恒山区第三中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恒山区第三中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.棱长为2的正方体的8个顶点都在球O的表面上,则球O的表面积为()
10
A.π4B.π6C.π8D.π
2.设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()
A.{﹣2} B.{2} C.{﹣2,2} D.∅
3.圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16的位置关系是()
A.外离 B.相交 C.内切 D.外切
4.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()
A.B.y=x2C.y=﹣x|x| D.y=x﹣2
5.设集合M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k的取值范围是()
A.(﹣∞,﹣1] B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1)
6.对“a,b,c是不全相等的正数”,给出两个判断:
①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a≠b,b≠c,c≠a不能同时成立,
下列说法正确的是()
A.①对②错B.①错②对C.①对②对D.①错②错
7.已知向量=(1,2),=(m,1),如果向量与平行,则m的值为()
A.B. C.2 D.﹣2
8.已知函数f(x)=x2﹣,则函数y=f(x)的大致图象是()
A.B.C.D.
9.边长为2的正方形ABCD的定点都在同一球面上,球心到平面ABCD的距离为1,则此球的表面积为()A.3πB.5πC.12πD.20π
10.已知函数f(x)=3cos(2x﹣),则下列结论正确的是()
A.导函数为
B.函数f(x)的图象关于直线对称
C .函数f (x )在区间(﹣,)上是增函数
D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到
11.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717
100201717
S S -=,则d 的值为( ) A .
120 B .110
C .10
D .20
12.已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )
A .﹣6
B .6
C .3
D .﹣3
二、填空题
13.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()2
2
a c
b d -+-的最小值为 ▲ .
14.设椭圆E :
+
=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO
交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .
15.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.
16.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{
}的前10项的和为 .
17.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .
18.已知等差数列{a n }中,a 3=
,则cos (a 1+a 2+a 6)= .
三、解答题
19.已知椭圆E :
=1(a >b >0)的焦距为2
,且该椭圆经过点

(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线
MN 与y 轴垂直时,求k 1k 2的值.
20.(本小题满分12分)
已知数列{}n a 的各项均为正数,12a =,114
n n n n
a a a a ++-=+.
(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列11n n a a +⎧

⎨⎬+⎩⎭
的前n 项和n S .
21.设函数f (x )=e mx +x 2﹣mx .
(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x 1,x 2∈,都有|f (x 1)﹣f (x 2)|≤e ﹣1,求m 的取值范围.
22.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2分别在x
轴上,离心率为,在其上有一动点A ,A 到点F 1距离的最小值是1,过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示. (Ⅰ)求椭圆E 的方程;
(Ⅱ)判断▱ABCD 能否为菱形,并说明理由.
(Ⅲ)当▱ABCD 的面积取到最大值时,判断▱ABCD 的形状,并求出其最大值.
23.(本题满分15分)
若数列{}n x 满足:
111
n n
d x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,12345
11111
15a a a a a ++++=.
(1)求数列{}n a 的通项n a ;
(2)数列2{}n
n
a 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存
在,请说明理由.
【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.
24.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中 随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第
5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
恒山区第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】
考点:球与几何体
2.【答案】A
【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};
由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},
则A∩B={﹣2}.
故选A
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
3.【答案】D
【解析】解:由圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16得:
圆C1:圆心坐标为(﹣2,2),半径r=1;圆C2:圆心坐标为(2,5),半径R=4.
两个圆心之间的距离d==5,而d=R+r,所以两圆的位置关系是外切.
故选D
4.【答案】D
【解析】解:函数为非奇非偶函数,不满足条件;
函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;
函数y=﹣x|x|为奇函数,不满足条件;
函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;
故选:D
【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.
5.【答案】B
【解析】解:∵M={x|x≥﹣1},N={x|x≤k},
若M∩N≠¢,
则k≥﹣1.
∴k的取值范围是[﹣1,+∞).
故选:B.
【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.
6.【答案】A
【解析】解:由:“a,b,c是不全相等的正数”得:
①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,
故①正确;
但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,
故②错.
故选A.
【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.7.【答案】B
【解析】解:向量,向量与平行,
可得2m=﹣1.
解得m=﹣.
故选:B.
8.【答案】A
【解析】解:由题意可得,函数的定义域x≠0,并且可得函数为非奇非偶函数,满足f(﹣1)=f(1)=1,可排除B、C两个选项.
∵当x>0时,t==在x=e时,t有最小值为
∴函数y=f(x)=x2﹣,当x>0时满足y=f(x)≥e2﹣>0,
因此,当x>0时,函数图象恒在x轴上方,排除D选项
故选A
9.【答案】C
【解析】解:∵正方形的边长为2, ∴
正方形的对角线长为
=2, ∵球心到平面ABCD 的距离为1,
∴球的半径
R=
=

