系数化为1,得x = 4
观察思考
方程右边的“1”
去分母时漏乘最
下列方程的解法对不对?如果不对,你能找出错在哪里吗?
小公倍数6
加起来总共是33,求这个数.
它的三分之二+它的一半+它的七分之一+它的全部=33
1
1
2
x
x
x
x
2
7
3
根据题意可列方程
解:设这个数为x ,
2
1
1
x x x x 33
3
2
7
探究
2
1
1
x x x x 33
3
2
7
解:合并同类项,得
能不能化去分母,
把系数化为整数,
使计算变得简便呢?
)
解:原方程可变形为
去括号,得9x+15=4x-2.(
(
),得9x-4x=-15-2.(

人教版数学七年级上册3.3.2去分母解一元一次方程(1)课件[1]

人教版数学七年级上册3.3.2去分母解一元一次方程(1)课件[1]

2. 探究新知 名师课件免费课件下载优秀公开课课件人教版数学七年级上册3.3.2去 分母解一元一次方程(1)课件
(4)去分母的依据是什么?
2 3
x+
1 2
x+
1 7
x+x=33方则程得两到边同乘各分母的最小公倍数,
42 2 x+42 1 x+42 1 x+42x=42 33
3
2
7
28x+21x+6x+42x=1 386
2、去分母的依据是等式性质2,去 分母时不能漏乘没有分母的项;
3、去掉分母后,若分子是多项式, 要用括号括起来。
4、去分母与去括号这两步分开写, 不要跳步,注意符号。
名师课件免费课件下载优秀公开课课 件人教 版数学 七年级 上册3.3 .2去 分母解一元一次方程(1)课件
4. 应用拓展 名 人师 教课 版件 数免 学费 七课 年件 级下 上载 册3优.3秀.2公去开分课母课解件一人元教一版次数方学程七(年1)级课上件册[1]3.3.2去 分母解一元一次方程(1)课件
名 人师 教课 版件 数免 学费 七课 年件 级下 上载 册3优.3秀.2公去开分课母课解件一人元教一版次数方学程七(年1)级课 上件册[1]3.3 .2去 分母解一元一次方程(1)课件
名 人师 教课 版件 数免 学费 七课 年件 级下 上载 册3优.3秀.2公去开分课母课解件一人元教一版次数方学程七(年1)级课 上件册[1]3.3 .2去 分母解一元一次方程(1)课件 名 人师 教课 版件 数免 学费 七课 年件 级下 上载 册3优.3秀.2公去开分课母课解件一人元教一版次数方学程七(年1)级课 上件册[1]3.3 .2去 分母解一元一次方程(1)课件
合并同类项,得 97 x=1 386

