等差数列单元测试题百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知数列{}n a 的前n 项和为n S ,11
2
a =
,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( )
A .21
4
a =-
B .
648
211S S S =+ C .数列{}12n n n S S S +++-的最大项为
712
D .1121
n n n n n
T T T n n +-=
++ 2.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161
B .155
C .141
D .139
3.已知数列{}n a 的前n 项和为n S ,15a =,且满足
122527
n n
a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )
A .6-
B .2-
C .1-
D .0
4.设数列{}n a 的前n 项和2
1n S n =+. 则8a 的值为( ).
A .65
B .16
C .15
D .14
5.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了
3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 6.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=2 7.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列 D .S 2,S 4+S 2,S 6+S 4必成等差数列
8.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160
B .180
C .200
D .220
9.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21
2
,则该数列的项数是( ) A .8
B .4
C .12
D .16
10.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29
B .38
C .40
D .58
11.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .
32
B .
92
C .2
D .9
12.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .
47
B .
1629
C .
815
D .
45
13.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9
B .12
C .15
D .18
14.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48
B .60
C .72
D .24
15.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12
B .20
C .40
D .100
16.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103
B .107
C .109
D .105
17.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15
B .30
C .3
D .64
18.已知数列{}n a 的前n 项和()2
*
n S n n N =∈,则{}n
a 的通项公式为( )
A .2n a n =
B .21n a n =-
C .32n a n =-
D .1,1
2,2
n n a n n =⎧=⎨
≥⎩
19.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21
D .6、10、14、18、22
20.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差
d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;
④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个
二、多选题
21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}
F n ,则(){}
F n 的通项公式为( )
A .(1)1()2
n n F n -+=
B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==
C .(
)1122n n
F n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .(
)1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦
22.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a =
C .当9n =或10时,n S 取得最大值
D .613S S =23.题目文件丢失!
24.题目文件丢失! 25.题目文件丢失!
26.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )
A .0,2,n n a n ⎧=⎨⎩
为奇数
为偶数
B .1(1)1n n a -=-+
C .2sin
2
n n a π
= D .cos(1)1n a n π=-+
27.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
28.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-
B .310n
a n
C .2
28n S n n =- D .2
4n S n n =-
29.已知数列{}n a 的前n 项和为,n S 2
5,n S n n =-则下列说法正确的是( )
A .{}n a 为等差数列
B .0n a >
C .n S 最小值为214
-
D .{}n a 为单调递增数列
30.在下列四个式子确定数列{}n a 是等差数列的条件是( )
A .n a kn b =+(k ,b 为常数,*n N ∈);
B .2n n a a d +-=(d 为常数,
*n N ∈);
C .(
)
*
2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2
1
n S n n =++(*n N ∈).
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.D 【分析】
当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫

⎬⎩⎭
为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫

⎬⎩⎭
的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】
当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得11111
2020n n n n n n
S S S S S S ----+=⇒
-+=, 整理得
1
112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫
⎨⎬⎩⎭
为以2为首项,以2为公差的等差数列
()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111
424
a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫

⎬⎩⎭
为等差数列,显然有648
211S S S =+,B 选项正确; C 中,记()()
1212211221n n n n b S S n n n S ++=+-=
+-++, ()()()
1123111
212223n n n n b S S S n n n ++++=+-=+-+++,
()()()
1111602223223n n n b b n n n n n n ++∴-=
--=-<++++,故{}n b 为递减数列, ()1123max 1117
24612
n b b S S S ∴==+-=
+-=,C 选项正确;
D中,1
2 n
n S
=,
()
()
22
1
2
n
n n
T n n
+
∴==+,()()
1
12
n
T n n
+
∴=++.
()()()()()()
1
1
112112
1
1
1
n n
n n
T T
n n
n n
n n n n n n n n
n n
+
-
=⋅++⋅++=+-
-
+ +
+
+
+
222
122212
n
n n n n n T
=-++=+-≠,D选项错误.
故选:D.
【点睛】
关键点点睛:利用n S与n a的关系求通项,一般利用1
1
,1
,2
n
n n
S n
a
S S n
-
=