则此球的表面积为S=4πR 2
=12π.
故选:C .
【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键.
10.【答案】B
【解析】解:对于A ,函数f ′(x )=﹣3sin (2x ﹣)•2=﹣6sin (2x ﹣
),A 错误;
对于B ,当x=
时,f (
)=3cos (2×

)=﹣3取得最小值,
所以函数f (x )的图象关于直线对称,B 正确;
对于C ,当x ∈(﹣

)时,2x ﹣
∈(﹣

),
函数f (x )=3cos (2x ﹣)不是单调函数,C 错误;
对于D ,函数y=3co s2x 的图象向右平移个单位长度,
得到函数y=3co s2(x ﹣
)=3co s (2x ﹣
)的图象,
这不是函数f (x )的图象,D 错误. 故选:B .
【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.
11.【答案】B 【解析】
试题分析:若{}n a 为等差数列,
()
()111212n
n n na S d a n n
n -+
==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭
为等差数列公差为2d ,
2017171
100,2000100,201717210
S S d d ∴
-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 12.【答案】B
【解析】解:

=(
2
+3)(
k ﹣
4)
=2k +(3k ﹣8)
﹣12=0,
又∵=0.∴2k ﹣12=0,k=6.
故选B
【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的
二、填空题
13.【答案】5 【解析】

点:利用导数求最值
【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f ′(x )>0或f ′(x )<0求单调区间;第二步:解f ′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.
14.【答案】 .
【解析】解:如图,设AC 中点为M ,连接OM , 则OM 为△ABC 的中位线,
于是△OFM ∽△AFB ,且=
=,

=可得e==.
故答案为:.
【点评】本题考查椭圆的方程和性质,主要是离心率的求法,运用中位线定理和三角形相似的性质是解题的关键.
15.【答案】18.2
【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,
∵x=20,
∴y=0.9×20+0.2=18.2(亿元).
故答案为:18.2.
【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.
16.【答案】.
【解析】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),
∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.
当n=1时,上式也成立,
∴a n=.
∴=2.
∴数列{}的前n项的和S n=
=
=.
∴数列{}的前10项的和为.
故答案为:.
17.【答案】8.
【解析】解:∵抛物线y2=8x=2px,
∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+=x+2=10,
∴x=8,
故答案为:8.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
18.【答案】.
【解析】解:∵数列{a n}为等差数列,且a3=,
∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3×=,
∴cos(a1+a2+a6)=cos=.
故答案是:.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由题意得,2c=2,=1;
解得,a2=4,b2=1;
故椭圆E的方程为+y2=1;
(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,
直线MN与y轴垂直,
则点N 的纵坐标为0, 故k 2=k 1=0,这与k 2≠k 1矛盾. 当k 1≠0时,直线PM :y=k 1(x+2);

得,
(+4)y 2
﹣=0;
解得,y M
=

∴M

,),
同理N

,),
由直线MN 与y
轴垂直,则
=

∴(k 2﹣k 1)(4k 2k 1﹣1)=0,
∴k 2k 1
=.
【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.
20.【答案】(本小题满分12分) 解: (Ⅰ)由114n n n n
a a a a ++-=
+得22
14n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4, (3分)
∴244(1)4n a n n =+-=,由0n a >
得n a =. (6分)
(Ⅱ)∵
111
2
n n a a +==+, (9分)
∴数列11n n a a +⎧


⎬+⎩⎭
的前n 项和为
1111
1)(1)2222
n +++=. (12分) 21.【答案】
【解析】解:(1)证明:f ′(x )=m (e mx
﹣1)+2x .
若m ≥0,则当x ∈(﹣∞,0)时,e mx ﹣1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx
﹣1≥0,f ′(x )>0.
若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.
(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.
所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是

设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.
当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.
又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.
当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;
当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.
当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.
综上,m的取值范围是
22.【答案】
【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.
∴椭圆E的方程为=1.
(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.
①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,
取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.

k OA•k OB=====

假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
|AB|==.
点O到直线AB的距离d=.
∴S平行四边形ABCD=4×S△OAB=
=2××=.
则S2==<36,
∴S<6.
因此当平行四边形ABCD为矩形面积取得最大值6.
23.【答案】(1)
1
n
a
n
,(2)详见解析.

8n =时911872222015S =⨯+>>,…………13分
∴存在正整数n ,使得2015n S ≥的取值集合为{}
*
|8,n n n N ≥∈,…………15分
24.【答案】(1)3,2,1;(2)710
. 【解析】111]
试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1
(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B
B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,
22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为
710
. 考点:1、分层抽样的应用;2、古典概型概率公式.。

相关文档
最新文档