人教版七年级数学上册第三章一元一次方程3.3解一元一次方程二_去括号与去分母第2课时用去分母解一元一次方

人教版七年级数学上册第三章一元一次方程3.3解一元一次方程二_去括号与去分母第2课时用去分母解一元一次方

3.3 解一元一次方程(二)——去括号与去分母第2课时用去分母解一元一次方程置疑导入归纳导入悬念激趣图3-3-5毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯先生,请告诉我,有多少名学生在你的学校里听你讲课?”毕达哥拉斯回答说:“我的学生,现在有12在学习数学,14在学习音乐,17沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名?[说明与建议] 说明:用数学小故事引入新知,激发学生的学习兴趣,让学生自然地展开对含有分数系数的一元一次方程的学习.利用列方程解决实际问题,让学生感受方程的优越性,提高学生主动使用方程的意识.建议:由学生独立完成列出方程,教师引导学生观察这个方程同上节课学习的方程有什么不同,是否能用移项、合并同类项的方法解这个方程?教师适时引导是否有办法避免烦琐的通分合并?问题1:去括号时应该注意什么?问题2:等式的性质2是怎样叙述的?问题3:(1)6,3,4的最小公倍数是多少?(2)2,4,5的最小公倍数是多少?(3)3,4,12的最小公倍数是多少?[说明与建议] 说明:通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.建议:这几个问题由学生自主完成,注意易错点.前面我们学过带括号的一元一次方程的解法.比如:4-3(x+2)=1-2(x-1),大家观察下面这个方程:x +6=14()x +72,它与以前解的方程有什么区别?你能求出它的解吗?[说明与建议] 说明:设计此环节有两个目的,既复习了上节课所学带括号方程的解法,又通过两个方程的比较,引出了新课.建议:让学生解这两个方程,然后重点比较第二个方程的解法,探究便捷的方法.教材母题——教材第97页例3 解下列方程:(1)x +12-1=2+2-x 4;(2)3x +x -12=3-2x -13.【模型建立】去分母解一元一次方程的步骤主要有:去分母、去括号、移项、合并同类项、系数化为1.注意以下几点:(1)去分母时容易出现漏乘现象和符号错误;(2)去括号时,如果分子是一个式子,要将分子作为一个整体加上括号;(3)去分母时,整数项不要漏乘最小公倍数.【变式变形】1.方程2x -12-x +13=1去分母,得(B )A .2x -1-x +1=6B .3(2x -1)-2(x +1)=6C .2(2x -1)-3(x +1)=6D .3x -3-2x -2=12.当x =__6__时,3x -28的值是2.3.若x -12+2x +16与x -13+1的值相等,则x =__2__.4.当y =__83__时,y -y +22与3互为倒数.5.解方程:17[15(x +23+4)+6]=1.[答案:x =1]6.解方程:0.1x -0.20.02-2x +10.2=5.[答案:x =-4][命题角度1] 去分母解一元一次方程去分母解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解方程的步骤不一定每次都一样,而且五个步骤也不一定全都用到,应根据具体方程的特点,灵活选用解题步骤.注意:(1)去分母时容易出现漏乘现象和符号错误;(2)去括号时,如果分子是一个式子,要将分子作为一个整体加上括号;(3)去分母时,整数项不要漏乘最小公倍数.例 [模拟中考] 解方程:x -x -16=2-x +23.[答案:x =1][命题角度2] 求解分母是小数的方程求解分母是小数的一元一次方程,通常利用分数的基本性质,分子分母都乘相同的倍数,把分母化成整数,此时将分子作为一个整体,需要补上括号.分子分母同乘的倍数要恰当,需要注意,不含分母的项不能乘这个倍数.例x +10.2-3x -10.4=1.[答案:135] [命题角度3] 利用解方程解决综合问题解决此类题目,首先读懂题意,列出方程,借助一元一次方程的解法,求出涉及的未知数.例 [孜州中考] 设a ,b ,c ,d 为有理数,现规定一种新的运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc.则满足等式⎪⎪⎪⎪⎪⎪⎪⎪x 2 x +132 1=1的x 的值为__-10__.P98练习解下列方程: (1)19100x =21100(x -2); (2)x +12-2=x4; (3)5x -14=3x +12-2-x3; (4)3x +22-1=2x -14-2x +15. [答案] (1)x =21;(2)x =6;(3)x =-17; (4)x =-928. P98习题3.3 复习巩固1.解下列方程: (1)5a +(2-4a )=0; (2)25b -(b -5)=29; (3)7x +2(3x -3)=20; (4)8y -3(3y +2)=6.[答案] (1)a =-2;(2)b =1;(3)x =2;(4)y =-12. 2.解下列方程:(1)2(x +8)=3(x -1); (2)8x =-2(x +4); (3)2x -23(x +3)=-x +3; (4)2(10-0.5y )=-(1.5y +2).[答案] (1)x =19;(2)x =-45;(3)x =157;(4)x =-44. 3.解下列方程: (1)3x +52=2x -13; (2)x -3-5=3x +415; (3)3y -14-1=5y -76; (4)5y +43+y -14=2-5y -512. [答案] (1)x =-175;(2)x =56;(3)y =-1;(4)y =47.4.用方程解答下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y . [答案] (1)x =23;(2)y =-45.综合运用5.张华和李明登一座山,张华每分登高10 m ,并且先出发30 min(分),李明每分登高15 m ,两人同时登上山顶.设张华登山用了x min ,如何用含x 的式子表示李明登山所用时间?试用方程求x 的值,由x 的值能求出山高吗?如果能,山高多少米?[答案] 10x ÷15=x -30,x =90.山高900米. 6.两辆汽车从相距84 km 的两地同时出发相向而行,甲车的速度比乙车的速度快20 km/h ,半小时后两车相遇,两车的速度各是多少?[答案] 甲车的速度是94 km/h ,乙车的速度是74 km/h.7.在风速为24 km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8 h ,它逆风飞行同样的航线要用3 h .求:(1)无风时这架飞机在这一航线的平均航速; (2)两机场之间的航程.解:(1)无风时这架飞机在这一航线的平均航速为696 km/h. (2)两机场之间的航程为2016 km.8.买两种布料共138 m ,花了540元.其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?[答案] 买蓝布料75米,买黑布料63米. 拓广探索9.有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50 m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40 m 2墙面.每名一级技工比二级技工一天多粉刷10 m 2墙面,求每个房间需要粉刷的墙面面积.[答案] 52 m 2.10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km.求A ,B 两地间的路程.[答案] 108 km.11.