=⎨
-≥

来求解,在变形
过程中要注意1a是否适用,当利用作差法求解不方便时,应利用1
n n n
a S S
-
=-将递推关系转化为有关n S的递推数列来求解.
2.B
【分析】
画出图形分析即可列出式子求解.
【详解】
所给数列为高阶等差数列,设该数列的第8项为x,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:
由图可得:
3612
107
y
x y
-=


-=

,解得
155
48
x
y
=


=

.
故选:B.
3.A
【分析】
转化条件为12
2527
n n
a a
n n
+-=
--
,由等差数列的定义及通项公式可得
()()
2327
n
a n n
=--,求得满足0
n
a≤的项后即可得解.
【详解】
因为12
2527
n n
a a
n n
+-=
--
,所以12
2527
n n
a a
n n
+-=
--

又11
27
a
=-
-
,所以数列
27
n
a
n
⎧⎫
⎨⎬
-
⎩⎭
是以1
-为首项,公差为2的等差数列,
所以()
12123
27
n
a
n n
n
=-+-=-
-
,所以()()
2327
n
a n n
=--,
令()()23270n a n n =--≤,解得
3722
n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()
()()3123min
13316p q S S a a S S =-=+=⨯-+--⨯=-.
故选:A. 【点睛】
解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 4.C 【分析】
利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】
由2
1n S n =+得,12a =,()2
111n S n -=-+,
所以()2
21121n n n a S S n n n -=-=--=-, 所以2,1
21,2n n a n n =⎧=⎨-≥⎩
,故828115a =⨯-=.
故选:C. 【点睛】
本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 5.B 【分析】
利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】
根据题意:小李同学每天跑步距离为等差数列,设为n a ,
则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故
143600a =,
则()()11521411
151********
n S a a a a =
+⨯=+⨯=. 故选:B. 6.C 【分析】
利用等差数列的性质直接计算求解 【详解】
因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C
7.D 【分析】
根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】
由题意,数列{}n a 为等差数列,n S 为前n 项和,
根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;
当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;
当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D. 8.B 【分析】
把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】
由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020
()10181802
S a a =+=⨯=. 故选:B 9.A 【分析】
设项数为2n ,由题意可得()21
212
n d -⋅=,及6S S nd -==奇偶可求解. 【详解】
设等差数列{}n a 的项数为2n , 末项比首项大
212
, ()212121;2
n a a n d ∴-=-⋅=① 24S =奇,30S =偶,
30246S S nd ∴-=-==奇偶②.
由①②,可得3
2
d =,4n =, 即项数是8,
10.A 【分析】
根据等差中项的性质,求出414a =,再求10a ; 【详解】
因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 11.A 【分析】
由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】
设公差为d ,则42363
4222a a d --=
==--, 所以5433322
a a d =+=-=. 故选:A 12.D 【分析】
设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】
设该妇子织布每天增加d 尺, 由题意知202019
2042322
S d ⨯=⨯+=, 解得45
d =
. 故该女子织布每天增加4
5
尺. 故选:D 13.A 【分析】
在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】
在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,
所以139522639a a a =-=⨯-=, 故选:A 14.A
根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】
由条件可知1148
32362a d a d +=⎧⎪
⎨⨯+=⎪⎩
,解得:102a d =⎧⎨
=⎩, ()10789109133848S S a a a a a d -=++==+=.
故选:A 15.B 【分析】
由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:
1011045100S a d =+=,
12920a d ∴+=, 4712920a a a d ∴+=+=.
故选:B. 16.B 【分析】
根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】
根据题意可知正整数能被21整除余2,
21+2n a n ∴=, 5215+2107a ∴=⨯=.
故选:B. 17.A 【分析】
设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,
12111a a d =+,即可求解.
【详解】
设等差数列{}n a 的公差为d ,
则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174
174d a ⎧
=⎪⎪⎨⎪=-⎪⎩

