诸暨市一中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诸暨市一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若复数满足(为虚数单位),则复数的虚部为( )7
1i i z
+=A .1 B . C .
D .1-i
-
2. 函数f (x )=lnx ﹣+1的图象大致为( )
A .
B .
C .
D .
3. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )
A .﹣16
B .14
C .28
D .304. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为(

[]90,100
A .20,2
B .24,4
C .25,2
D .25,4
5. 半径R 的半圆卷成一个圆锥,则它的体积为( )
A .
πR 3
B .
πR 3
C .
πR 3
D .
πR 3
6. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .3
7. 若命题“p ∧q ”为假,且“¬q ”为假,则( )
A .“p ∨q ”为假
B .p 假
C .p 真
D .不能判断q 的真假
8. 设函数对一切实数都满足,且方程恰有6个不同的实根,则这()y f x =x (3)(3)f x f x +=-()0f x =6个实根的和为( )A. B.
C.
D.181290
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
9.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是()
A.=1.23x+4B.=1.23x﹣0.08C.=1.23x+0.8D.=1.23x+0.08
10.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()
A.92%B.24%C.56%D.5.6%
11.函数f(x)=3x+x﹣3的零点所在的区间是()
A.(0,1)B.(1,2)C.(2.3)D.(3,4)
12.已知复合命题p∧(¬q)是真命题,则下列命题中也是真命题的是()
A.(¬p)∨q B.p∨q C.p∧q D.(¬p)∧(¬q)
二、填空题
13.给出下列命题:
(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则p∨q是假命题
(2)命题“若x2﹣4x+3=0,则x=3”的逆否命题为真命题
(3)“1<x<3”是“x2﹣4x+3<0”的必要不充分条件
(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.
其中叙述正确的是 .(填上所有正确命题的序号)
14.设O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相
交于A,B两点,直线AO与l相交于D,若|AF|>|BF|,则= .
15.命题:“∀x∈R,都有x3≥1”的否定形式为 .
16.若在圆C:x2+(y﹣a)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是 . 
17.函数()2
=在点()
log
f x x
A处切线的斜率为▲.
1,2
18.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是
. 
三、解答题
19.设函数f (θ)=
,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边
经过点P (x ,y ),且0≤θ≤π.(Ⅰ)若点P 的坐标为
,求f (θ)的值;
(Ⅱ)若点P (x ,y )为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f (θ)的
最小值和最大值.
20.已知命题p :“存在实数a ,使直线x+ay ﹣2=0与圆x 2+y 2=1有公共点”,命题q :“存在实数a ,使点(a ,1)在椭圆
内部”,若命题“p 且¬q ”是真命题,求实数a 的取值范围.
21.已知曲线(,)在处的切线与直线2
1()f x e x ax
=+0x ≠0a ≠1x =2
(1)20160e x y --+=平行.
(1)讨论的单调性;
()y f x =(2)若在,上恒成立,求实数的取值范围.
()ln kf s t t ≥(0,)s ∈+∞(1,]t e ∈
22.由四个不同的数字1,2,4,x 组成无重复数字的三位数.(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?
(4)若所有这些三位数的各位数字之和是252,求x .
23.(本小题满分12分)已知两点及,点在以、为焦点的椭圆上,且、、)0,1(1-F )0,1(2F P 1F 2F C 1PF 21F F 构成等差数列.2PF (I )求椭圆的方程;
C (II )设经过的直线与曲线C 交于两点,若,求直线的方程.
2F m P Q 、2
2
2
11PQ F P F Q =+m 24.(本小题满分13分)设,数列满足:,.1()1f x x =
+{}n a 112
a =1(),n n a f a n N *
+=∈
(Ⅰ)若为方程的两个不相等的实根,证明:数列为等比数列;
12,λλ()f x x =12n n
a a λλ⎧⎫
-⎨
⎬-⎩⎭(Ⅱ)证明:存在实数,使得对,.
m n N *
∀∈2121222n n n n a a m a a -++<<<< )
诸暨市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】A 【解析】
试题分析:,因为复数满足,所以
,所以复数的4
2
7
3
1,1i i i i i ==-∴==- 7
1i i z
+=()1,1i i i i z i z +=-∴=-A 虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算.2. 【答案】A
【解析】解:∵f (x )=lnx ﹣+1,
∴f ′(x )=﹣
=

∴f (x )在(0,4)上单调递增,在(4,+∞)上单调递减;且f (4)=ln4﹣2+1=ln4﹣1>0;故选A .
【点评】本题考查了导数的综合应用及函数的图象的应用.
3. 【答案】B
【解析】解:∵a n =(﹣1)n (3n ﹣2),∴S 11=()+(a 2+a 4+a 6+a 8+a 10)
=﹣(1+7+13+19+25+31)+(4+10+16+22+28)
=﹣16,
S 20=(a 1+a 3+...+a 19)+(a 2+a 4+...+a 20)=﹣(1+7+...+55)+(4+10+ (58)
=﹣+
=30,
∴S 11+S 20=﹣16+30=14.故选:B .
【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 
4. 【答案】C 【解析】

