新泰市三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新泰市三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0
,则不等式>0的解集为( )
A .(﹣2,0)∪(2,+∞)
B .(﹣∞,﹣2)∪(0,2)
C .(﹣∞,﹣2)∪(2,+∞)
D .(﹣2,
0)∪(0,2)
2. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)
C .f (2)<f (5)<f (π)
D .f (5)<
f (π)<f (2)
3. 设0<a <1,实数x ,y
满足,则y 关于x 的函数的图象形状大致是( )
A
. B
. C
. D

4. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则7
4
S a =( ) A .
74 B .14
5
C .7
D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.
5.
已知双曲线
﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( ) A

B

C

D

6. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若
1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.
7. 已知向量

,其中
.则“
”是“
”成立的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分又不必要条件
8. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )
A .(﹣1,0)∪(1,+∞)
B .(﹣∞,﹣1)∪(0,1)
C .(﹣∞,﹣1)∪(1,+∞)
D .(﹣1,0)∪(0,1)
9. 设a ,b ,c ,∈R +,则“abc=1”是“”的( )
A .充分条件但不是必要条件
B .必要条件但不是充分条件
C .充分必要条件
D .既不充分也不必要的条件 10.已知函数⎩⎨
⎧≤>=)0(|
|)
0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零
点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
11.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )
A.{}|12x x <≤
B.{}|21x x -≤<
C. {}|21x x -≤≤
D. {}|22x x -≤≤
【命题意图】本题主要考查集合的概念与运算,属容易题.
12.(2011辽宁)设sin (
+θ)=,则sin2θ=( )
A .﹣
B .﹣
C .
D .
二、填空题
13. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:
①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-; ③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22
e
m <
-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .
【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.
14.函数f (x )=
(x >3)的最小值为 .
15.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
16.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)
x ∈时2()1f x x =+,则(7)f 的值为 ▲ .
17.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .
18.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的
周长为 .
1111]
三、解答题
19.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方
程为⎩
⎪⎨⎪⎧x =cos t y =1+sin t (t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.
(1)求C 1,C 2的极坐标方程;
(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.
20.设定义在(0,+∞)上的函数f (x )=ax++b (a >0)
(Ⅰ)求f (x )的最小值;
(Ⅱ)若曲线y=f (x )在点(1,f (1))处的切线方程为y=,求a ,b 的值.
21.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .
(1)求函数y=f (x )的单调递增区间;
(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面
积.
22.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.
23.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1) (1)求点C 到直线AB 的距离; (2)求AB 边的高所在直线的方程.
24.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;
(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若2
2
2
11PQ F P F Q =+,求直线m 的方程.
新泰市三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:∵f(x)是偶函数
∴f(﹣x)=f(x)
不等式,即
也就是xf(x)>0
①当x>0时,有f(x)>0
∵f(x)在(0,+∞)上为减函数,且f(2)=0
∴f(x)>0即f(x)>f(2),得0<x<2;
②当x<0时,有f(x)<0
∵﹣x>0,f(x)=f(﹣x)<f(2),
∴﹣x>2⇒x<﹣2
综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)
故选B
2.【答案】B
【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,
∴f(π)=f(6﹣π),f(5)=f(1),
∵f(6﹣π)<f(2)<f(1),
∴f(π)<f(2)<f(5)
故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
3.【答案】A
【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y
轴对称,
在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A.
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
4. 【答案】C.
【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d
=+⇒+=+++,化简得1a d =-,∴17
4
176
7142732a d
S d a a d d
⋅+
===+,故选C.
5. 【答案】D 【解析】
解:双曲线

=1(a >0,b >0)的渐近线方程为 y=
±x
,即x ±y=0.
根据圆(x ﹣2)2+y 2
=1的圆心(2,0)到切线的距离等于半径1,
可得,
1=,

=,
,可得
e=

故此双曲线的离心率为:.
故选D .
【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.
6. 【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 7. 【答案】A
【解析】【知识点】平面向量坐标运算 【试题解析】若
,则成立;
反过来,若
,则

所以“”是“”成立的充分而不必要条件。

故答案为:A 8. 【答案】D
【解析】解:由奇函数f (x
)可知,即x 与f (x )异号,
而f (1)=0,则f (﹣1)=﹣f (1)=0,
又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,
当0<x<1时,f(x)<f(1)=0,得<0,满足;
当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;
当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;
当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;
所以x的取值范围是﹣1<x<0或0<x<1.
故选D.
【点评】本题综合考查奇函数定义与它的单调性.
9.【答案】A
【解析】解:因为abc=1,所以,则=
=≤a+b+c.
当a=3,b=2,c=1时,显然成立,但是abc=6≠1,
所以设a,b,c,∈R+,则“abc=1”是“”的充分条件但不是必要条件.
故选A.
10.【答案】D