所以12117760111115444
a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 18.B 【分析】
利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】
2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,
当1n =时,111a S ==,上式也成立,
()
*21n a n n N ∴=-∈,
故选:B. 【点睛】
易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即
11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结
果,考查学生的分类思想与运算求解能力,属于基础题. 19.C 【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C 20.B 【分析】
设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得
728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断
D . 【详解】
设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;
所以7710217022128S d =⨯+≤-⨯=,B 错误;
1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d ≤-
+,11100n a a nd nd +=+=+≤,解得10n d ≥-
, 所以10101n d d
-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,
当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确.
又该数列为递减数列,所以20192020a a >,D 正确.
故选:B .
【点睛】
关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关
键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由1
00n n a a +≥⎧⎨≤⎩求得. 二、多选题
21.BC
【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可;
【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……,
显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;
由()()()11,2F n F n F n n +=+-≥,
所以(
)(
)(
)()11F n n F n n ⎤+-=--⎥⎣⎦
所以数列(
)()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭
为公比的等比数列, 所以(
)(
)1n
F n n +-=⎝⎭
115()n -=++,
令1n
n n F b -=⎝⎭
,则11n n b +=+,
所以1n n b b +=-,
所以n b ⎧⎪⎨⎪⎪⎩⎭
的等比数列,
所以1n n b -+, 所以(
)1115n n n n F n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦
⎣⎦; 即C 满足条件;
故选:BC
【点睛】
考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.
22.ABD 【分析】 由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.
【详解】
∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,
∴()111875282
a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;
∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+
=-⋅ ,它的最值,还跟d 的值有关,故C 错误;
由于61656392S a d d ⨯=+
=-,131131213392
S a d d ⨯=+=-,故613S S =,故D 正确,
故选:ABD.
【点睛】
思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 23.无
24.无
25.无
26.BD
【分析】
根据选项求出数列的前4项,逐一判断即可.
【详解】
解:因为数列{}n a 的前4项为2,0,2,0,
选项A :不符合题设;
选项B :01(1)12,a =-+=1
2(1)10,a =-+= 23(1)12,a =-+=34(1)10a =-+=,符合题设;
选项C :,12sin 2,2a π
==22sin 0,a π==
332sin 22
a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=
3cos 212,a π=+=4cos310a π=+=,符合题设.
故选:BD.
【点睛】
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.
27.ACD
【分析】
由题可得16a d =-,0d <,21322
n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d d S n n =
->,解出即可判断D. 【详解】
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-, 10a >,0d ∴<,且()21113+
222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =
-的对称轴为132
n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822
d d S d =⨯-⨯=-,故
49S S =,故C 正确;
对于D ,令213022n d d S n n =
->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD.
【点睛】
方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
28.AD
【分析】
设等差数列{}n a 的公差为d ,根据已知得1145460
a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.
【详解】
解:设等差数列{}n a 的公差为d ,因为450,5S a ==
所以根据等差数列前n 项和公式和通项公式得:11
45460a d a d +=⎧⎨+=⎩, 解方程组得:13,2a d =-=,
所以()31225n a n n =-+-⨯=-,24n S n n =-.
故选:AD.
29.AD
【分析】
利用11,1,2n n
n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断
【详解】
解:当1n =时,11154a S ==-=-,
当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,
当1n =时,14a =-满足上式,
所以26n a n =-,
由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误,
由于225
255()24
n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,
故选:AD
【点睛】
此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题
30.AC
【分析】
直接利用等差数列的定义性质判断数列是否为等差数列.
【详解】
A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;
C 选项中()
*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;
D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不
为等差数列.故错误.
故选:AC
【点睛】
本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.。

相关文档
最新文档