2019-2020学年高中数学 3.2.1古典概型(二)基础过关训练 新人教B版必修3 .doc
2019-2020学年人教课标A版高中数学必修三课后作业19古典概型 Word版含解析
![2019-2020学年人教课标A版高中数学必修三课后作业19古典概型 Word版含解析](https://img.taocdn.com/s3/m/16562e9831b765ce0408142d.png)
姓名,年级:时间:课后作业(十九)(时间45分钟)学业水平合格练(时间25分钟)1.下列概率模型中,是古典概型的个数为()①从区间[1,10]内任取一个数,求取到1的概率;②从1~10中任意取一个整数,求取到1的概率;③在一个正方形ABCD内画一点P,求P刚好与点A重合的概率;④向上抛掷一枚不均匀的硬币,求出现反面朝上的概率.A.1 B.2 C.3 D.4[解析] 古典概型的概率特点是基本事件是有限个,并且每个基本事件发生的概率是等可能的,故②是古典概型,④由于硬币质地不均匀,故不是古典概型,故选A.[答案] A2.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为( )A。
错误!B。
错误!C.错误!D。
错误![解析] 该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率P=错误!=错误!.[答案]C3.现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为()A.错误!B.错误! C。
错误! D。
错误![解析] 设两道题分别为A,B,所以抽取情况共有:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,其中第1个,第2个分别表示两个女教师抽取的题目,第3个表示男教师抽取的题目,一共有8种;其中满足恰有一男一女抽到同一题目的事件有:ABA,ABB,BAA,BAB,共4种;故所求事件的概率为错误!.故选C。
[答案]C4.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为错误!的概率是()A.错误!B.错误!C.错误!D.错误![解析]若使两点间的距离为错误!,则为对角线的一半,选择点必含中心,设中心为G,四个顶点为A,B,C,D,基本事件有(A,B),(A,C),(A,D),(A,G),(B,C),…,(D,G),共10个,所求事件包含的基本事件有(A,G),(B,G),(C,G),(D,G),共4个,所求概率为错误!=错误!。
人教版数学必修三练习3.2古典概型
![人教版数学必修三练习3.2古典概型](https://img.taocdn.com/s3/m/2030ad0726fff705cc170aed.png)
3.2.1 古典概型(一)一、基础过关1.下列是古典概型的是 ( ) A .任意抛掷两枚骰子,所得点数之和作为基本事件时B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C .从甲地到乙地共n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币首次出现正面为止2.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( ) A.38B.23C.13D.143.同时抛掷三枚均匀的硬币,出现一枚正面,二枚反面的概率等于( ) A.14B.13C.38D.124.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( ) A.45B.35C.25D.155.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率为________.7.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:(1)基本事件总数;(2)事件“摸出2个黑球”包含多少个基本事件? (3)摸出2个黑球的概率是多少?二、能力提升8.有五根细木棒,长度分别为1,3,5,7,9(cm),从中任取三根,能搭成三角形的概率是( )A.320B.25C.15D.3109.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.10.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.11.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求: (1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.12.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,求事件A 的概率.三、探究与拓展13.编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)(2)①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率.1.答案 C解析 A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的基本事件是无限的,故B 不是;C 项满足古典概型的有限性和等可能性,故C 是;D 项中基本事件既不是有限个也不具有等可能性,故D 不是. 2.答案 A解析所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个,仅有2次出现正面向上的有:(正,正,反),(正,反,正),(反,正,正),共3个.则所求概率为38.3.答案 C解析 所有可能的结果是(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,反,正),(反,正,反),(反,反,反)共8种,出现一枚正面,二枚反面的情况有3种,故概率为P =38.4.答案 D解析 设所取的数中b >a 为事件A ,如果把选出的数a ,b 写成一数对(a ,b )的形式,则基本事件有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3),共15个,事件A 包含的基本事件有(1,2)、(1,3)、(2,3),共3个,因此所求的概率P (A )=315=15.5.答案 15解析 从5个数中任意取出两个不同的数,有10种,若取出的两数之和等于5,则有(1,4),(2,3),共有2种,所以取出的两数之和等于5的概率为210=15.6.答案 25解析 设袋中红球用a 表示,2个白球分别用b 1,b 2表示,3个黑球分别用c 1,c 2,c 3表示,则从袋中任取两球所含基本事件为(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15个.两球颜色为一白一黑的基本事件有:(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),共6个. ∴其概率为615=25.7.解 由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},其中共有6个基本事件.(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共3个基本事件. (3)基本事件总数n =6,事件“摸出两个黑球”包含的基本事件数m =3,故P =12.8.答案 D解析 设取出的三根木棒能搭成三角形为事件A ,任取三根木棒按长度不同共有1、3、5,1、3、7,1、3、9,1、5、7,1、5、9,1、7、9,3、5、7,3、5、9,3、7、9,5、7、9共10种情况,由于三角形两边之和大于第三边,构成三角形的只有3、5、7,3、7、9,5、7、9三种情况,故所求概率为P (A )=310.9.答案 15解析 用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为AB ,AC ,A a ,Ab ,Ac ,BC ,Ba ,B b ,B c ,Ca ,Cb ,Cc ,ab ,ac ,b c ,故所求的概率为315=15.10.答案 14解析 用列举法知,可重复地选取两个数共有16种可能,其中一个数是另一个数的2倍的有1,2;2,1;2,4;4,2共4种,故所求的概率为416=14.11.解 (1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.(2)基本事件同(1),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815. 12.解 (1)由题意可知:n 1+1+n =12,解得n =2.(2)不放回地随机抽取2个小球的所有基本事件为(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A 包含的基本事件为(0,21),(0,22),(21,0),(22,0),共4个.∴P(A)=412=1 3.13.解(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A3,A4,A5,A10,A11,A13,从中随机抽取2人,所有可能的抽取结果有:{A3,A4},{A3,A5},{A3,A10},{A3,A11},{A3,A13},{A4,A5},{A4,A10},{A4,A11},{A4,A13},{A5,A10},{A5,A11},{A5,A13},{A10,A11},{A10,A13},{A11,A13},共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有:{A4,A5},{A4,A10},{A4,A11},{A5,A10},{A10,A11},共5种.所以P(B)=515=13.。