一列火车匀速行驶,经过一条长300 m 的隧道需要20 s 的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10 s.(1)设火车的长度为x m ,用含x 的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2)设火车的长度为x m ,用含x 的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3)上述问题中火车的平均速度发生了变化吗? (4)求这列火车的长度.解:(1)从车头经过灯下到车尾经过灯下火车所走的路程为x m .这段时间内火车的平均速度为x 10m/s ;(2)从车头进入隧道到车尾离开隧道火车所走的路程为(x +300)m ,这段时间内火车的平均速度为x +30020m/s ; (3)火车的平均速度没有发生变化; (4)根据题意得x 10=x +30020.x =300.答:火车的长度是300 m.[当堂检测] 1. 下列解方程:312+x - 632-x = 1时,去分母正确的 是( )A .2(2x+1)–2x –3= 1 B. 2(2x+1)–2x –3= 6C. 2(2x+1)–(2x –3)= 6 D .以上都不对2. x=____时,代数式3x 比22-x 的值大1. ( ) A .0 B.5 C. -12 D. 12 3. 小玲做作业时解方程21+x - 332x-=1的步骤如下: ①去分母,得3(x+1)-2(2-3x)=1; ②去括号,得3x+3-4-6x=1; ③移项,得3x-6x=1-3+4;④合并同类项得 -3x=2; ⑤系数化为1,得x=-32.聪明的你知道小玲的解答过程正确吗? 答 _______(填“是”或“否”),如果不正确,第________步(填序号)出现了问题; 4. 一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的51,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x 米,则可列出方程___________ . 5. 解方程: (1)3423+=-x x ; (2)1102552=--+x x .参考答案: 1. C 2. A3. 否 ①.②4. 51x+52x+1+1=x 5. (1)x =51(2)x=-34[能力培优]专题一 利用去括号、去分母解方程 1.下列解方程去分母正确的是( )A .由1132x x--=,得2x -1=3-3x . B .由232124x x ---=-,得2(x -2)-3x -2=-4.C .由131236y y y y +-=--,得3y +3=2y -3y +1-6y .D .由44153x y +-=,得12x -15=5y +4. 2. (1)2(4y+3)= 8(1-y); (2)61-x -3)1(2+x = 221x- - 1; (3)341187434x ⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦; (4) 1461x 51413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-.3. (2011·滨州)依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括 号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为352123x x +-=, (___________________) 去分母,得3(3x+5)=2(2x -1), (___________________)去括号,得9x+15=4x -2, (___________________) (_____________),得9x -4x=-15-2, (___________________) 合并同类项,得5x=-17, (合并同类项) (______________),得x=175-. (_______ ________)专题二 利用方程解“总、总”问题4.(2011•柳州)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( ) A.17人 B.21人 C.25人 D.37人5.学校组织一次有关世博的知识竞赛共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对 题.6.某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.求每条船上划桨的人有多少个?专题三 利用方程解行程问题7.小李骑车从A 地到B 地,小明骑车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A 、B 两地间的路程.8.从甲地到乙地,先下山后走平路,某人骑自行车从甲地以每小时12千米的速度下山,而以每小时9千米的速度通过平路,到乙地55分钟.他回来时以每小时8•千米的速度通过平路,而以每小时4千米速度上山,回到甲地用了112小时,求甲、•乙两地间的距离.9.著名数学家苏步青教授在国外考察时,•一位法国朋友问了这样一个问题:甲、乙两人从相距5千米的A、B两地相向而行,速度分别为2千米/时和3千米/时,甲带了一只小狗,以5•千米/时的速度跑向乙,碰见乙又立即向甲跑去,这样反复跑,当甲、乙两人相遇时,•小狗跑了多少路程?苏教授很快就知道了答案,你呢?10.一辆汽车从A地驶往B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B 地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程.....解决的问题,并写出解答过程.专题四用方程进行说理11.魔术师为大家表演魔术. 他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是1 ,那么他告诉魔术师的结果应该是;(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.12.下列图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:(1)第1个图中所贴剪纸“○”的个数为个,第2个图中所贴剪纸“○”的个数为个,第3个图中所贴剪纸“○”的个数为个.(2)第n个图中所贴剪纸“○”的个数为多少个?(3)当n=100时,所贴剪纸“○”的个数多少个?(4)如果所贴剪纸“○”的个数为2018个时,那么它是第几个图?知识要点:1.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.2.解一元一次方程的过程是逐步向着x=a的形式转化.3.解一元一次方程的主要依据是等式的基本性质和运算律.4.总总问题中,通常根据一个等量关系设未知数,根据另一个等量关系列方程.5.行程问题中有三个基本量:路程、速度、时间.可寻找的相等关系有:路程关系、时间关系、速度关系.相遇问题中多以路程做等量关系:对于有时间差的问题常常利用时间做等量关系;航行问题中很多时候用速度做等量关系.温馨提示:1.去括号注意事项:(1)如果括号前的系数是负数,去括号后各项的符号应与原括号内相应各项的符号相反;(2)去括号时,括号外的因数要乘以括号内的每一项,不可漏乘.2.去分母注意事项:(1)去分母时不要漏乘分母是1的项.(2)转化小数分母为整数和去分母是完全不同的两回事,前者利用的是分数的基本性质,相对于其它部分是独立的,将分子、分母同时乘以一个数;后者利用的是等式的基本性质,针对所有整式而言,将方程两边同时乘以同一个数.3.