八年级数学上册 全等三角形(培优篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册全等三角形(培优篇)(Word版含解析)
一、八年级数学轴对称三角形填空题(难)
1.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______
【答案】110°、125°、140°
【解析】
【分析】
先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则
∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.
【详解】
解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,
则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,
∴b﹣d=10°,
∴(60°﹣a)﹣d=10°,
∴a+d=50°,
即∠DAO=50°,
分三种情况讨论:
①AO=AD,则∠AOD=∠ADO,
∴190°﹣α=α﹣60°,
∴α=125°;
②OA=OD,则∠OAD=∠ADO,
∴α﹣60°=50°,
∴α=110°;
③OD=AD,则∠OAD=∠AOD,
∴190°﹣α=50°,
∴α=140°;
所以当α为110°、125°、140°时,三角形AOD是等腰三角形,
故答案为:110°、125°、140°.
【点睛】
本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.
2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形
(1)如图,在ABC
∆中,25,105
A ABC
∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC
∆分割成两个等腰三角形,则BDA
∠的度数是______.
(2)已知在ABC
∆中,AB AC
=,过顶点和顶点对边上一点的直线,把ABC
∆分割成两个等腰三角形,则A
∠的最小度数为________.
【答案】130︒
180
7
︒
⎛⎫
⎪
⎝⎭
【解析】
【分析】
(1)由题意得:DA=DB,结合25
A
∠=︒,即可得到答案;
(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,
③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A
∠的度数,即可得到答案.
【详解】
(1)由题意得:当DA=BA,BD=BA时,不符合题意,
当DA=DB时,则∠ABD=∠A=25°,
∴∠BDA=180°-25°×2=130°.
故答案为:130°;
(2)①如图1,∵AB=AC,当BD=AD,CD=AD,
∴∠B=∠C=∠BAD=∠CAD,
∵∠BAC+∠B+∠C=180°,
∴4∠B=180°,
∴∠BAC=90°.
②如图2,∵AB=AC,当AD=BD,AC=CD,
∴∠B=∠C=∠BAD,∠CAD=∠CDA,
∵∠CDA=∠B+∠BAD=2∠B,
∴∠BAC=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°.
③如图3,∵AB=AC,当AD=BD=BC,
∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,
∵∠BDC=∠A+∠ABD=2∠BAC,
∴∠ABC=∠C=2∠BAC,
∵∠BAC+∠ABC+∠C=180°,
∴5∠BAC=180°,
∴∠BAC=36°.
④如图4,∵AB=AC,当AD=BD,CD=BC,
∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,
∴∠ABC=∠C=3∠BAC,
∵∠BAC+∠ABC+∠C=180°,
∴7∠BAC=180°,
∴∠BAC=
180 ()
7
︒.
综上所述,∠A的最小度数为:
180 ()
7
︒.
故答案是:
180 ()
7
︒.
【点睛】
本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.
3.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.
【答案】40°
【解析】
【分析】
作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA ,OB 的交点时,△PMN 的周长最短,根据对称的性质可以证得:∠OP 1M=∠OPM=50°,OP 1=OP 2=OP ,根据等腰三角形的性质即可求解.
【详解】
如图:作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA 、OB 的交点时,△PMN 的周长最短,连接P 1O 、P 2O ,
∵PP 1关于OA 对称,
∴∠P 1OP=2∠MOP ,OP1=OP ,P 1M=PM ,∠OP 1M=∠OPM=50°
同理,∠P 2OP=2∠NOP ,OP=OP 2,
∴∠P 1OP 2=∠P 1OP+∠P 2OP=2(∠MOP+∠NOP )=2∠AOB ,OP 1=OP 2=OP ,
∴△P 1OP 2是等腰三角形.
∴∠OP 2N=∠OP 1M=50°,
∴∠P 1OP 2=180°-2×50°=80°,
∴∠AOB=40°,
故答案为:40°
【点睛】
本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.
4.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.
