中牟县三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中牟县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()
A.B.C.D.
x ,则输出的所有x的值的和为()
2.执行如图所示的程序,若输入的3
A.243B.363C.729D.1092
【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.
1,2,3的真子集共有()
3.集合{}
A.个B.个C.个D.个
4.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为()
A.2:1 B.5:2 C.1:4 D.3:1
5.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()
A.B.C.D.
6. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
7. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )
A .16cm
B .123cm
C .243cm
D .26cm
8. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )
A .akm
B .
akm
C .2akm
D .
akm
9. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )
A .(﹣∞,)
B .(﹣,+∞)
C .(0,+∞)
D .(﹣∞,﹣)
10.若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当
14
x y
+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 11.函数f (x )=cos 2x ﹣cos 4x 的最大值和最小正周期分别为( )
A .,π
B .,
C .,π
D .,
12.已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}
B .{4,5,6,7,8}
C .{3,4,5,6,7,8}
D .{4,5,6,7,8}
二、填空题
13.已知(ax+1)5的展开式中x2的系数与的展开式中x3的系数相等,则a=.14.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]的最小正周期是.
15.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .
16.如图,在平面直角坐标系xOy中,将直线y=与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,
圆锥的体积V圆锥=π()2dx=x3|=.
据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积
V=.
17.若直线y﹣kx﹣1=0(k∈R)与椭圆恒有公共点,则m的取值范围是.
18.一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是.
三、解答题
19.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.
(1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
20.(1)计算:(﹣)0+lne﹣+8+log62+log63;
(2)已知向量=(sinθ,cosθ),=(﹣2,1),满足∥,其中θ∈(,π),求cosθ的值.
21.已知数列{a n}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0.
(Ⅰ)求数列{a n}的通项公式
(Ⅱ)记b n=log2a n,求数列{a n•b n}的前n项和S n.
22.设a>0,是R上的偶函数.
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(0,+∞)上是增函数.
23.已知数列{}n a 的前项和公式为2230n S n n =-. (1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.
24.设函数f (x )=lnx ﹣ax 2﹣bx .
(1)当a=2,b=1时,求函数f (x )的单调区间;
(2)令F (x )=f (x )+ax 2
+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求
实数a 的取值范围;
(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2
]内有唯一实数解,求实数m 的取值范围.
中牟县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】A
【解析】解:因为底面半径为R 的圆柱被与底面成30°的平面所截,其截口是一个椭圆,
则这个椭圆的短半轴为:R ,长半轴为:
=,
∵a 2=b 2+c 2
,∴c=
,
∴椭圆的离心率为:e==. 故选:A .
【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.
2. 【答案】D
【解析】当3x =时,y 是整数;当2
3x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则
由31000n
x =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .
3. 【答案】C 【解析】
考点:真子集的概念. 4. 【答案】D
【解析】解:设球的半径为R ,圆锥底面的半径为r ,则πr 2
=
×4πR 2=
,∴r=.
∴球心到圆锥底面的距离为=.∴圆锥的高分别为和
.
∴两个圆锥的体积比为:
=1:3.
故选:D .
5. 【答案】C
【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数,
故这3个数构成一组勾股数的概率为.
故选:C
6.【答案】D
7.【答案】D
【解析】
考点:多面体的表面上最短距离问题.
【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.
8.【答案】D
【解析】解:根据题意,
△ABC中,∠ACB=180°﹣20°﹣40°=120°,
∵AC=BC=akm ,
∴由余弦定理,得cos120°=,
解之得AB=akm ,
即灯塔A 与灯塔B 的距离为
akm ,
故选:D .
【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.
9. 【答案】D
【解析】解:当x ∈(0,)时,2x 2
+x ∈(0,1),
∴0<a <1,
∵函数f (x )=log a (2x 2+x )(a >0,a ≠1)由f (x )=log a t 和t=2x 2
+x 复合而成,
0<a <1时,f (x )=log a t 在(0,+∞)上是减函数,所以只要求t=2x 2+x >0的单调递减区间.
t=2x 2+x >0的单调递减区间为(﹣∞,﹣),
∴f (x )的单调增区间为(﹣∞,﹣),
故选:D . 【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数
大于0条件.
10.【答案】D 【解析】
试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设B
M k B A =,则,1x k y k =-=-,
可得1x y +=,当
14x y +取最小值时,()141445x y
x y x y x y y x
⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此
时21,33y x =
=,将()
1
,CN 2
CM xCA yCB CA CB =+=+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫
⋅=++⋅=+=+= ⎪⎝⎭
.故本题答案选D.
考点:1.向量的线性运算;2.基本不等式. 11.【答案】B
【解析】解:y=cos 2x ﹣cos 4x=cos 2x (1﹣cos 2x )=cos 2x •sin 2x=sin 2
2x=
,
故它的周期为=,最大值为=.
故选:B .
12.【答案】C
【解析】解:∵A={4,5,6,8},B={3,5,7,8}, ∴A ∪B={3,4,5,6,7,8}. 故选C
二、填空题
13.【答案】 .
【解析】解:(ax+1)5
的展开式中x 2
的项为
=10a 2x 2,x 2的系数为10a 2,
与
的展开式中x 3
的项为
=5x 3,x 3的系数为5,
∴10a 2
=5,
即a 2
=,解得a=
.