列方程解应用题,若直接设元,较难与题中已知量,未知量建立联系时,可考虑间接设元.方法技巧:1.解一元一次方程时,一要按照步骤,不要跳步;二要每一步都与相应法则对应,法则怎么讲的,易错在哪里,要做到心中有数.2.除了一元一次方程的常规解法外,具体到某些特殊结构的一元一次方程,还可以灵活采用其独有的简便方法.3.行程问题中,常有相遇问题和追击问题.相遇问题中:快者路程+慢者路程=总路程;追击问题中:快者路程—慢者路程=原来相隔的路程.答案:1. C 解析:由1132x x--=,应该得2x-6=3-3x,故A选项错;由232124x x---=-,应该得2(x-2)-(3x-2)=-4,故B选项错;由131236y y yy+-=--,应该得3y+3=2y-3y+1-6y,故C选项正确;由44153x y+-=,应该得12x-15=5(y+4),故D选项错误.2. 解析:(1)去括号,得8y+6=8-8y, 移项,得8y+8y=8-6,合并同类项,得16y=2,系数化为1,得y=18;(2)去分母,得(x-1)-4(x+1)=3(1-2x)-6,去括号,得 x-1-4x-4=3-6x-6, 移项,得x-4x+6x=3-6+1+4,合并同类项,得 3x=2,系数化为1,得23x=;(3)去中括号得1167.4x⎛⎫-+=⎪⎝⎭去小括号得1167.4x-+=移项,得171 6.4x=+-合并同类项,得12.4x=系数化为1,得x=8;(4)两边同乘以2,得1111642 345x⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦,移项,合并同类项得111162 345x⎡⎤⎛⎫--=-⎪⎢⎥⎝⎭⎣⎦,两边同乘以3,得11166 45x⎛⎫--=-⎪⎝⎭,移项、合并同类项,得1110 45x⎛⎫-=⎪⎝⎭,两边同乘以4,得110 5x-=,移项得11 5x=,系数化为1,得5x=.3. 解析:原方程可变形为352123x x+-=, (分式的基本性质)去分母,得3(3x+5)=2(2x-1), (等式性质2)去括号,得9x+15=4x-2, (去括号法则或乘法分配律)(移项),得9x-4x=-15-2, (等式性质1)合并同类项,得5x=-17, (合并同类项)(系数化为1),得x=175-.(等式性质2)4. C 解析:设这两种实验都做对的有x人,由题意得(40﹣x )+(31﹣x )+x+4=50.解得x=25,故都做对的有25人.5. 16 解析:设小明答对了x 道题,则他答错或不答的题目有(20﹣x )道.依题意得5x ﹣1(20﹣x )=76,解得:x =16.答:小明答对了16道题.6. 解析:设每条船上划桨的有x 人,则每条船上有x+2人,根据题意,得: 15(x+2)=330.解得x=20.答:每条船上划桨的有20人.7. 解析:设A 、B 两地间的路程为x 千米,根据题意,得 1012363681036-+=--x .解得:x=108.答:A 、B 两地间的路程为108千米.8. 解析:设山路长为x 千米,由题意,得9(1112-12x )=8(32-4x ),解得x=3. 则平路长为9(1112-312)=6(千米), •∴两地距离为3+6=9(千米).答:甲、乙两地距离为9千米.9. 解析:设两人经过x 小时相遇,依题意,得:2x+3x=5.解得:x=1.所以小狗所走路程为5×1=5(千米).答:小狗跑了5千米.10. 本题答案不唯一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米?解:设普通公路长为x km ,高度公路长为2xkm . 根据题意,得260100x x +=2.2.解得:x=60,2x=120. 答:普通公路长为60km ,高速公路长为120km .解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了x h ,高速公路上行驶了(2.2-x )h .根据题意,得602100(2.2)x x ⨯=-.解得x=1,2.2-x=1.2.答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h .11. 解析:(1)4;(2)88;(3)设观众想的数为a .36753a a -+=+. 因此,魔术师只要将最终结果减去5,就能得到观众想的数了.12. 解析:(1)第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花.(2)第n个图案所贴窗花数为(3n+2)个.(3)当n=100时,3n+2=302个.(4)由题意得 3n+2=2018,解得n=672.答:如果所贴剪纸“○”的个数为2018个时,它是第672个图.口诀法解一元一次方程解一元一次方程的一般步骤:去分母,去括号,移项,合并,系数化为1.解方程,很重要,字母求值常用到;如何解,有说道,方法步骤有四条;看特征,选方法,方法选准很重要;第一分母先去掉,化为整数实在好,各项乘以公分母,漏乘教训要记牢,约去分母加括号,小心错误变空劳;第二括号要去掉,考虑是否需变号?正括号,不变号,系数分配讲公道,负括号要变号,变号同样要公道;第三移项更重要,移项一定要变号,千古不变第一条,常数向着右边移,未知左边来报到,合并同类要算好,莫成古时杨白劳,等号两边各一项;未知系数化为1,用乘用除讲技巧.口诀告诉我们:解一元一次方程十分重要,它是字母求值的重要方法和工具.接下来对一元一次方程的解法进行细致的剖析.“第一分母先去掉,化为整数实在好,各项乘以公分母,漏乘教训要记牢,约去分母加括号,小心错误变空劳;”的意思:如果方程中含有分数,应先去分母,把各项中的分数化为整数,实现这种转化的做法是方程两边同乘以各分母的最小公倍数,同时提醒大家不要漏乘方程中的任何一项,而且在约去分母时,养成加括号的习惯,因为分数线除了表示除法的意义外,还具有括号的功能,当把分数线去掉时自觉加上括号.如:解方程2111 36x x+--=.解:两边乘以6 (这里的6取自原方程的分母3和6的最小公倍数),得6×21166136x x+--⨯=⨯.(原方程共有3项,特别注意1这一项也要乘以6)约去分母,得2(2x+1)-(1-x)=6.(如果没有养成自觉加括号的习惯,很容易把方程错误变形为4x+2-1-x=6)“第二括号要去掉,考虑是否需变号?正括号,不变号,系数分配讲公道,负括号要变号,变号同样要公道;”的意思是:去掉分母后,接下来要做的是去括号,而去括号时要分清括号前面是正号还是负号,如果是正号,则去括号时不需要变号,只须把括号前的系数与括号内的每一项相乘就可以;如果是负号,则不仅要考虑系数的分配,同时还要考虑变号.如上述方程去分母后,接下来就是去括号,得4x+2-1+x=6.(如果得到4x+1-1-x=6,错在哪里?)“分母括号全没了,第三移项更重要,移项一定要变号,千古不变第一条,常数向着右边移,未知左边来报到,合并同类要算好,莫成古时杨白劳;”的意思是:如果方程中没有了分母和括号,那进行第三个步骤:移项.移项的一般方法是含未知数的项移到左边,常数移到右边,不论是左边移到右边,还是右边移到左边,这些项都需要变号, 移项后,等号两边分别合并,合并时一定要认真细致,否则前面付出的艰辛就白费了,就如同旧社会的杨白劳.这里还应注意一点:在没有移项之前,如果两边有可以合并的先合并,再移项,再合并,这样可以省去许多麻烦.如上述方程去分母、去括号后,接下来可以先合并,得5x+1=6.移项,得5x=6-1.再合并,得5x=5.“未知系数化为1,用乘用除讲技巧.”这是解一元一次方程最后一个步骤,如果未知数的系数是整数,则一般用除法;如果是分数,则乘以它的倒数.如5x=5,两边除以5,得x=1.而像23x=-6,要把x的系数化为1,两边乘以23的倒数32,得x=-6×32=-9.。