【答案】30
【解析】
【分析】
根据轴对称得出OA为PC的垂直平分线,OB是PD的垂直平分线,根据线段垂直平分线性
质得出
1
2
COA AOP COP,
1
2
POB DOB POD,PE=CE,OP=OC=5cm,
PF=FD,OP=OD=5cm,求出△COD是等边三角形,即可得出答案.【详解】
解:如图示:连接OC,OD,
∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,
∵OP=5cm,
∴
1
2
COA AOP COP,
1
2
POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,
OP=OD=5cm,
∵△PEF的周长是5cm,
∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,
∴△OCD是等边三角形,
∴∠COD=60°,
∴
111
222
30 AOB AOP BOP COP DOP COD,
故答案为:30.
【点睛】
本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.
5.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.
【答案】6; 3×22018.
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出
a3=4a1,a4=8a1,a5=16a1…进而得出答案.
【详解】
解:如图,
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=3,
∴A2B1=3,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴a 2=2a 1=6,
a 3=4a 1,
a 4=8a 1,
a 5=16a 1,
以此类推:a 2019=22018a 1=3×22018
故答案是:6;3×22018.
【点睛】
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.
6.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________
【答案】4
【解析】
如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=
12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12
=4(cm 2).
故答案是:4.
7.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,
,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.
【答案】30°
【解析】
【分析】
先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.
【详解】
解:∵AB AC =,82BAC ∠=︒,∴180492
BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,
作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,
∴∠EBC=11°+11°+38°=60°,
∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,
又∵AB=AC ,EA=EA ,
∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =
1302
BEC ∠=︒, ∴∠ADB =30°.
【点睛】
本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作
点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.
8.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.
【答案】72
【解析】
【分析】
按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.
【详解】
解:∵AB=AC,∠BAC=120°
∴∠B=∠C=30°
∵DA⊥AC,AD=24 cm
∴DC=2AD=48cm,
∵∠BAC=120°,DA⊥AC
∴∠BAD=∠BAC-90°=30°
∴∠B=∠BAD
∴BD=AD=24cm
∴BC=BD+DC=72cm
故答案为72.
【点睛】
本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.
9.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.
【答案】1 2
【解析】
过点Q作AD的延长线的垂线于点F.
因为△ABC是等边三角形,所以∠A=∠ACB=60°.
因为∠ACB=∠QCF,所以∠QCF=60°.
因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,
又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.
所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=1
2
AC=
1
2
.
故答案为1 2 .
10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________
【答案】8 5
【解析】
【分析】
首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF 的长,即B′F的长.
【详解】
解:根据折叠的性质可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,
∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF 是等腰直角三角形,
∴EF=CE ,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FE=90°,
∵S △ABC =
12AC•BC=12
AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810AB
AC BC ∴ 4.8AC BC CE AB
⋅== ∴EF=4.8,22 3.6AE AC EC -=
∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=8
5,
故答案是:85
.
【点睛】
此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.
二、八年级数学轴对称三角形选择题(难)
11.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )
A .511a 32⨯
() B .511a 23⨯() C .611a 32⨯() D .611a 23
⨯() 【答案】A
【解析】 连接AD 、DB 、DF ,求出∠AFD=∠ABD=90°,根据HL 证两三角形全等得出∠FAD=60°,求出AD ∥EF ∥GI ,过F 作FZ ⊥GI ,过E 作EN ⊥GI 于N ,得出平行四边形FZNE 得出
EF=ZN=
13a ,求出GI 的长,求出第一个正六边形的边长是13a ,是等边三角形QKM 的边长的13;同理第二个正六边形的边长是等边三角形GHI 的边长的13;求出第五个等边三角形的边长,乘以
13
即可得出第六个正六边形的边长. 连接AD 、DF 、DB .