2019-2020学年高中数学 专题1.11 古典概型测试(含解析)新人教A版必修3.doc
![2019-2020学年高中数学 专题1.11 古典概型测试(含解析)新人教A版必修3.doc](https://img.taocdn.com/s3/m/7856ed2dfad6195f312ba6d7.png)
2019-2020学年高中数学 专题1.11 古典概型测试(含解析)新人教A 版必修3一、选择题(35分)1.下列对古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个 ②每个事件出现的可能性相等 ③每个基本事件出现的可能性相等 ④基本事件总数为n,随机事件A 若包含k 个基本事件,则P(A)= A.②④ B.①③④C.①④D.③④2.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为( ) A.{正好2个红球} B.{正好2个黑球} C.{正好2个白球} D.{至少1个红球}3.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A .23 B .12 C .13 D .16【答案】 C【解析】 从A ,B 中各任取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C .4.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( ) A.45B.35C.25D.155.老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为( )A.150B.110C.15D.146.高三(4)班有4个学习小组,从中抽出2个小组进行作业检查.在这个试验中,基本事件的个数为( ) A.2 B.4C.6 D.87.从1,2,3,4,5,6六个数中任取3个数,则取出的3个数是连续自然数的概率是( )A.35B.25C.13D.15二、填空题(20分)8.若以连续掷两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5的下方的概率为________.9.从1,2,3,…,9共九个数字中,任取两个数字,取出数字之和为偶数的概率是________.10.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P(m ,n),则点P 在圆x 2+y 2=9内部的概率为________.11.(2016·石家庄高一检测)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.【答案】 13【解析】 该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13.三、解答题(35分)12.(10分)2008年5月12日,四川省汶川发生大地震,全国人民纷纷伸出援助之手,白衣天使更是无私奉献.现随意安排甲、乙、丙3个医生在某医疗救助点值班3天,每人值班1天, (1)这3人值班的顺序共有多少种不同的方法? (2)其中甲在乙之前的排法有多少种? (3)甲排在乙之前的概率是多少?13.(10分)某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖. (1)求中三等奖的概率; (2)求中奖的概率.【解析】 设“中三等奖”为事件A ,“中奖”为事件B ,从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果, 则中三等奖的概率为P (A )=716. (2)由(1)知两个小球号码相加之和等于3或4的取法有7种; 两个小球号码相加之和等于5的取法有2种:(2,3),(3,2). 两个小球号码相加之和等于6的取法有1种:(3,3).则中奖概率为P (B )=7+2+116=58.14.(15分)(2012山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.。
高中数学《3.2古典概型》2 新人教A版必修3
![高中数学《3.2古典概型》2 新人教A版必修3](https://img.taocdn.com/s3/m/3953f71f195f312b3069a51d.png)
【课标要求】 1.了解随机数的意义. 2.会用模拟方法(包括计算器产生随机数进行模拟)估计
概率. 3.理解用模拟方法估计概率的实质. 【核心扫描】 1.利用随机数估计事件的概率.(重点) 2.设计恰当的试验产生随机数并加以利用.(难点)
44134 92201 70362 83005
94976 56173 34783 16624 30344 01117
(6分)
这就相当于做了 30 次试验,在这些数组中,如果恰有一
个 0,则表示恰有 4 棵成活,共有 9 组这样的数,于是我
(2)真正的随机数是使用物理手段产生的:比如抛掷硬 币、使用电子元件的噪音、核裂变等.这样做虽然可 以得到真正的随机数,但缺点是技术及使用成本都很 高,且不易操作.
2.伪随机数的产生方法 计算机或计算器产生的随机数是依照确定算法产生的数, 具有周期性(周期很长),它们具有类似随机数的性质.计 算机或计算器产生的并不是真正的随机数, 我们称它们为 伪随机数,随机数表就是用计算机产生的随机数表格.随 机数表中每个位置上出现哪一个数字是等可能的. 如上面我们从全班50名学生中抽取8名学生的方法,也可 以用随机数表法选取.我们可以用随机函数产生1~50间 的8个随机数(排除后面产生的与前面相同的数)来作为抽取 8名学生的号码.
名师点睛
1.随机数的产生方法 (1)方法一:用带有PRB功能的计算器 用计算器产生随机数的随机函数RANDI(a,b)可以产生从 整数a到整数b的取整数值的随机数. (2)方法二:用计算机 利用计算机的随机函数RANDBETWEEN(a,b)产生从整 数a到整数b的取整数值的随机数. 温馨提示 (1)计算机或计算器产生的随机数是依照确定算 法产生的数,具有周期性,它们具有类似随机数的性 质.因此,计算机或计算器产生的并不是真正的随机数, 我们称它们为伪随机数.
2019-2020学年高一数学苏教版必修3同步练习:3.2 古典概型
![2019-2020学年高一数学苏教版必修3同步练习:3.2 古典概型](https://img.taocdn.com/s3/m/0d42ba9c0029bd64783e2ccb.png)
3.2 古典概型1、掷一枚骰子,则掷得奇数点的概率是( )A. B. C. D. 161213142、在所有的两位数(10~99)中任取一个数,则这个数能被2或3整除的概率是( )A. B. C. D.564523123、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数),骰子朝上的1,2,3,4,5,6面的点数分别为,则的概率为( ),x y 2log 1x y A. B. C. D. 16536112124、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( )A .B .C .D .161413125、甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再贏两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A. 12B. 35C. 23D. 346、从甲、乙等名学生中随机选出人,则甲被选中的概率为( )52A. 15B. 25C. 25D. 9257、从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是( )A. 15B. 25C. 310D. 7108、已知函数,若是从三个数中任取的一个数, 是从3221()13f x x ax b x =+++a 1,2,3 b 三个数中任取的一个数,则该函数有两个极值点的概率为( )0,1,2A. 79B. 13C. 59D. 239、集合从中各任意取一个数,则这两数之和等于的概率是( ){}{}2,3,1,2,3A B ==,A B 4A.23B. 2C.13D.1610、设集合分别从集合和中随机取一个数和确定平面上的一{1,2},{1,2,3},A B ==A B a ,b 个点记“点落在直线上”为事件若事件的概率(,),P a b (,)P a b x y n +=(25,N),n C n n ≤≤∈n C 最大,则的所有可能值为( )n A.3 B.4 C.2和5 D.3和411、从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是 .12、袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.13、从个正整数,中任意取出两个不同的数,若取出的两数之和等于的概率为n 1,2,,n 5,则=__________.114n 14、在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为__________15、一个袋中装有四个形状大小完全相同的球,球的编号分别为.1,2,3,4(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求的概率.2n