3.3 第2课时 用去分母解一元一次方程

3.3 第2课时 用去分母解一元一次方程

本;每个同学8本,又差了3本,问共有多少本笔记本?
x- 9 解:设共有笔记本 x 本,则同学人数既可表示为 人,也 6 x+ 3 可表示为 人, 8 x- 9 x+ 3 于是可列方程 = . 6 8 解得 x=45.
答:共有45本笔记本.
3.3 解一元一次方程(二)——去括号与去分母
[归纳总结] 当同一个量能用两个不同的式子表示时,则
2
3.3 解一元一次方程(二)——去括号与去分母
(5)解此方程,得 x=______ 52 .
2 52 (6)答:每个房间需要粉刷______m 的墙面.
变式 1
122 2 根据以上解答可知, 每名一级技工一天粉刷______m
112 2 的墙面. 的墙面,每名二级技工一天粉刷______m
3.3 解一元一次方程(二)——去括号与去分母
3.3 解一元一次方程(二)——去括号与去分母
解:设做上衣需要 x 米,则做裤子需要(750-x)米,做上衣的 x 750-x 件数为 ×2 件,做裤子的条数为 ×3 条,根据题意,得 3 3 2x 3(750-x) = , 3 3 解这个方程,得 x=450, 所以 750-x=750-450=300. 450 ×2=300(套). 3 答:用450米布料生产上衣和300米布料生产裤子才能恰好
2 (10x+40) 技工一天粉刷____________m 墙面,于是一名二级技工一天 10x+40 2 粉刷____________m 墙面. 5
(4)根据“每名一级技工比二级技工一天多粉刷 10 m 墙面”, 8x-50 10x+40 - 3 5 可列如下方程:________________ .
数 学
新课标(RJ) 七年级上册

3.3 第2课时 利用去分母解一元一次方程

3.3 第2课时 利用去分母解一元一次方程

课件目录
首页
末页
第2课时 利用去分母解一元一次方程
3.若代数式 4x-5 与2x-2 1的值相等,则 x 的值是( B )
A.1
3 B.2
C.23
D.2
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
4.解方程:(1)[2018 秋·西城区期末]2x- 3 1-3x- 4 5=2; (2)[2018 秋·皇姑区期末]x-x-5 2=2x+ 3 5-1. 解:(1)去分母,得 4(2x-1)-3(3x-5)=24. 去括号,得 8x-4-9x+15=24. 移项,得 8x-9x=24+4-15. 合并同类项,得-x=13. 系数化为 1,得 x=-13.
第2课时 利用去分母解一元一次方程
第三章 一元一次方程
3.3 第2课时 利用去分母解一元一次方程
学习指南
知识管理
归类探究
当堂测评
分层作业
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
学习指南
教学目标 1.会解含分母的一元一次方程. 2.用一元一次方程解决实际问题.
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
解方程:x-10x6+1=2x+4 1-1. 解:去分母,得 12x-2(10x+1)=3(2x+1)-12. 去括号,得 12x-20x-2=6x+3-12. 移项,得 12x-20x-6x=3-12+2. 合并同类项,得-14x=-7. 系数化为 1,得 x=12.
生了浓厚的兴趣,并在一生中始终进行着数学研究,到了他 60 岁那年,他 提出了“百羊问题”:

初中数学教学课件:3.3 解一元一次方程(二)——去括号与去分母 第1课时(人教版七年级上)

初中数学教学课件:3.3 解一元一次方程(二)——去括号与去分母 第1课时(人教版七年级上)

x=2 3
11
(2) 6( 1 x - 4) + 2x = 7-( 1 x - 1)
2
3
x=6
2.(黄冈中考)通信市场竞争日益激烈,某通信公司的手 机市话费标准按原标准每分钟降低a元后,再次下调了20%, 现在收费标准是每分钟b元,则原收费标准每分钟是___元.
【解析】设原收费标准每分钟是x元,根据题意得,
顺流航行的路程=逆流航行的路程
解:设水流速度为x千米/时,则顺流速度为 (__x_+_4_)_千米/时,逆流速度为(__4_-_x_)__千米/时, 由题意得: 3(x+4)=4.5(4-x)
解之得,x=0.8. 答:水流速度为0.8千米/时.
1.计算(1) 4x + 3(2x-3) = 12- (x-2)
(x-a)(1-20%)=b,解得x=
5
答案: b+a 5
4
4
b+a,
3.(湛江中考)学校组织一次有关世博的知识竞赛共有20 道题,每一题答对得5分,答错或不答都倒扣1分,小明最 终得76分,那么他答对___________题.
【解析】设他答对了x道题,由题意得 5x-(20-x)=76,
解得 x=16. 答案:16
3.3 解一元一次方程(二) ——去括号与去分母
第1课时
1.掌握去括号解决含括号的一元一次方程. 2.通过分析行程问题中顺流速度、逆流速度、水流速度、 静水中的速度的关系,进一步经历运用方程解决实际问 题的过程,体会方程模型的作用. 3.关注学生在建立方程和解方程过程中的表现,发展学 生积极思考的学习态度以及合作交流的意识.
解一元一次方程 的步骤有:
去括号 移项 合并同类项 系数化为1