故答案为:
.
【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键.
14.【答案】 [1,)∪(9,25] .
【解析】解:∵集合,
得(ax﹣5)(x2﹣a)<0,
当a=0时,显然不成立,
当a>0时,原不等式可化为
,
若时,只需满足
,
解得;
若,只需满足
,
解得
9<a≤25,
当a<0时,不符合条件,
综上,
故答案为[1,)∪(9,25].
【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.
15.【答案】
【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
16.【答案】8π.
【解析】解:由题意旋转体的体积V===8π,
故答案为:8π.
【点评】本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题.
17.【答案】[1,5)∪(5,+∞).
【解析】解:整理直线方程得y﹣1=kx,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,
由于该点在y轴上,而该椭圆关于原点对称,
故只需要令x=0有
5y2=5m
得到y2=m
要让点(0.1)在椭圆内或者椭圆上,则y≥1即是
y2≥1
得到m≥1
∵椭圆方程中,m≠5
m的范围是[1,5)∪(5,+∞)
故答案为[1,5)∪(5,+∞)
【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.
18.【答案】2.
【解析】解:∵一组数据2,x,4,6,10的平均值是5,
∴2+x+4+6+10=5×5,
解得x=3,
∴此组数据的方差[(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,
∴此组数据的标准差S==2.
故答案为:2.
【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.
三、解答题
19.【答案】
【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0
圆的方程为x2+y2﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点
则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,
又∠CAO=∠ACO,∴∠DOB=∠COD
又OC=OB,所以△BOD≌△COD
∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切.…
(其他方法亦可)
20.【答案】
【解析】(本小题满分12分)
解析:(1)原式=1+1﹣5+2+1=0;…(6分)
(2)∵向量=(sinθ,cosθ),=(﹣2,1),满足∥,
∴sinθ=﹣2cosθ,①…(9分)
又sin2θ+cos2θ+=1,②
由①②解得cos2θ=,…(11分)
∵θ∈(,π),∴cosθ=﹣.…(12分)
【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力.
21.【答案】
【解析】解:(Ⅰ)设数列{a n}的公比为q,
由a n>0可得q>0,且a3﹣a2﹣2a1=0,
化简得q2﹣q﹣2=0,
解得q=2或q=﹣1(舍),
∵a3=a1•q2=4a1=8,∴a1=2,
∴数列{a n}是以首项和公比均为2的等比数列,
∴a n=2n;
(Ⅱ)由(I)知b n=log2a n==n,
∴a n b n=n•2n,
∴S n=1×21+2×22+3×23+…+(n﹣1)×2n﹣1+n×2n,
2S n=1×22+2×23+…+(n﹣2)×2n﹣1+(n﹣1)×2n+n×2n+1,
两式相减,得﹣S n=21+22+23+…+2n﹣1+2n﹣n×2n+1,
∴﹣S n=﹣n×2n+1,
∴S n=2+(n﹣1)2n+1.
【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.
22.【答案】
【解析】解:(1)∵a>0,是R上的偶函数.
∴f(﹣x)=f(x),即+=,
∴+a•2x=+,
2x(a﹣)﹣(a﹣)=0,
∴(a﹣)(2x+)=0,∵2x+>0,a>0,
∴a﹣=0,解得a=1,或a=﹣1(舍去),
∴a=1;
(2)证明:由(1)可知,
∴
∵x >0, ∴22x >1, ∴f'(x )>0,
∴f (x )在(0,+∞)上单调递增;
【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.
23.【答案】(1)432n a n =-;(2)当7n =或时,n S 最小,且最小值为78112S S =-. 【解析】
试题分析:(1)根据数列的项n a 和数列的和n S 之间的关系,即可求解数列{}n a 的通项公式n a ;(2)由(1)中的通项公式,可得1270a a a <<<<,80a =,当9n ≥时,0n a >,即可得出结论.1
试题解析:(1)∵2230n S n n =-,
∴当1n =时,1128a S ==-.
当2n ≥时,221(230)[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-. ∴432n a n =-,n N +∈. (2)∵432n a n =-, ∴1270a a a <<
<,80a =,
当9n ≥时,0n a >.
∴当7n =或8时,n S 最小,且最小值为78112S S =-. 考点:等差数列的通项公式及其应用. 24.【答案】
【解析】解:(1)依题意,知f (x )的定义域为(0,+∞).… 当a=2,b=1时,f (x )=lnx ﹣x 2
﹣x ,
f ′(x )=﹣2x ﹣1=﹣.
令f ′(x )=0,解得x=.…
当0<x <时,f ′(x )>0,此时f (x )单调递增;
当x >时,f ′(x )<0,此时f (x )单调递减.
所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…
(2)F(x)=lnx+,x∈[2,3],
所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…
所以a≥(﹣x02+x0)max,x0∈[2,3]…
当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…
(3)当a=0,b=﹣1时,f(x)=lnx+x,
因为方程f(x)=mx在区间[1,e2]内有唯一实数解,
所以lnx+x=mx有唯一实数解.
∴m=1+,…
设g(x)=1+,则g′(x)=.…
令g′(x)>0,得0<x<e;g′(x)<0,得x>e,
∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分
∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…
所以m=1+,或1≤m<1+.…。