m <+答案以及解析1答案及解析:答案:B解析:掷一枚骰子可能出现奇数点,也可能出现偶数点,且出现奇数点与偶数点的概率相同,故概率为.122答案及解析:答案:C 解析:3答案及解析:答案:C 解析:因为,所以,,所以2log 1x y ={}2,1,2,3,4,5,6x y x =∈{}1,2,3,4,5,6y ∈共三种,故所求概率为.1,2,3,2,4,6,x x x y y y ⎧⎧======⎧⎨⎨⎨⎩⎩⎩316612=⨯4答案及解析:答案:A 解析:5答案及解析:答案:D解析:方法一:以甲队再打的局数分类讨论,若甲队再打一局得冠军的概率为,则,1p 112p =若甲队再打两局得冠军的概率为,2p 则,2111224p =⨯=故甲队获得冠军的概率为,故选D.1234p p +=方法二:设乙队获得冠军的概率为,则,1p 1111224p =⨯= 故甲队获得冠军的概率为,故选D.1314p p =-=6答案及解析:答案:B解析:所求概率为,故选B.142525C P C ==考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件中的基本事件数,利用公式求出事件的概率,这是一个形象直观A ()mP A n =A 的好方法,但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算,,再运用公式求概m n ()mP A n =率.7答案及解析:答案:B解析:可看作分两次抽取,第一次任取一张有5种方法,第二次从剩下的4张中再任取一张有4种方法,因为与是一样的,故试验的所有基本事件总数为个,两字(,)B C (,)C B 54210⨯÷=母恰好是相邻字母的有4个,故P=.()()()(),,,,,,,A B B C C D D E 42105P ==8答案及解析:答案:D解析:求导可得 要满足题意需有两个不等实根,22'()2f x x ax b =++2220x ax b ++=即,224()0a b ∆=->即,又的取法共有种,a b >, a b 339⨯=其中满足的有,共种,a b >()()()1,0,2,0,2,1()()()3,0,3,1,3,26故所求的概率为.6293P ==9答案及解析:答案:C 解析:从中各取一个数有共种情况,其中和为的,A B ()()()()()()2,12,22,33,1,3,23,364有共种情况,所以所求概率,故选。
2019-2020学年数学高中人教A版必修3学案:3.2.1古典概型 Word版含解析
![2019-2020学年数学高中人教A版必修3学案:3.2.1古典概型 Word版含解析](https://img.taocdn.com/s3/m/5182836959eef8c75ebfb352.png)
第三章概率3.2古典概型3.2.1古典概型学习目标1.通过模拟试验理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性;观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养用随机的观点来理性地理解世界.2.通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的的使用条件,体会化归的重要思想.掌握列举概率计算公式,注意公式P(A)=包含的基本事件的个数基本事件的总数法,学会运用分类讨论的思想解决概率的计算问题.合作学习一、设计问题,创设情境(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论:根据上述情况,你能发现它们有什么共同特点?二、信息交流,揭示规律1.提出问题:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?它具有什么特点?2.基本事件具有两个特点:3.在一个试验中如果①;(有限性)②.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.4.古典概型计算任何事件的概率计算公式为.三、运用规律,解决问题【例1】从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?【例2】单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?古典概型解题步骤:(1)(2)(3)(4)【例3】同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?【例4】假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?【例5】某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?四、变式训练,深化提高1.在40根纤维中,有12根的长度超过30mm,从中任取1根,取到长度超过30mm的纤维的概率是()A. B. C. D.以上都不对2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取1个恰为合格铁钉的概率是()A. B. C. D.3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是.4.抛掷2颗质地均匀的骰子,求点数和为8的概率.五、反思小结,观点提炼1.本节课你学习到了哪些知识?2.本节课渗透了哪些数学思想方法?布置作业课本P133习题3.2A组第1,2,3,4题.参考答案二、信息交流,揭示规律1.提出问题:讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为是随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是随机事件,出现的概率是相等的,都是.(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件;它是试验的每一个可能结果.2.①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.3.①试验中所有可能出现的基本事件只有有限个②每个基本事件出现的可能性相等4.P(A)=包含的基本事件的个数基本事件的总数三、运用规律,解决问题【例1】解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.【例2】解:.(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n和事件A所包含的结果数n A;(4)用公式P(A)=求出概率并下结论.【例3】解:(1)所有可能结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),( 4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.(2)(1,4),(2,3),(3,2),(4,1),共有4种.(3)P=.【例4】解:见课本P128.【例5】解:见课本P129.四、变式训练,深化提高1.B解析:在40根纤维中,有12根的长度超过30mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为,因此选B项.2.C解析:(方法1)从盒中任取1个铁钉包含基本事件总数为10,其中抽到合格铁钉(记为事件A)包含8个基本事件,所以,所求概率为P(A)=.(方法2)本题还可以用对立事件的概率公式求解,因为从盒中任取1个铁钉,取到合格品(记为事件A)与取到不合格品(记为事件B)恰为对立事件,因此,P(A)=1-P(B)=1-.3.解析:记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红,白1),(红1,白2)(红1,白3),(红2,白1),(红2,白2),(红2,白3),(白1,白2),(白1,白3),(白2,白3)共10 1个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为.本题还可以利用“对立事件的概率和为1”来求解,对于求“至多”“至少”等事件的概率问题,常采用间接法利用P(A)=1-P(B)求解.4.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,同时掷两颗骰子的结果共有6×6=36种,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为.。
2019-2020年高中数学测评 古典概型学案 新人教A版必修3
![2019-2020年高中数学测评 古典概型学案 新人教A版必修3](https://img.taocdn.com/s3/m/79cdec4afad6195f312ba697.png)