人教版新课标七年级上册3.3解一元一次方程(3)课件(共14张PPT)

人教版新课标七年级上册3.3解一元一次方程(3)课件(共14张PPT)

我思考,我纠错
• 去分母时要注意什么问题?
• (1)方程两边各项都要乘以分母的最小公倍 数(公分母)(不含分母的项也要乘), 即“不漏乘”。
• (2)分子是多项式时,去掉分母的同时分 子要 打括号
我自学,我能行
2、解下列方程:
(1) x 1 x 3
4
6
(2)
x 1 3
2x
3
2
2
x
解:去分母得:
• 去括号得:_4_x__4__5x__20__6_0______
• 移项,合并同类项得__9x___3_6_____
• 两边同除以9得:_x___4____
• 因此,两人合绣4天就可以完成这件作品。
你能告诉我用去分母法解一元一次方程的步骤吗?
• 认真阅读P94例题3,找出题目中分母的最小公倍 数(最简公分母),掌握解题格式和基本步骤。
x
10 3
与代数式
1 4
x
2 的值相等? 3
• 【必做题】p96 A组T3(2)、(4), • T4, T7(2)
• 【选做题】P97 B组T10 , T12
课后思考
• 1、已知关于x的方程 m 2x m 1 5 0 是
一元一次方程,求方程 5x 3m mx 3 1 的

3
2m
2、已知关于x的方程 3x a 1 5x 1 和
• (1)用文字写出本问题中的等量关系:
• ___甲_完__成_的__工_作__量__+已__完__成_的__工_作__量_=_总__工_作__量___
• (1 2)设总工作量为1,则甲1每天完成工作总量的 1_5_,乙每天完成工作总量的_1_2.
• (3)若剩下的工作两人合绣 x天可完成,则甲共

七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件

七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件

移项,得4x-3x=6+2+1,
合并同类项,得x=9.
错因分析 去分母时,各项都应乘各分母的最小公倍数,本题忽略了不
含分母的项.
2021/12/11
第二十二页,共九十五页。
知识点一 解一元一次方程——去括号(kuòhào)
1.将方程-3(2x-1)+2(1-x)=2去括号,得 ( ) A.-3x+3-1-x=2 B.-6x-3+2-x=2 C.-6x+3+1-2x=2 D.-6x+3+2-2x=2
≠0,a,b为常数)
等式的 性质2
(1)系数相加; (2)字母及其指数不变
(1)除数不为0;(2)不要把分子、分 母颠倒
化分母中的小数为整数不同于去分母,不是将方程两边同时乘同一个数,而是将分子、分母同时乘同一个 数
第六页,共九十五页。
例3 解方程:(1)4-3(10-y)=5y;
(2) 2 x =1 2-1x . 1
点拨 这是一道典型的追及问题,做题时要注意挖掘题中的隐含条件: 小明用的时间比小亮用的时间多0.5 h.
2021/12/11
第二十页,共九十五页。
易错点一 去括号时漏乘项或出现符号(fúhào)错误
例1 解方程:4x-3(2-x)=5x-2(9+x).
错解 错解一:去括号,得4x-6+x=5x-18-x, 移项、合并同类项,得x=-12. 错解二:去括号,得4x-6-3x=5x-18+2x, 移项、合并同类项,得-6x=-12, 系数化为1,得x=2. 正解 去括号,得4x-6+3x=5x-18-2x, 移项、合并同类项,得4x=-12,系数化为1,得x=-3. 错因分析 错解一中运用分配律时,括号前的系数只乘了第一项,漏乘 了第二项;错解二中出现了符号错误.本题括号前面是“-”,去括号时, 2只021改/12/变11 了第一项的符号,而忽视了第二改十一页变,共九括十五号页。 内其他项的符号.

3.3.2解一元一次方程——去分母

3.3.2解一元一次方程——去分母

小试身手:
(1 )
x+1 2-x -1=2+ 2 4
x-1 2 x-1 =3- (2) 3 x+ 2 3
例3 解下列方程:
x+1 2-x (1) 2 -1=2+ 4 解:去分母(方程两边乘4):
2( x+1)-4=8+(2-x )
去括号: 移项: 合并同类项: 系数化为1:
2 x+2-4=8+2-x
15 x-3x+4 x=-2-6-5+20
16 x 7 7 x= 16
合并母时,应在方程的左右两
例 题
边乘以分母的 最小公倍数 ;
2 、去分母的依据是 等式性质二 ,
去分母时不能漏乘 没有分母的项 ;

