市北区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
市北区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 下列说法正确的是( )
A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”
B .命题“∃x 0∈R ,x
+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”
C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题
D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题
2. 已知函数()x e f x x
=,关于x 的方程2
()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的
取值范围是( )
A .21(,)21e e -+?-
B .21(,)21e e --?-
C .21(0,)21e e --
D .2121e e 禳-镲
睚
-镲铪
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
3. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )
A .只有一条,不在平面α内
B .只有一条,在平面α内
C .有两条,不一定都在平面α内
D .有无数条,不一定都在平面α内
4. 已知椭圆
(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|
的最大值为8,则b 的值是( )
A .
B .
C .
D .
5. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面
积为( )
A .4
﹣
B .4
﹣
C .
D . +
6. 若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )
A .命题p ∨q 是假命题
B .命题p ∧(¬q )是真命题
C .命题p ∧q 是真命题
D .命题p ∨(¬q )是假命题
7.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是()A.6
B.3 C.1
D
.2
8.已知集合A={0
,1
,2},则集合B={x﹣y|x∈A,y∈A}的元素个数为(
)
A.4 B
.
5 C
.6 D.9
9.
若向量(1
,0,x
)与向量(2,
1
,2)的夹角的余弦值为,则x为()
A.0 B.1 C.﹣1 D.2
10.在△ABC中,a=1,b=4,C=60°,则边长c=()
A.13 B. C. D.21
11.已知点M的球坐标为(1,,),则它的直角坐标为()
A.(1,,)B.(,,)C.(,,)D.(,,)
12.已知函数
[)
[)
1
(1)sin2,2,21
2
()
(1)sin22,21,22
2
n
n
x
n x n n
f x
x
n x n n
π
π
+
⎧
-+∈+
⎪⎪
=⎨
⎪-++∈++
⎪⎩
(n N
∈),若数列{}m a满足
*
()()
m
a f m m
N
=∈,数列{}m a的前m项和为m S,则10596
S S
-=()
A.909
B.910
C.911
D.912
【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.
二、填空题
13.某种产品的加工需要A,B,C,D,E五道工艺,其中A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种.(用数字作答)
14.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则|+|=.15.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是.
16.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是.
17.在ABC
∆中,有等式:①sin sin
a A
b B
=;②sin sin
a B
b A
=;③cos cos
a B
b A
=;④
sin sin sin
a b c
A B C
+
=
+
.其中恒成立的等式序号为_________.
18.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积12
S c =, 则边c 的最小值为_______.
【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.
三、解答题
19.如图,已知边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2,M 为BC 的中
点
(Ⅰ)试在棱AD 上找一点N ,使得CN ∥平面AMP ,并证明你的结论. (Ⅱ)证明:AM ⊥PM .
20.(本小题满分13分)
如图,已知椭圆2
2:14
x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,
(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;
(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.
【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.
21.
19.已知函数f(x)=ln.
22.如图,在平面直角坐标系xOy中,以x为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两
点.已知A,B的横坐标分别为,.
(1)求tan(α+β)的值;
(2)求2α+β的值.
23.在数列{a n}中,a1=1,a n+1=1﹣,b n=,其中n∈N*.
(1)求证:数列{b n}为等差数列;
(2)设c n=b n+1•(),数列{c n}的前n项和为T n,求T n;
(3)证明:1+++…+≤2﹣1(n∈N*)
24.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.独立性检验观察值计算公式
,独立性检验临界值表:
市北区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,因此不正确;
B.命题“∃x0∈R,
x+x0﹣1<0”的否定是“∀x∈R,x2+x﹣1≥0”,因此不正确;
C.命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D.命题“p或q”为真命题,则p,q中至少有一个为真命题,正确.
故选:D.
2.【答案】
D
第Ⅱ卷(共90分)
3.【答案】B
【解析】解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.4.【答案】D
【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,
∴|AB|的最小值为4,
当AB⊥x轴时,|AB|取得最小值为4,
∴=4,解得b2=6,b=.
故选:D.
【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
5.【答案】A
【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,
若存在θ∈R,使得xcosθ+ysinθ+1=0成立,
则(cosθ+sinθ)=﹣1,
令sinα=,则cosθ=,
则方程等价为sin(α+θ)=﹣1,
即sin(α+θ)=﹣,
∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,
∴|﹣|≤1,即x2+y2≥1,
则对应的区域为单位圆的外部,
由,解得,即B(2,2),
A(4,0),则三角形OAB的面积S=×=4,
直线y=x的倾斜角为,
则∠AOB=,即扇形的面积为,
则P(x,y)构成的区域面积为S=4﹣,
故选:A
【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.