2019-2020年高中数学测评古典概型学案新人教A版必修31.从甲、乙、丙、丁4名同学中选出3人参加数学竞赛,其中甲不被选中的概率为()A. B. C. D.2.分别标有1,2,3,4,…,10的十张卡片,从中任取两张,“这两张卡片上的数字之和为9”的概率为()A. B. C. D.3.同时抛两枚硬币甲和乙,则“甲出现正面朝上”的概率是()A. B. C. D. 无法确定4.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有( )A. 1个B. 2个C. 3个D. 4个5.2 000名青年工人,250名大学生,300名青年农民一起联欢,如果任意找其中一名谈话,这个人是青年工人的概率是.6.抛掷两枚骰子,求“点数之和为7或出现两个4点”的概率.7.如图,a、b、c、d、e是处于断开状态的开关,任意闭合两个,则电路被接通的概率是8. (xx·江苏)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为.9.甲、乙两人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.求:(1) “甲抽到选择题、乙抽到判断题”的概率是多少?(2) “甲、乙二人中至少有一个抽到选择题”的概率是多少?10. (xx·天津)为了了解某工厂开展群体体育活动的情况,拟采用分层抽样的方法从A、B、C 三个区中抽取7个工厂进行调查,已知A、B、C区中分别有18,27,18个工厂.(1)求从A,B,C区分中分别抽取的工厂个数;(2)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.11. 在箱子中装有十张卡片,分别写有1到10的10个整数.从箱子中任取出一张卡片,记下它的读数x,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y,求:(1) “x+y是10的倍数”的概率;(2) “x·y是3的倍数”的概率.12. 甲、乙两人玩游戏,规则程序如图所示,求甲胜的概率.答案1. A2. B3. B4. C5.6. 设“点数之和为7”为事件A,“出现两个4点”为事件B,则P(A∪B)=P(A)+P(B)= +=.7. 8. 0.29. (1)“甲从选择题中抽取一题”的可能结果有6种,“乙从判断题中抽取一题”的可能结果有4种,故“甲抽到选择题,乙抽到判断题”的可能结果有6×4=24(种),而“甲、乙依次抽一题”的可能结果有10×9=90种.故“甲抽到选择题,乙抽到判断题”的概率P==(2)“甲、乙二人依次都抽到判断题”的可能结果有4×3=12(种),故“甲、乙二人中至少有一人抽到选择题”的概率P=1-=.10. (1)工厂总数为18+27+18=63,样本容量与总体数的比为=,所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2.(2)设A1,A2为在A区中抽得的2个工厂,B1,B2,B3为在B区中抽得的3个工厂,C1,C2为在C区中抽得的2个工厂,从7个工厂中随机抽取2个,全部的可能结果有21种,随机抽取的2个工厂至少有一个来自A区的结果有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(A2,C2),一共有11种.所以所求的概率为.11. 先后抽取卡片两次,每次都有1到10这10种结果,故形成有序实数对(x,y),共有10×10=100(个).(1)因为“x+y是10的倍数”,包含下列10个数对:(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10).故“x+y是10的倍数”的概率是P1==0.1.(2)“x·y是3的倍数”,包含以下3种情况:x是3的倍数,y不是3的倍数;x不是3的倍数,y是3的倍数;x、y均是3的倍数,这三种情况分别有21种,21种,9种结果,故所求概率是P2===0.51.12. 任取一球有4种可能,再任取一球有3种可能,共有12种不同结果.若第一次取出白球,第二次取出红球,共有3种可能;若第一次取出红球,第二次取出白球也有3种可能,故取出的两球不同色的概率为P=.又取出的两球“同色”与“不同色”这两个事件是对立事件,故甲胜(取出两球同色)的概率是P′=1-P=1-=.2019-2020年高中数学测评均匀随机数的产生学案新人教A版必修31.将区间[0,1]内的均匀随机数x1转化为区间[-2,2]内的均匀随机数x,需要实施的变换为( )A. x=x1*2B. x=x1*4C. x=x1*2+2D. x=x1*4-22.在区间[1,3]上任取一数,则这个数大于1.5的概率为( )A. 0.25B. 0.5C. 0.6D. 0.753.如图所示,转盘上有8个面积相等的扇形,转动转盘,则转盘停止转动时指针落在阴影部分的概率为( )A. B. C. D.4.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为,则阴影区域的面积为.5.已知函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0使f(x0)≤0的概率为.6.一个游戏转盘上有三种颜色,红色占30%,蓝色占50%,黄色占20%,则指针分别停在红色和蓝色区域的概率比为.7. (xx·山东)在区间[-1,1]上随机取一个数x,cosx的值介于0到之间的概率为( )A. B. C. D.8. (xx·威海模拟)已知如图所示的矩形,其长为12,宽为5,在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆为150颗,则可以估计出阴影部分的面积约为.9.如图所示,现在向图中正方形内随机地投掷飞镖,利用随机模拟的方法近似计算“飞镖落在阴影部分”的概率.10.如图所示,利用随机模拟的方法近似计算边长为2的正方形的内切圆面积,并估计π的近似值.11.设有一个正方形网格,其中每个最小正方形的边长都等于6 cm.现用直径等于2 cm的硬币投掷到此网格上.求“硬币落下后与格线有公共点”的概率.12. (xx·龙岩高一检测)小明的爸爸下班驾车经过小明的学校门口,时间是下午6:00到6:30,小明放学后到学校门口候车点候车,能乘上公交车的时间为5:50到6:10,求小明能乘到他爸爸的车的概率.答案1. D2.D3. D4.5. 0.36. 3∶57. A8. 99. 记事件A={飞镖落在阴影部分}.(1)用计算机或计算器产生两组[0,1]上的均匀随机数,x1=RAND,y1=RAND;(2)经过平移、伸缩变换,x=(x1-0.5)*2,y=(y1-0.5)*2,得到两组[-1,1]上的均匀随机数;(3)统计试验总次数N及落在阴影部分的点数N1(满足6x-3y-4>0的点(x,y)数);(4)计算频率f n(A)= ,即为“飞镖落在阴影部分”的概率的近似值.10. (1)利用计算机产生两组[0,1]上的均匀随机数,a1=RAND,b1=RAND;(2)经过平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2,得到两组[-1,1]上的均匀随机数;(3) 统计试验总次数N和点落在圆内的次数N1(满足a2+b2<1的点(a,b)数);(4)计算频率,即为点落在圆内的概率;(5)设面积为S,由几何概率公式得P=,故≈,即S≈为圆面积的近似值.又S=πr2=π,故π=S≈即为圆周率π的近似值.11. 记事件A={硬币与格线有公共点},设硬币中心为B(x,y).(1) 利用计算机或计算器产生两组[0,1]上的均匀随机数,x1=RAND,y1=RAND;(2)经过平移、伸缩变换,x=(x1-0.5)*6,y=(y1-0.5)*6,得到两组[-3,3]上的均匀随机数;(3)统计试验总次数N及硬币与格线有公共点的次数N1(满足条件|x|≥2或|y|≥2的点(x,y)数);(4)计算,即为所求概率的近似值.12. 利用几何概型公式,如图,y=x是小明和他爸爸同时到达候车点,阴影部分是小明能乘上他爸爸车的部分. P==.。
2020年高一数学第三章概率3.2.1古典概型限时规范训练新人教A版必修3
![2020年高一数学第三章概率3.2.1古典概型限时规范训练新人教A版必修3](https://img.taocdn.com/s3/m/6f6d1ee9d1f34693daef3ec3.png)
3.2.1 古典概型【基础练习】1.下列不是古典概型的是( )A .从6名同学中,选出4名参加数学竞赛,每个人被选中的可能性大小B .同时掷两枚骰子,点数和为7的概率C .近三天中有一天降雪的概率D .10个人站成一排,其中甲,乙相邻的概率 【答案】C【解析】对于A,从6名同学中,选出4名参加数学竞赛,每个人被选中的可能性相等,满足有限性和等可能性,是古典概型;在B 中,同时掷两枚骰子,点数和为7的事件是随机事件,满足有限性和等可能性,是古典概型;在C 中,不等可能性,不是古典概型;在D 中,10个人站成一排,其中甲,乙相邻的概率,满足有限性和等可能性,是古典概型. 故选C .2.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( ) A .13 B .14 C .15 D .16【答案】D【解析】抛掷一枚质地均匀的骰子,有6种结果,每种结果等可能出现,出现“正面向上的点数为6”的情况只有一种,故所求概率为16,故选D .3.某袋中有9个大小相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为( )A .16 B .14 C .49 D .59【答案】C【解析】袋中有9个大小相同的球,从中任意取出1个,共有9种取法,4个白球,现从中任意取出1个,取出的球恰好是白球,共有4种取法,故取出的球恰好是白球的概率为49.故选C .4.从集合⎩⎨⎧ 2,3,4,12,⎭⎬⎫23中取两个不同的数a ,b ,则log a b >0的概率为( ) A .12 B .15 C .25 D .35【答案】C【解析】从集合⎩⎨⎧⎭⎬⎫2,3,4,12,23中取两个不同的数a ,b ,共有20种不同情况,其中满足log a b >0有2+6=8种情况,故log a b >0的概率p =820=25,故选C .5.袋子中有大小相同的四个小球,分别涂以红、白、黑、黄颜色. (1)从中任取一球,取出白球的概率为________.