3 、去分母与去括号这两步分 结 开写,不要跳步,防止忘记变号。
15 x-3x+4 x=-2-6-5+20
合并同类项 16 x 7 系数化为1
7 x 16
3 x+1 3 x-2 2 x+3 -2= - 解方程: 2 10 5
解:去分母(方程两边乘10):
5(3x+ 1)- 10 2=(3x-2)-2(2 x+3)
去括号: 移项:
15x+5-20=3x-2-4 x-6
2 x+x=8+2-2+4
3 x=12
x=4.
x-1 2 x-1 =3- (2) 3 x+ 2 3
解:去分母(方程两边乘6):
18 x+3( x-1)=18-2(2 x-1).
去括号: 移项:
18 x+3 x-3=18-4 x+2
18 x+3 x+4 x=18+2+3
25 x=23
23 x= . 25
3.3 解一元一次方程(二)
——去分母
知识回顾:
解下列方程:

人教版数学初一上册3.3 解一元一次方程(二)——去括号与去分母课件

人教版数学初一上册3.3 解一元一次方程(二)——去括号与去分母课件
人教版数学七年级上册
3.2 解一元一次方程(二) ——去括号与去分母
探究新知
利用去括号解一元一次方程
化简下列各式:
(1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式= -3a+2b + 3a-3b =-b; (2) 原式=-5a+4b + 3a - b= -2a+3b.
解:去括号,得
x-2x 4=3x+5x-5. 移项,得
x-2x-5x-3x=-5-4.
合并同类项,得 9x=- 9.
系数化为1,得 x=1.
(2)7+
8
3 4
x
1 =3x-
6
1 2
2 3
x
.
解:去括号,得
7 6x 8=3x 3 4x. 移项,得
6x-3x-4x=-3-7+8.
合并同类项,得 x=- 2.
分析 找等量关系.这艘船往返的路程相等,即 顺流速度_×__顺流时间_=__逆流速度_×__逆流时间.
解:设船在静水中的平均速度为 x km/h,则顺流速度 为(x+3) km/h,逆流速度为(x-3) km/h.
根据顺流速度×顺流时间=逆流速度 ×逆流时间
列出方程,得 2( x+3 ) = 2.5( x-3 ).
方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标 准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪 个阶段,然后列方程求解即可.
巩固练习 4.某中学计划给结成帮扶对子的农村希望小学捐赠40台电 扇(分吊扇和台扇两种).经了解,某商店每台台扇的价格 比每台吊扇的价格多80元,用1240元恰好可以买到3台台 扇和2台吊扇.每台台扇和每台吊扇的价格分别为多少元?