6.【答案】B
【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;
x<0时,<x无解,∴命题q是假命题;
∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;
故选:B.
【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.
7.【答案】A
【解析】
试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.
考点:几何体的结构特征.
8.【答案】B
【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;
②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;
③x=2时,y=0,1,2,∴x﹣y=2,1,0;
∴B={0,﹣1,﹣2,1,2},共5个元素.
故选:B.
9.【答案】A
【解析】解:由题意=,∴1+x=,解得x=0
故选A
【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.
10.【答案】B
【解析】解:∵a=1,b=4,C=60°,
∴由余弦定理可得:c===.
故选:B.
11.【答案】B
【解析】解:设点M的直角坐标为(x,y,z),
∵点M的球坐标为(1,,),
∴x=sin cos=,y=sin sin=,z=cos=
∴M的直角坐标为(,,).
故选:B.
【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],
12.【答案】A.
【解析】
二、填空题
13.【答案】24
【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,
因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,
故答案为:24.
【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.
14.【答案】4.
【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,
再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),
∴2||=4,
故答案为:4.
【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.15.【答案】2:1.
【解析】解:设圆锥、圆柱的母线为l,底面半径为r,
所以圆锥的侧面积为: =πrl
圆柱的侧面积为:2πrl
所以圆柱和圆锥的侧面积的比为:2:1
故答案为:2:1
16.【答案】 a ≤0或a ≥3 .
【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B , ∴B ⊆A ,
则有a+1≤1或a ≥3, 解得:a ≤0或a ≥3, 故答案为:a ≤0或a ≥3.
17.【答案】②④ 【解析】
试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2
A B π
+=
,所以三角形为等腰三角
形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正
确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知
sin sin sin a b c
A B C
+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换. 18.【答案】1
三、解答题
19.【答案】
【解析】(Ⅰ)解:在棱AD 上找中点N ,连接CN ,则CN ∥平面AMP ; 证明:因为M 为BC 的中点,四边形ABCD 是矩形, 所以CM 平行且相等于DN ,
所以四边形MCNA 为矩形,
所以CN ∥AM ,又CN ⊄平面AMP ,AM ⊂平面AMP , 所以CN ∥平面AMP .
(Ⅱ)证明:过P 作PE ⊥CD ,连接AE ,ME ,
因为边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,
BC=2,M 为BC 的中点
所以PE ⊥平面ABCD ,
CM=, 所以PE ⊥AM , 在△AME 中,
AE=
=3,
ME=
=
,
AM=
=
,
所以AE 2=AM 2+ME 2
,
所以AM ⊥ME , 所以AM ⊥平面PME 所以AM ⊥PM .
【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想.
20.【答案】
【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,
∴ 直线AP 的斜率0101y k x -=
,BP 的斜率020
1
y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有2
00012200011114
y y y k k x x x -+-⋅===-.
(4分)
21.【答案】
【解析】解:(1)∵f(x)是奇函数,
∴设x>0,则﹣x<0,
∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)
从而m=2.
(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1≤a﹣2≤1
∴1≤a≤3
【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.22.【答案】
【解析】解:(1)由已知得:.∵α,β为锐角,∴.
∴.∴.
(2)∵,∴.
∵α,β为锐角,∴,
∴.
23.【答案】
【解析】(1)证明:b n+1﹣b n=﹣=﹣=1,又b1=1.∴数列{b n}为
等差数列,首项为1,公差为1.
(2)解:由(1)可得:b n=n.
c n=b n+1•()=(n+1).
∴数列{c n}的前n项和为T n=+3×++…+(n+1).
=+3×+…+n+(n+1),
∴T n=+++…+﹣(n+1)=+﹣(n+1),
可得T n =﹣.
(3)证明:1++
+…+≤2﹣1(n ∈N *)即为:1+
++…+≤﹣1.
∵=<=2(k=2,3,…).
∴1+++…+≤1+2[(
﹣1)+()+…+(
﹣
)]=1+2
=2
﹣1.
∴1+
++…+
≤2
﹣1(n ∈N *
).
24.【答案】
【解析】解:(1)
(2)
所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分) 【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的
统计方法,主要是通过k 2
的观测值与临界值的比较解决的。