(2)从中任取两球,取出的是红球、白球的概率为________. 【答案】(1)14 (2)16【解析】(1)任取一球有4种等可能结果,而取出的是白球只有一个结果,∴p =14.(2)取出2球有6种等可能结果,而取出的是红球、白球的结果只有一种,∴概率p =16.6.(2019年山东烟台校级月考)现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为________.【答案】56【解析】从这7人中选出数学、物理、化学成绩优秀者各1名,所以可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N ,则其对立事件N -表示“A 1和B 1全被选中”.由于N -={(A 1,B 1,C 1),(A 1,B 1,C 2)},所以P (N -)=212=16,由对立事件概率计算公式得P (N )=1-P (N -)=1-16=56.7.抛掷一枚骰子,当它每次落地时,向上一面的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果.连续抛掷两次,第一次抛掷的点数记为a ,第二次抛掷的点数记为b .(1)求直线ax +by =0与直线x +2y +1=0平行的概率;(2)求长度依次为a ,b,2的三条线段能构成三角形的概率.【答案】解:(1)由题意知本题是一个等可能事件的概率,试验发生包含的事件是连续掷两次骰子有6×6=36种结果,满足条件的事件是1,2;2,4;3,6三种结果,∴所求的概率是p =336=112. (2)由题意知本题是一个等可能事件的概率,试验发生包含的事件数是36,根据题意可以知道a +b >2且|a -b |<2,符合要求的a ,b 共有1,2;2,1;2,2;2,3;3,2;3,3;3,4;4,3;4,4;4,5;5,4;5,5;5,6;6,5;6,6共有15种结果,∴所求的概率是1536=512.【能力提升】8.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A .13 B .19 C .112 D .118【答案】C【解析】由题意知(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6).共36种情况.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112,故选C .9.(2019年河南洛阳模拟)已知函数y =2mx n+|x |-1,其中2≤m <5,2≤n <5,m ,n ∈N *且m ≠n ,则该函数为偶函数的概率为( )A .13 B .23 C .25 D .35【答案】B【解析】(m ,n )所取的值有6种等可能的结果:(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),使函数为偶函数的(m ,n )所取的值有(2,4),(3,2),(3,4),(4,2)所以所求概率为46=23.10.从集合M ={(x,y)|(|x|-1)2+(|y|-1)2<4,x,y ∈Z }中随机取一个点P (x ,y ),若xy ≥k (k >0)的概率为625,则k 的最大值是________.【答案】2【解析】因为M ={(x ,y )|(|x |-1)2+(|y |-1)2<4,x ,y ∈Z }={(x ,y )||x |≤2,|y |≤2,x ,y∈Z },所以集合M 中元素的个数为5×5=25.因为xy =1的情况有2种,xy =2的情况有4种,xy =4的情况有2种,所以要使xy ≥k (k >0)的概率为625,需1<k ≤2,所以k 的最大值为2.11.(2019年山西太原模拟)某工厂对一批共50件的机器零件进行分类检测,其重量(克)统计如下:2件.(1)从该批零件中任选1件,若选出的零件重量在[95,100]内的概率为0.26,求m 的值; (2)从重量在[80,85)的5件零件中,任选2件,求其中恰有1件为甲型的概率. 解:(1)由题意可得n =0.26×50=13,则m =50-5-12-13=20.(2)设“从重量在[80,85)的5件零件中,任选2件,其中恰有1件为甲型”为事件A ,记这5件零件分别为a ,b ,c ,d ,e ,其中甲型为a ,b .从这5件零件中任选2件,所有可能的情况为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10种, 其中恰有1件为甲型的情况有ac ,ad ,ae ,bc ,bd ,be ,共6种. 所以P (A )=610=35.。
【原创】校本练习:高一数学必修3(人教版)3.2.1古典概型
![【原创】校本练习:高一数学必修3(人教版)3.2.1古典概型](https://img.taocdn.com/s3/m/d51491eff01dc281e43af089.png)
3.2.1古典概型一、选择题1.某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,现选出的两人中有中国人的概率为( )A.14B.13 C.12 D .1[答案] C[解析] 用列举法可知,共6个基本事件,有中国人的基本事件有3个.2.有五根细木棒,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率是( )A.320 B.25 C.15D.310 [答案] D[解析] 从五根木棒中,任取三根,有1,3,5;1,3,7;1,3,9;1,5,7;1,5,9;1,7,9;3,5,7;3,5,9;3,7,9;5,7,9.共10种取法,能够搭成三角形的情况有:3,5,7;3,7,9;5,7,9,共3种.因此概率为P =310.3.有四个高矮不同的同学,随便站成一排,从一边看是按高矮排列的概率为( ) A.112 B.14 C.12D .1[答案] A[解析] 设四个人从矮到高的号码分别为1,2,3,4.基本事件构成集合Ω={(1,2,3,4),(1,2,4,3),(1,4,3,2),(1,4,2,3),(1,3,4,2),(1,3,2,4),(2,1,4,3),(2,1,3,4),(2,3,1,4),(2,3,4,1),(2,4,1,3),(2,4,3,1),(3,2,4,1),(3,2,1,4),(3,1,2,4),(3,1,4,2),(3,4,2,1),(3,4,1,2),(4,1,2,3),(4,1,3,2),(4,2,3,1),(4,2,1,3),(4,3,2,1),(4,3,1,2)},一共有24个基本事件.那么从一边看从矮到高为事件A ,则A ={(1,2,3,4),(4,3,2,1)}.则P =A 包含的基本事件个数基本事件的总数=224=112.4.一个员工需在一周内值班两天,其中恰有一天是星期六的概率为( ) A.17B.27C.149D.249[答案] B[解析] 基本事件构成集合Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4)(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6)(5,7),(6,7)},恰有一天是星期六含6个基本事件,概率P =621=27,选B.5.先后抛掷两枚均匀的骰子,若骰子朝上一面的点数依次为x 、y (x ,y ∈{1,2,3,4,5,6}),则log x (2y -1)>1的概率是( )A.12B.1936C.13D.23[答案] B[解析] ∵x ∈{1,2,3,4,5,6},∴由log x (2y -1)>0得,2y -1>x (x >1)先后抛掷两枚骰子,点数(x ,y )共有36种不同的结果,其中满足x <2y -1的有:(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,3),(4,4),(4,5),(4,6),(5,4),(5,5),(5,6),(6,4),(6,5),(6,6)共19个基本事件,∴P =1936.6.任取一个三位正整数N ,对数log 2N 是一个正整数的概率是( ) A.1225 B.3899 C.1300D.1450[答案] C[解析] 三位正整数从100到999共900个, ∵26=64,27=128,29=512,210=1024,∴满足条件的正整数只有27=128、28=256、29=512三个,∴P =3900=1300.7.在5张卡片上分别写有数字1、2、3、4、5,然后将它们混合再任意排成一行,则得到的数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8[答案] C[解析] 一个五位数能否被5整除关键看其个位数,而由1,2,3,4,5组成的五位数中,个位是1,2,3,4,5是等可能的,∴基本事件构成集合Ω={1,2,3,4,5}“能被2或5整除”这一事件中含有基本事件2,4,5,∴概率为35=0.6.8.从数字1、2、3、4、5中任取2个数字构成一个两位数,则这个两位数大于40的概率是( )A.15B.25C.35D.45 [答案] B [解析]从数字1,2,3,4,5中任取两个数字组成的两位数有12,21,13,31,14,41,15,51,23,32,24,42,25,52,34,43,35,53,45,54,共20个,其中大于40的有:41,42,43,45,51,52,53,54共8个,∴所求概率P =820=25.[点评] 可列表如下,由表可知共有两位数5×5-5=20个,其中大于40的有2×5-2=8个,∴所求概率P =820=25.十位 个位 1 2 3 4 5 1 21 31 41 51 2 12 32 42 52 3 13 23 43 53 4142434545 15 25 35 459.