七年级上册数学人教版3.3.2解一元一次方程去分母解一元一次方程优秀教学案例

七年级上册数学人教版3.3.2解一元一次方程去分母解一元一次方程优秀教学案例
(四)反思与评价
在教学过程中,我注重引导学生进行反思和评价。通过让学生回顾和总结自己的学习过程,帮助他们发现问题、巩固知识和提高解题能力。例如,在解题过程中,我可以让学生互相检查和评价对方的解题步骤和答案,指出其中的错误和不足,并给出建议和改进意见。同时,我也会进行定期的课堂小测验,检验学生对一元一次方程知识的掌握程度,并根据学生的表现给予及时的反馈和指导。通过反思和评价,学生可以更好地了解自己的学习情况,调整学习策略,提高学习效果。
七年级上册数学人教版3.3.2解一元一次方程去分母解一元一次方程优秀教学案例
一、案背景
本案例背景以七年级上册数学人教版3.3.2解一元一次方程去分母解一元一次方程为内容,旨在通过实际教学情境,帮助学生掌握解一元一次方程的基本步骤和方法。
在教学过程中,我发现许多学生在解决含有分母的方程时,常常感到困惑和无法应对。为了帮助学生克服这一难题,我设计了一份优秀教学案例,通过引导学生思考、讨论和动手操作,使他们能够深入理解去分母的原理和方法,提高解题能力。
3.小组合作学习:我鼓励学生进行小组合作,共同解决问题。通过小组讨论和互动交流,学生可以相互启发、借鉴和补充,提高他们的合作能力和沟通能力。这种小组合作的学习方式不仅能够增加学生的参与度和主动性,还能够培养他们的团队精神和集体荣誉感。
4.反思与评价:在教学过程中,我引导学生进行反思和评价,帮助他们发现问题、巩固知识和提高解题能力。通过反思和评价,学生可以更好地了解自己的学习情况,调整学习策略,提高学习效果。这种反思与评价的教学策略能够培养学生的自我监控和自我调整能力,使他们在学习过程中不断进步和成长。
三、教学策略
(一)情景创设
在教学过程中,我注重利用情景创设来引发学生的兴趣和思考。通过设计生动的生活情境和实际问题,让学生感受到数学与生活的紧密联系,激发他们对数学的兴趣和热情。例如,我可以引入一些实际案例,如购物时遇到的折扣问题、制作食物时的比例问题等,让学生在解决问题的过程中自然地引入一元一次方程的知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)2x3+1=1-x-5 1. 解:去分母,得5(2x+1)=15-3(x-1),去括号,得10x+5=15-3x+3, 移项,得10x+3x=-5+15+3,合并同类项,得13x=13,系数化为1, 得x=1
知识点二:解一元一次方程的步骤
6.解方程x-3 1-x+6 2=4-2 x的步骤如下,则错误的一步为( B )
知识点一:利用去分母解一元一次方程
1.方程 3-1-2 x=0 可以变形为( C )
A.3-1-x=0
B.6-1-x=0
C.6-1+x=0 D.6-1+x=2
2.解方程13-x-2 1=1 的结果是( D )
A.x=21 B.x=-12
C.x=13 D.x=-13
3.若3a与2a-3 9互为相反数,那么 a 的值为( B )
(2)x+2 1=6-2x3-1. 解:去分母,得3(x+1)=36-2(2x-1),去括号,得3x+3=36 -4x+2,移项,得3x+4x=-3+36+2,合并同类项,得7x= 35,系数化为1,得x=5
17.某同学在解方程2x- 3 1=x+3 a-2 去分母时,方程右边的-2 没 有乘 3,因而求得的方程的解为 x=2,试求 a 的值,并求出原方程 的正确的解.
15.一列火车匀速行驶,经过一条长600 m的隧道需要45 s,隧道顶部 一盏固定的灯在火车上垂直照射的时间为15 s,则火车的长为 _____3_0_0_m____.
16.解下列方程: (1)x-2 3-4x5+1=1;
解:去分母,得5(x-3)-2(4x+1)=10,去括号,得5x-15-8x -2=10,移项,得5x-8x=15+2+10,合并同类项,得-3x= 27,系数化为1,得x=-9
10.依据下列解方程0.3x0+.2 0.5=2x3-1的过程,请在前面的括号内填写 变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为3x+ 2 5=2x3-1.(_分__数__的__基__本___性__质_____) 去分母,得 3(3x+5)=2(2x-1).(_____等__式__的__性__质__2_____) 去括号,得 9x+15=4x-2.(___去__括__号__法__则______) (__移__项___),得 9x-4x=-15-2.(__等__式__的__性__质__1___)(_系__数__化__为__1__),得
的值是( A )
A.7
B.5
C.3
D.1
13.小华用 x 元钱买学习用品,若全买钢笔,刚好买 3 支,若全买笔 记本刚好买 4 本,已知一个笔记本比一支钢笔便宜 2 元,则下列方程 中正确的是( A ) A.3x=4x+2 B.x4=x3+2
C.x4=x+3 2 D.x+4 2=x3 14.某书中一道方程题2+3⊕x+1=x,⊕处印刷时被墨盖住了,查后 面答案,这道题的解为 x=-2.5,那么⊕处的数字为__5__.
解:根据该同学的做法,去分母,得 2x-1=x+a-2.解得 x=a-1. 因为 x=2 是方程的解,所以 a=3.把 a=3 代入原方程,得2x3-1=x+3 3 -2,解得 x=-2
18.小明以每小时 8 千米的速度从甲地到达乙地,回来时走的路程比 去时多 3 千米,已知速度为 9 千米/时,这样回来时比去时多用81小时, 求甲、乙两地的原路长.
3 A.2
B.3
C.-23
D.-3
4.方程3x2+1-x-6 1=1 去分母后所得的结果是__3_(3__x_+__1_)-__(_x_-__1_)_=__6___.
5.解下列方程: (1)x+3 1=x-2 1; 解:去分母,得 2(x+1)=3(x-1),去括号,得 2x+2=3x-3,移项, 得 2x-3x=-3-2,合并同类项,得-x=-5,系数化为 1,得 x=5
初中数学课件
金戈铁骑整理制作
3.3 解一元一次方程(二) ——去括号与去分母
第2课时 利用去分母解一元一次方程
1.去分母的方法:依据等式的性质;2.方程两边各项都乘以所有分母 的___最__小__公__倍__数____,将分母去掉. 2.解一元一次方程的一般步骤:(1)__去__分__母___;(2)_去__括__号_____; (3)__移__项______;(4)_合__并__同__类__项__;(5)__系__数__化__为__1________.
A.2(x-1)-(x+2)=3(4-x) B.2x-2-x+2=12-3x C.4x=12 D.x=3
7.若5x-6 1与23互为倒数,则 x 的值为( B )
A.1
B.2次方程2x3-k-x-23k=1 的解是 x=-1,则 k 的值是( B ) A.27 B.1 C.-1113 D.0 9.在解方程 1-10x6-1=2x+3 1的过程中,①去分母,得 6-10x-1 =2(2x+1);②去括号,得 6-10x+1=4x+2;③移项,得-10x-4x =2-6-1;④合并同类项,得-14x=-5;⑤系数化为 1 得 x=154. 其中错误的步骤有_①__⑤____.
x=-157.(___等___式__的__性__质__2____)
11.解方程 x-4 3-1+32x=1 时,去分母正确的是( B )
A.3(x-3)-4(1+2x)=1
B.3(x-3)-4(1+2x)=12
C.3x-9-1-2x=12
D.3(x-3)-1+2x=12
12.如果方程 2-x+3 1=x+6 7的解也是方程 2-a-3 x=0 的解,那么 a
解:设甲、乙两地的原路长为 x 千米,则x8+18=x+9 3,解得 x=15.答: 甲、乙两地的原路长为 15 千米
19.已知关于 x 的方程 9x-3=kx+14 有整数解,求整数 k 的值.
解:依题意有 x=91-7k,因为原方程是整数解,所以 9-k=±1 或±17, 所以 k=±8 或 10 或 26
相关文档
最新文档