Ⅱ卷(共100分)[.Com]
11.【答案】B
【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.
12.【答案】A
【解析】解:由sin (
+θ)=sin
cos θ+cos
sin θ=
(sin θ+cos θ)=,
两边平方得:1+2sin θcos θ=,即2sin θcos θ=﹣,
则sin2θ=2sin θcos θ=﹣.
故选A
【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.
二、填空题
13.【答案】①②④ 【



14.【答案】 12 .
【解析】解:因为x >3,所以f (x )>0
由题意知:
=﹣
令t=∈(0,),h (t )==t ﹣3t 2
因为 h (t )=t ﹣3t 2
的对称轴x=,开口朝上知函数h (t )在(0,)上单调递增,(,)单调递减;
故h (t )∈(0,]
由h (t )=⇒f (x )=
≥12
故答案为:12
15.【答案】B 【
解析】
16.【答案】2- 【解析】1111]
试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值
17.【答案】 a ≤﹣1 .
【解析】解:由x 2
﹣2x ﹣3≥0得x ≥3或x ≤﹣1,
若“x <a ”是“x 2
﹣2x ﹣3≥0”的充分不必要条件,
则a ≤﹣1, 故答案为:a ≤﹣1.
【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.
18.【答案】8cm 【解析】
考点:平面图形的直观图.
三、解答题
19.【答案】
【解析】解:(1)由C 1:⎩
⎪⎨⎪⎧x =cos t
y =1+sin t (t 为参数)得
x 2+(y -1)2=1, 即x 2+y 2-2y =0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程, 由圆C 2:x 2+y 2+23x =0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程. (2)由题意得A ,B 的极坐标分别为 A (2sin α,α),B (-23cos α,α). ∴|AB |=|2sin α+23cos α| =4|sin (α+π
3)|,α∈[0,π),
由|AB |=2得|sin (α+π3)|=1
2,
∴α=π2或α=5π
6
.
当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6,
此时l 的方程为y =x ·tan 5π6
(x <0),
即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0), ∴C 2到l 的距离d =|3×(-3)|(3)2+32
=3
2

∴△ABC 2的面积为S =1
2
|AB |·d
=12×2×32=32
. 即△ABC 2的面积为3
2.
20.【答案】
【解析】解:(Ⅰ)f (x )=ax+
+b ≥2
+b=b+2
当且仅当ax=1(x=)时,f (x )的最小值为b+2
(Ⅱ)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为y=,可得:
f (1)=,∴a++b=①
f'(x )=a ﹣
,∴f ′(1)=a ﹣=②
由①②得:a=2,b=﹣1
21.【答案】
【解析】解:(1)f (x )=•=2cos 2
x+
sin2x=sin2x+cos2x+1=2sin (2x+)+1,
令﹣+2k π≤2x+≤+2k π,
解得﹣
+k π≤x ≤
+k π,
函数y=f (x )的单调递增区间是[﹣+k π,
+k π],
(Ⅱ)∵f (A )=2
∴2sin (2A+
)+1=2,即sin (2A+
)= ….
又∵0<A <π,∴A=.…
∵a=

由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2
﹣3bc=7 ①…
∵sinB=2sinC ∴b=2c ②…
由①②得c 2
=.…
∴S △ABC=.…
22.【答案】16
y x =-. 【解析】
试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线
12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1
考点:直线方程的求解. 23.【答案】
【解析】解(1)∵

∴根据直线的斜截式方程,直线AB :
,化成一般式为:4x ﹣3y+12=0,
∴根据点到直线的距离公式,点C 到直线AB 的距离为

(2)由(1)得直线AB 的斜率为,∴AB 边的高所在直线的斜率为,
由直线的点斜式方程为:
,化成一般式方程为:3x+4y ﹣7=0,
∴AB 边的高所在直线的方程为3x+4y ﹣7=0.
24.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若m 为直线1=x ,代入
13
42
2=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q
直接计算知29PQ =,2
25||||2121=+Q F P F ,222
11PQ F P
F Q ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-
由⎪⎩
⎪⎨⎧-==+
)1(1342
2x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,2
2214312
4k k x x +-=⋅
由222
11PQ F P F Q =+得,11
0F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k
代入得0438)1()143124)(1(2
22222=+⋅-+++-+k k k k k k ,即0972
=-k 解得773±=k ,直线m 的方程为)1(7
7
3-±=x y。

相关文档
最新文档