(2010·b ,则b >a 的概率是( )A.45B.35C.25D.15[答案] D[解析] 该试验所有基本事件(a ,b )可在平面直角坐标系中表示出来如下图.易知所有基本事件有5×3=15个,记“b >a ”为事件A ,则事件A 所含基本事件有3个. ∴P (A )=315=15,故选D.10.一个袋中已知有3个黑球,2个白球,第一次摸出球,然后再放进去,再摸第二次,则两次都是摸到白球的概率为( )A.25B.45C.225D.425[答案] D[解析] 把它们编号,白为1,2,3.黑为4,5.用(x ,y )记录摸球结果,x 表示第一次摸到球号数,y 表示第二次摸到球号数.所有可能结果为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)一共25种,两次摸球都是黑球的情况为(4,4),(4,5),(5,4),(5,5),P =425. 二、填空题11.将一个各个面上均涂有红漆的正方体锯成27个大小相同的小正方体,从这些正方体中任取一个,其中恰有2面涂有红漆的概率是________.[答案] 49[解析] 在27个小正方体中,有8个(8个顶点上)三面涂漆;12个(在12条棱上,每条棱上一个)两面涂漆;6个(在6个面上,每个面上1个)一面涂漆;1个(中心)各面都不涂漆.∴所求概率为1227=49.12.同时抛掷两个骰子,向上的点数之积为偶数的概率为________. [答案] 34[解析] 同时抛掷两个骰子,有6×6=36种不同结果,朝上一面的点数之积是奇数,当且仅当两个骰子向上一面都是奇数的有3×3=9个不同结果,∴“朝上一面点数的积为奇数”的概率P =936=14,其对立事件“朝上一面点数的积为偶数”的概率为1-14=34.13.在很多游戏中,都要掷骰子比掷出点子的大小,点子大的优先,某次下棋由掷点子大小决定先行,谁的点子大谁先行棋,若甲先掷然后乙掷,那么甲先行的概率为________.[答案]512[解析] 记点子大的为赢,小的为输.由于对称性,甲赢与甲输(乙赢)的概率相等,又和局的概率为16,∴甲赢的概率为(1-16)÷2=512.故甲先行的概率为512.14.设集合A ={x ||x |≤1,x ∈Z },B ={0,1},a ∈A ,b ∈B ,则点P (a ,b )落在圆(x +1)2+y 2=2内的概率为________.[答案] 12[解析] A ={-1,0,1},B ={0,1},∵a ∈A ,b ∈B ,∴共有6个基本事件:(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1),其中落在圆(x +1)2+y 2=2内的有(-1,0),(-1,1),(0,0)共3个,∴所求概率P =36=12.三、解答题15.从装有3个白球和2个黑球的袋子中,随机取出两球,事件A =“取出的球为两白球”,B =“取出的球为两黑球”,C =“取出的球一白一黑”,A 、B 、C 是等可能事件吗?[解析] A 、B 、C 不是等可能事件.将白球编号为白1、白2、白3,将黑球编号为黑1、黑2.基本事件构成集合Ω={(白1,白2),(白1,白3),(白2,白3),(黑1,黑2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2),(白3,黑1),(白3,黑2)}中共10个等可能的基本事件.事件A中有3个基本事件,事件B中有1个基本事件,事件C中有6个基本事件.16.从A、B、C、D、E、F六名学生中选出4个参加数学竞赛.(1)写出这个试验的所有基本事件组成的集合;(2)求这个试验的基本事件总数;(3)写出事件“A没被选中”所包含的基本事件.[分析]按一定顺序记录所有的基本事件.[解析](1)这个试验的基本事件构成的集合是:Ω={(A,B,C,D),(A,B,C,E),(A,B,C,F),(A,C,D,E),(A,C,D,F),(A,B,D,E),(A,B,D,F),(A,B,E,F),(A,C,E,F),(A,D,E,F),(B,C,D,E),(B,C,D,F),(B,C,E,F),(B,D,E,F),(C,D,E,F)}.(2)从6名学生中选出4个参加数学竞赛,共有15种可能情况.(3)“A没被选中”包含下列5个基本事件:(B,C,D,E),(B,C,D,F),(B,C,E,F),(B,D,E,F),(C,D,E,F).17.1个盒子中装有4个完全相同的小球,分别标有号码1、2、3、5,有放回地任取两球.(1)求这个试验的基本事件总数;(2)写出“取出的两球上的数字之和是6”这一事件包含的基本事件.[解析](1)用(i,j)表示第一次取出的号码为i,第二次取出的号码为j,则这个试验的基本事件构成集合Ω={(1,1),(1,2),(1,3),(1,5),(2,1),(2,2),(2,3),(2,5),(3,1),(3,2),(3,3),(3,5),(5,1),(5,2),(5,3),(5,5)}.∴基本事件的总数是16.(2)“取出的两球上的数字之和是6”这一事件所包含的基本事件有3个:(1,5),(3,3)和(5,1).[点评]条件不同,基本事件及基本事件构成的集合有可能发生变化.18.袋中有12个小球,分别为红球,黑球,黄球,绿球.从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球,得到黄球,得到绿球的概率各是多少?[解析] 利用方程思想求解.从袋中任取一球,记事件“取得红球”,“取得黑球”,“取得黄球”,“取得绿球”为A ,B ,C ,D ,则有P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=1-P (A )=23=P (B )+P (C )+P (D ),∴P (B )=14,P (C )=16,P (D )=14.。
2019秋高中数学 第三章 概率 3.2 古典概型练习(含解析)新人教A版必修3.doc
![2019秋高中数学 第三章 概率 3.2 古典概型练习(含解析)新人教A版必修3.doc](https://img.taocdn.com/s3/m/f7cc93f50722192e4436f6ab.png)
3.2 古典概型A 级 基础巩固一、选择题1.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,下列不是基本事件的是( )A .{正好2个红球}B .{正好2个黑球}C .{正好2个白球}D .{至少1个红球}解析:至少1个红球包括“一红一白”,“一红一黑”,“二个红球”. 答案:D2.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为( )A.12B.13C.38D.58解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13.答案:B3.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是( )A.14B.13C.12D.25解析:从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P =14.答案:A4.若以连续掷两枚骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 落在圆x 2+y 2=9内的概率为( )A.536 B.29 C.16D.19解析:掷骰子共有6×6=36(种)可能情况,而落在x 2+y 2=9内的情况有(1,1),(1,2),(2,1),(2,2),共4种,故所求概率P =436=19.答案:D5.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )A .0.2B .0.4C .0.5D .0.6解析:10个数据落在区间[22,30)内的数据有22,22,27,29共4个,因此,所求的概率为410=0.4.答案:B 二、填空题6.盒子中有10个相同的小球分别标为1,2,3,4,5,6,7,8,9,10,从中任取一球,则此球的号码为3的倍数的概率为________.解析:由题意得基本事件总个数为10. 设A =抽出一球的号码为3的倍数, 则A 事件的基本事件个数为3个, 所以P (A )=310.答案:3107.从含有3件正品、1件次品的4件产品中不放回地任取两件,则取出的两件中恰有一件次品的概率是________.解析:从4件产品中不放回地任取两件,共有6个基本事件,事件“取出的两件中恰有一件次品”的基本事件有3个,故概率为12.答案:12.8.有20张卡片,每张卡片上分别标有两个连续的自然数k ,k +1,其中k =0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14”为事件A ,则P (A )=________.解析:从这20张卡片中任取一张:(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,11),(11,12),(12,13),(13,14),(14,15),(15,16),(16,17),(17,18),(18,19),(19,20),共有20个基本事件.卡片上两个数的各位数字之和不小于14的有:(7,8),(8,9),(16,17),(17,18),(18,19),共5个基本事件,则P (A )=520=14. 答案:14三、解答题9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率; (2)求中奖的概率.