∵六边形ABCDEF 是正六边形, ∴∠ABC=∠BAF=∠AFE ,AB=AF ,∠E=∠C=120°,EF=DE=BC=CD ,
∴∠EFD=∠EDF=∠CBD=∠BDC=30°,
∵∠AFE=∠ABC=120°,
∴∠AFD=∠ABD=90°,
在Rt △ABD 和RtAFD 中
AF=AB {AD=AD
∴Rt △ABD ≌Rt △AFD (HL ),
∴∠BAD=∠FAD=12
×120°=60°, ∴∠FAD+∠AFE=60°+120°=180°,
∴AD ∥EF ,
∵G 、I 分别为AF 、DE 中点,
∴GI ∥EF ∥AD ,
∴∠FGI=∠FAD=60°,
∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,
∴ED=EM,
同理AF=QF,
即AF=QF=EF=EM,
∵等边三角形QKM的边长是a,
∴第一个正六边形ABCDEF的边长是1
3a,即等边三角形QKM的边长的
1
3
,
过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,
∵EF∥GI,
∴四边形FZNE是平行四边形,
∴EF=ZN=1
3
a,
∵GF=1
2AF=
1
2
×
1
3
a=
1
6
a,∠FGI=60°(已证),
∴∠GFZ=30°,
∴GZ=1
2GF=
1
12
a,
同理IN=
1
12
a,
∴GI=
1
12
a+
1
3
a+
1
12
a=
1
2
a,即第二个等边三角形的边长是
1
2
a,与上面求出的第一个正六
边形的边长的方法类似,可求出第二个正六边形的边长是1
3
×
1
2
a;
同理第第三个等边三角形的边长是1
2
×
1
2
a,与上面求出的第一个正六边形的边长的方法类
似,可求出第三个正六边形的边长是1
3
×
1
2
×
1
2
a;
同理第四个等边三角形的边长是1
2
×
1
2
×
1
2
a,第四个正六边形的边长是
1
3
×
1
2
×
1
2
×
1
2
a;
第五个等边三角形的边长是1
2
×
1
2
×
1
2
×
1
2
a,第五个正六边形的边长是
1 3×
1
2
×
1
2
×
1
2
×
1
2
a;
第六个等边三角形的边长是1
2
×
1
2
×
1
2
×
1
2
×
1
2
a,第六个正六边形的边长是
1 3×
1
2
×
1
2
×
1
2
×
1
2
×
1
2
a,
即第六个正六边形的边长是1
3
×5
1
2
()a,
故选A.
12.等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?()
A.1个B.4个C.7个D.10个
【答案】D
【解析】
试题分析:根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.
解:由点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,
可知P点为等边△ABC的垂心;
因为△ABC是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,
每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.
故选D.
点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.
13.在坐标平面上有一个轴对称图形,其中A(3,﹣5
2
)和B(3,﹣
11
2
)是图形上的一
对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()
A.(﹣2,1)B.(﹣2,﹣3
2
)C.(﹣
3
2
,﹣9)D.(﹣2,﹣1)
【答案】A 【解析】
【分析】
先利用点A和点B的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C关于直线y=-4的对称点即可.
【详解】
解:∵A(3,﹣5
2
)和B(3,﹣
11
2
)是图形上的一对对称点,
∴点A与点B关于直线y=﹣4对称,
∴点C(﹣2,﹣9)关于直线y=﹣4的对称点的坐标为(﹣2,1).
故选:A.
【点睛】
本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m对称,则两点的纵坐标相同,横坐标和为2m;关于直线y=n对称,则两点的横坐标相同,纵坐标和为2n.
14.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()
A.锐角三角形B.直角三角形
C.钝角三角形D.随x,m,n的值而定
【答案】C
【解析】
【分析】
将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明
∠HCN=120°HN=MN=x即可解决问题.
【详解】
将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.
∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.
∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.
∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.
∵∠BCH =∠A =60°,CH =AM =n ,∴∠NCH =120°,∴x ,m ,n 为边长的三角形△NCH 是钝角三角形.
故选C .
【点睛】
本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.