解:设“中三等奖”为事件A , “中奖”为事件B ,从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果,则中三等奖的概率为P (A )=716.(2)由(1)知两个小球号码相加之和等于3或4的取法有7种; 两个小球号码相加之和等于5的取法有2种:(2,3),(3,2). 两个小球号码相加之和等于6的取法有1种:(3,3). 则中奖的概率为P (B )=7+2+116=58.10.设甲、乙、丙3个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这3个协会中抽取6名运动员组队参加比赛.(1)求应从这3个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设事件A 为“编号为A 5和A 6的2名运动员中至少有1人被抽到”,求事件A 发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.B 级 能力提升1.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79答案:C2.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.解析:2本不同的数学书用a 1,a 2表示,语文书用b 表示,由Ω={(a 1,a 2,b ),(a 1,b ,a 2),(a 2,a 1,b ),(a 2,b ,a 1),(b ,a 1,a 2),(b ,a 2,a 1)}.于是两本数学书相邻的情况有4种,故所求概率为46=23.答案:233.某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个; ②若xy ≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:用数对(x,y)表示儿童两次转动转盘记录的数,其活动记录与奖励情况如下:123 41123 4224683369124481216(1)xy≤3情况有5种,所以小亮获得玩具的概率为516.(2)xy≥8情况有6种,所以获得水杯的概率为616=38.所以小亮获得饮料的概率为1-516-38=516<38,即小亮获得水杯的概率大于获得饮料的概率.。
高中数学 3.2.1 古典概型基础达标(含解析)新人教A版必修3
![高中数学 3.2.1 古典概型基础达标(含解析)新人教A版必修3](https://img.taocdn.com/s3/m/0156c1a3aaea998fcd220e0e.png)
【优化方案】2013-2014学年高中数学 3.2.1 古典概型基础达标(含解析)新人教A 版必修31.同时投掷两颗大小完全相同的骰子,用(x ,y )表示结果,记A 为“所得点数之和小于5”,则事件A 包含的基本事件数是( )A .3B .4C .5D .6解析:选D.事件A 包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.2.已知集合A ={-1,0,1},点P 的坐标为(x ,y ),其中x ∈A ,y ∈A .记点P 落在第一象限为事件M ,则P (M )等于( ) A.13 B.16 C.19 D.29解析:选C.点P 的坐标可能为(-1,-1),(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,-1),(0,-1),(1,1),共9种,其中落在第一象限的点的坐标为(1,1),故选C.3.(2012·高考安徽卷)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45解析:选B.1个红球,2个白球和3个黑球分别记为a 1,b 1,b 2,c 1,c 2,c 3.从袋中任取两球有(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种.满足两球颜色为一白一黑有6种,概率等于615=25. 4.(2013·北京市西城区检测)如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )A.25B.710C.45D.910 解析:选C.由88+89+90+91+92=83+83+87+99+x ,得x =98,要使甲的平均成绩超过乙的平均成绩,则污损部分的数字应比8小,即可取0,1,2,3,4,5,6,7,因此所求概率为810=45.故选C. 5.把一枚骰子投掷两次,观察出现的点数,记第一次出现的点数为a ,第二次出现的点数为b ,则方程组⎩⎪⎨⎪⎧ax +by =3x +2y =2只有一个解的概率为( )A.512B.1112C.513D.913解析:选B.点(a ,b )取值的集合共有6×6=36个元素.方程组只有一个解等价于直线ax +by =3与x +2y =2相交,即a 1≠b 2,即b ≠2a ,而满足b =2a 的点只有(1,2),(2,4),(3,6),共3个,故方程组⎩⎪⎨⎪⎧ax +by =3x +2y =2只有一个解的概率为3336=1112. 6.甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙想的数字记为b ,且a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,则称“甲、乙心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________.解析:数字a ,b 的所有取法有62=36种,满足|a -b |≤1的取法有16种,所以其概率为P =1636=49. 答案:497.从含有2件正品和1件次品的3件产品中每次任取1件,每次取出后再放回,连续取两次,则两次取出的产品中恰好有一件次品的概率是________.解析:2件正品记为a ,b ,次品记为c ,则有放回地连续取两次的基本事件有(a ,b ),(a ,c ),(b ,c ),(b ,a ),(c ,a ),(c ,b ),(a ,a ),(b ,b ),(c ,c )共9个.记“恰好有一件次品”为事件A ,则A 含有的基本事件数为4.∴P (A )=49. 答案:498.从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为________.解析:可看成分两次抽取,第一次任取一张有5种方法,第二次从剩下的4张中再任取一张有4种方法,因为(B ,C )与(C ,B )是一样的,故试验的所有基本事件总数为10,两字母恰好是相邻字母的有(A ,B ),(B ,C ),(C ,D ),(D ,E )4种,故P =410=25. 答案:259.(2012·高考天津卷)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解:(1)从小学、中学、大学中分别抽取的学校数目为2121+14+7=3,6×1421+14+7=2;6×721+14+7=1. (2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6),共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种.所以P (B )=315=15. 10.(2013·浏阳高一检测)箱子里有3双不同的手套,随机拿出2只,记事件A 表示“拿出的手套配不成对”;事件B 表示“拿出的都是同一只手上的手套”;事件C 表示“拿出的手套一只是左手的,一只是右手的,但配不成对”.(1)请罗列出所有的基本事件;(2)分别求出事件A 、事件B 、事件C 的概率.解:(1)分别设3双手套为:a 1a 2;b 1b 2;c 1c 2.a 1,b 1,c 1分别代表左手手套,a 2,b 2,c 2分别代表右手手套.从箱子里的3双不同的手套中,随机拿出2只,所有的基本事件是:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2);(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 2,c 2);(b 1,b 2),(b 1,c 1),(b 1,c 2);(b 2,c 1),(b 2,c 2);(c 1,c 2).共15个基本事件.(2)①事件A 包含12个基本事件,故P (A )=1215=45(或能配对的只有3个基本事件,P (A )=1-315=45); ②事件B 包含6个基本事件,故P (B )=615=25; ③事件C 包含6个基本事件,故P (C )=615=25.。
2019-2020学年同步人教A版高中数学必修三素养突破课件:3.2.1 古典概型
![2019-2020学年同步人教A版高中数学必修三素养突破课件:3.2.1 古典概型](https://img.taocdn.com/s3/m/b9d0dc2a5022aaea988f0f53.png)
共 6 种,所以绝对值不大于 3 有:36-6=30 种,故所求概率 P=3306
=56.故选 B.
第十一页,编辑于星期六:二十三点 四十五分。
下列概率模型: ①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任 取一点; ②某射手射击一次,可能命中 0 环,1 环,2 环,…,10 环; ③某小组有男生 5 人,女生 3 人,从中任选 1 人做演讲; ④一只使用中的灯泡的寿命长短; ⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该 品牌月饼评“优”或“差”. 其中属于古典概型的是________.
第二十九页,编辑于星期六:二十三点 四十五 分。
(2)(i)从抽出的 7 名同学中随机抽取 2 名同学的所有可能结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B, C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E}, {C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E, G},{F,G},共 21 种. (ii)由(1),不妨设抽出的 7 名同学中,来自甲年级的是 A,B,C, 来自乙年级的是 D,E,来自丙年级的是 F,G,则从抽出的 7 名同学中随机抽取的 2 名同学来自同一年级的所有可能结果为 {A,B},{A,C},{B,C},{D,E},{F,G},共 5 种.所以, 事件 M 发生的概率 P(M)=251.
本事件,所以其概率为130,故选 B.
第十页,编辑于星期六:二十三点 四十五分。
(2019·河北省石家庄市期末考试)将一枚骰子连续抛掷两次,则
向上点数之差的绝对值不大于 3 的概率是( )
2
5
A.3
B.6
29
新人教A版高中数学必修332古典概型同步测试题
![新人教A版高中数学必修332古典概型同步测试题](https://img.taocdn.com/s3/m/85acebcda216147916112877.png)
3.2.1 古典概型一、选择题一、从长度为1,3,5,7,9五条线段中任取三条能组成三角形的概率是( )A 、21B 、103C 、51D 、522、将8个参赛队伍通过抽签分成A 、B 两组,每组4队,其中甲、乙两队恰好不在同组的概率为( )A 、74 B 、21 C 、72 D 、533、袋中有白球5只,黑球6只,持续掏出3只球,则顺序为“黑白黑”的概率为( )A 、111 B 、332 C 、334 D 、3354、将4名队员随机分入3个队中,关于每一个队来讲,所分进的队员数k 知足0≤k≤4,假设各类方式是等可能的,则第一个队恰有3个队员分入的概率是( )A 、8116 B 、8121 C 、818 D 、81245、下列说法不正确的是( )A 、不可能事件的概率是0,必然事件的概率是1B 、某人射击10次,击中靶心8次,则他击中靶心的概率是0,8C 、“直线y =k(x+1)过点(-1,0)”是必然事件D 、前后抛掷两枚大小一样的硬币,两枚都显现反面的概率是316、将骰子抛2次,其中向上的数之和是5的概率是( )A 、91 B 、41 C 、361 D 、9二、填空题7、接连三次掷一硬币,正反面连番显现的概率等于8、在100个产品中,有10个是次品,若从这100个产品中任取5个,其中恰有2个次品的概率等于9、4位男运动员和3位女运动员排成一列入场;女运动员排在一路的概率是 ;男、女各排在一路的概率是 ;男女距离排列的概率是10、甲队a 1,a 2,a 3,a 4四人与乙队b 1,b 2,b 3,b 4抽签进行4场乒乓球单打对抗赛,抽到a i 对b i (i =1,2,3,,4)对打的概率为三、解答题11、在第1,3,5,8路公共汽车都要停泊的一个站(假定那个站只能停泊一辆汽车),有1位乘客等候第1路或第3路汽车、假定那时各路汽车第一到站的可能性相等,求第一到站正好是这位乘客所要乘的汽车的概率、12、任意抛掷两枚骰子,计算:(1)显现点数相同的概率;(2)显现点数和为奇数的概率、13、在某地域有2000个家庭,每一个家庭有4个小孩,假定男孩诞生率是21、 (1)求在一个家庭中至少有一个男孩的概率;(2)求在一个家庭中至少有一个男孩且至少有一个女孩的概率;14、有10件产品,其中有2件次品,从中随机抽取3件,求:(1)其中恰有1件次品的概率;(2)至少有一件次品的概率、15、别离以集合A ={2,4,6,8,11,12,13}中任意两个元素为分子,分母组成份数,求这种分数是可约分数的概率、参考答案一、选择题 1、B 2、A 3、D 4、C 5、D 6、A二、填空题7、41 8、1901213359、71,352,351 10、241 三、解答题11、解:记“第一到站的汽车正好是这位乘客所要乘的汽车”为事件A ,则事件A 的概率P (A )=2142 答:第一到站正好是这位乘客所要乘的汽车的概率为21 12、(1)16 (2)1213、解 (1)P(至少一个男孩)=1-P(没有男孩) =1-(21)4=1615; (2)P(至少1个男孩且至少1个女孩)=1-P(没有男孩)-P(没有女孩)=1-161-161=87; 14、解:(1)157 (2)158 15、解:145。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 3.2.1古典概型(二)基础过关训练新人教
B版必修3
一、基础过关
1.老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为 ( )
A.1
50
B.
1
10
C.1
5
D.
1
4
2.有100张卡片(标号为1~100),从中任取1张,取到卡片上的号码是7的倍数的概率是( )
A.7
50
B.
7
100
C.
7
48
D.
3
20
3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2X Y=1的概率为 ( )
A.1
6
B.
5
36
C.
1
12
D.
1
2
4.同时抛掷三枚均匀的硬币,出现一枚正面,两枚反面的概率等于 ( )
A.1
4
B.
1
3
C.
3
8
D.
1
2
5.从含有3件正品和1件次品的4件产品中不放回地任取2件,则取出的2件中恰有1件是次品的概率是________.
6.若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是________.
7.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.
(1)共有多少个基本事件?
(2)摸出的2只球都是白球的概率是多少?
8.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为
b.求关于x的一元二次方程x2+2ax+b2=0有实根的概率.
二、能力提升
9.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为 ( )
A.16
B.15
C.13
D.25
10.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( )
A.13
B.12
C.23
D.34
11.某人有4把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________;如果试过的钥匙不扔掉,这个概率是________.
12.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的
概率是12
. (1)求n 的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,求事件A 的概率.
三、探究与拓展
13.班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.
(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;
(2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.
3.2.1 古典概型(二)
1.C 2.A 3.C 4.C 5.12 6.29
7.解 (1)分别记白球为1、2、3号,黑球为4、5号,从中摸出2只球,有如下基本事件(摸到1、2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).
因此,共有10个基本事件.
(2)如图,上述10个基本事件发生的可能性相同,且只有3个基本事件是摸到两只白球(记
为事件A),即(1,2)、(1,3)、(2,3),故P(A)=310
. 故共有10个基本事件,摸出2只球都是白球的概率为310.
8.解 设事件A 为“方程x 2+2ax +b 2=0有实根”.
当a>0,b>0时,方程x 2+2ax +b 2=0有实根的充要条件为a≥b.
基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),其中第一个数表示a 的取值,第二个数表示b 的取值.
事件A 中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),事件A 发
生的概率为P(A)=612=12
. 9.C 10.A
11.13 14
解析 第二次能打开门说明第一次取是从不能打开门的钥匙中取一,第二次是从能打开门的钥匙中取一,第二次打开门这个事件包含的基本事件数为4,基本事件总数为12,所求
概率为P 1=412=13.如果试过的钥匙不扔掉,基本事件总数为4×4=16,所求概率为 P 2=416
=14
. 12.解 (1)由题意可知:n 1+1+n =12
,解得n =2. (2)不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A 包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.
∴P(A)=412=13
. 13.解 (1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示).
由上图可以看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这20种结果出现的可能性是相同的,试验属于古典概型.
用A 1表示事件“连续抽取2人是一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公
式,可得P(A 1∪A 2)=P(A 1)+P(A 2)=1220+220=710
=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.
(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二
概型.
用A 表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A 的结果共有5种,
因此独唱和朗诵由同一个人表演的概率P(A)=525=15
=0.2.。