15.如图所示,把多块大小不同的30角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x 轴重合且点A 的坐标为()2,0,30ABO ∠=︒,第二块三角板的斜边1BB 与第一块三角板的斜边AB 垂直且交x 轴于点1B ,第三块三角板的斜边12B B 与第二块三角板的斜边1BB 垂直且交y 轴于点2B ,第四块三角板斜边23B B 与第三块三角板的斜边12B B 垂直且交x 轴于点3B ,按此规律继续下去,则点2018B 的坐标为( )
A .()20182(3),0-⨯
B .()20180,2(3)-⨯
C .()20192(3),0⨯
D .()20190,2(3)-⨯ 【答案】D
【解析】
【分析】 计算出OB 、OB 1、 OB 2的长度,根据题意和图象可以发现题目中的变化规律,从而可以求得点B 2018的坐标. 【详解】
解:由题意可得,
2242-3
OB 1323322(3)⨯,
OB 231= 323)⨯,
…
∵2018÷4=504…2,
∴点B 2018在y 轴的负半轴上,
∴点B 2018的坐标为()20190,2(3)
-⨯. 故答案为:D .
【点睛】
本题考查规律型:点的坐标规律及含30度角的直角三角形的性质,解答本题的关键是明确
题意,找出题目中坐标的变化规律,求出相应的点的坐标.
16.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E,若△ABC的周长为24,CE=4,则△ABD的周长为()
A.16 B.18 C.20 D.24
【答案】A
【解析】
【分析】
根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.
【详解】
解:∵DE是BC的垂直平分线,
∴DB=DC,BC=2CE=8
又∵AABC的周长为24,
∴AB+BC+AC=24
∴AB+AC=24-BC=24-8=16
∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A
【点睛】
本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
17.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(1,0)、(2,3),若顶点C 落在坐标轴上,则符合条件的点C有( )个.
A.9 B.7 C.8 D.6
【答案】C
【解析】
【分析】
要使△ABC是等腰三角形,可分三种情况(①若CA=CB,②若BC=BA,③若AC=AB)讨论,通过画图就可解决问题.
【详解】
①若CA=CB,则点C在AB的垂直平分线上.
∵A(1,0),B(2,3),∴AB的垂直平分线与坐标轴有2个交点C1,C2.
②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有3个交点(A点除外)C3,
C4,C5;
③若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点C6,C7,C8,C9.而C8(0,-3)与A、B在同一直线上,不能构成三角形,故此时满足条件的点有3个.
综上所述:符合条件的点C的个数有8个.
故选C.
【点睛】
本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解答本题的关键.
18.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
【详解】
如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.
又因为∠B为钝角,则符合答案的有两个,
故本题应选B.
点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰
△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.
19.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:
①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )
A.1 B.2 C.3 D.4
【答案】D
【解析】
【分析】
根据题意,结合图形,对选项一一求证,即可得出正确选项.
【详解】
(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线
上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.
在△BCD和△ACE中,∵
AC BC
BCD ACE
CD CE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△BCD≌△ACE,∴AE=BD,故结论①正
确;
(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.
又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;
(3)∵△ACG≌△BCF,∴CG=CF.
∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角
形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;
(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.
∵△ACE≌△BCD,∴∠CDZ=∠CEN.
在△CDZ和△CEN中,
CZD CNE
CDZ CEN
CD CE
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△CDZ≌△CEN,∴CZ=CN.
∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.
综上所述:四个结论均正确.
故选D.
【点睛】
本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.
20.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形
AOBO′=6+33;⑤S△AOC+S△AOB=6+9
3
4
.其中正确的结论是()
A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A
【解析】
试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB=O′B,AB=BC,
∴△BO′A≌△BOC,又∵∠OBO′=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,
故结论①正确;
如图①,连接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等边三角形,
∴OO′=OB=4.
故结论②正确;
∵△BO′A≌△BOC,∴O′A=5.
在△AOO′中,三边长为3,4,5,这是一组勾股数,
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故结论③正确;
S四边形AOBO′=S△AOO′+S△OBO′=
1
2
×3×4+
3
×42=6+43,
故结论④错误;
如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,
则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=
1
2
×3×4+
3
4
×32=6+
3
4
,
故结论⑤正确.
综上所述,正确的结论为:①②③⑤.
故选A.。