点:茎叶图,频率分布直方图.5. 【答案】A
【解析】解:2πr=πR ,所以r=,则h=,所以V=
故选A
6. 【答案】D
【解析】解:设等差数列{a n }的公差为d ,
则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,
联立解得,
∴S 6=6a 1+d=3
故选:D
【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题. 
7. 【答案】B
【解析】解:∵命题“p ∧q ”为假,且“¬q ”为假,∴q 为真,p 为假;则p ∨q 为真,故选B .
【点评】本题考查了复合命题的真假性的判断,属于基础题. 
8. 【答案】A.
【解析】,∴的图象关于直线对称,(3)(3)()(6)f x f x f x f x +=-⇔=-()f x 3x =∴个实根的和为,故选A.63618⋅=9. 【答案】D
【解析】解:设回归直线方程为=1.23x+a
∵样本点的中心为(4,5),∴5=1.23×4+a ∴a=0.08
∴回归直线方程为=1.23x+0.08
故选D.
【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.
10.【答案】C
【解析】解:这次测验的优秀率(不小于80分)为
0.032×10+0.024×10=0.56
故这次测验的优秀率(不小于80分)为56%
故选C
【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.
11.【答案】A
【解析】解:∵f(0)=﹣2<0,f(1)=1>0,
∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).
故选A
【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.
12.【答案】B
【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,
可推出¬p为假命题,q为假命题,
故为真命题的是p∨q,
故选:B.
【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.
二、填空题
13.【答案】 (4) 
【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,
(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,
(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,
(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,
故答案为:(4)
【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.
14.【答案】 .
【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,
过F斜率为的直线与抛物线C相交于A,B两点,
直线AO与l相交于D,
∴直线AB的方程为y=(x﹣),l的方程为x=﹣,
联立,解得A(﹣,P),B(,﹣)
∴直线OA的方程为:y=,
联立,解得D(﹣,﹣)
∴|BD|==,
∵|OF|=,∴==.
故答案为:.
【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质. 
15.【答案】 ∃x0∈R,都有x03<1 .
【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03<1”.
故答案为:∃x 0∈R ,都有x 03<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查. 
16.【答案】 ﹣3<a <﹣1或1<a <3 .
【解析】解:根据题意知:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a <﹣1或1<a <3.故答案为:﹣3<a <﹣1或1<a <3.
【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,属中档题. 
17.【答案】
1
ln 2【解析】
试题分析:()()111ln 2ln 2
f x k f x ''=∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.18.【答案】 9 .
【解析】解:双曲线﹣
=1的a=2,b=3,可得c 2=a 2+b 2=13,
又||MF 1|﹣|MF 2||=2a=4,|F 1F 2|=2c=2,∠F 1MF 2=90°,
在△F 1AF 2中,由勾股定理得:|F 1F 2|2=|MF 1|2+|MF 2|2
=(|MF 1|﹣|MF 2|)2+2|MF 1||MF 2|,即4c 2=4a 2+2|MF 1||MF 2|,可得|MF 1||MF 2|=2b 2=18,
即有△F1MF2的面积S=|MF1||MF2|sin∠F1MF2=×18×1=9.
故答案为:9.
【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.
三、解答题
19.【答案】
【解析】解(Ⅰ)由点P的坐标和三角函数的定义可得:
于是f(θ)===2
(Ⅱ)作出平面区域Ω(即△ABC)如图所示,
其中A(1,0),B(1,1),C(0,1).
因为P∈Ω,所以0≤θ≤,
∴f(θ)==,
且,
故当,即时,f(θ)取得最大值2;
当,即θ=0时,f(θ)取得最小值1.
【点评】本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.
20.【答案】
【解析】解:∵直线x+ay ﹣2=0与圆x 2+y 2=1有公共点∴≤1⇒a 2≥1,即a ≥1或a ≤﹣1,
命题p 为真命题时,a ≥1或a ≤﹣1;
∵点(a ,1)在椭圆
内部,∴

命题q 为真命题时,﹣2<a <2,
由复合命题真值表知:若命题“p 且¬q ”是真命题,则命题p ,¬q 都是真命题
即p 真q 假,则⇒a ≥2或a ≤﹣2.故所求a 的取值范围为(﹣∞,﹣2]∪[2,+∞).
21.【答案】(1)在,上单调递增,在,上单调递减;(2)()f x 1
(,)e -∞-1(,)e +∞1(,0)e -1(0,)e .1[,)2
+∞
【解析】
试题解析:(1)由条件可得,∴,2
21'(1)1f e e a
=-=-1a =由,可得,21()f x e x x =+2222211'()e x f x e x x -=-=由,可得解得或;'()0f x >2210,0,e x x ⎧->⎨≠⎩1x e >1x e <-由,可得解得或.'()0f x <2210,0,
e x x ⎧-<⎨≠⎩10x e -<<10x e <<
所以在,上单调递增,在,上单调递减.
()f x 1(,e -∞-1(,)e +∞1(,0)e -1
(0,e
(2)令,当,时,,,
()ln g t t t =(0,)s ∈+∞(1,]t e ∈()0f s >()ln 0g t t t =>由,可得在,时恒成立,()ln kf s t t ≥ln ()
t t k f s ≥(0,)x ∈+∞(1,]t e ∈即,故只需求出的最小值和的最大值.max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max ()()g t f s ⎡⎤=⎢⎥⎣⎦()f s ()g t 由(1)可知,在上单调递减,在上单调递增,()f s 1
(0,e 1(,)e
+∞故的最小值为,
()f s 1
(2f e e
=由可得在区间上恒成立,()ln g t t t ='()ln 10g t t =+>(1,]e 所以在上的最大值为,
()g t (1,]e ()ln g e e e e ==所以只需,122
e k e ≥=所以实数的取值范围是.
1
[,)2+∞考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.
【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).
22.【答案】
【解析】
【专题】计算题;排列组合.
【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;
(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;
(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;
(4)分析易得x=0时不能满足题意,进而讨论x ≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x ),解可得x 的值.
【解答】解:(1)若x=5,则四个数字为1,2,4,5;
又由要求的三位数能被5整除,则5必须在末尾,
在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,
即能被5整除的三位数共有6个;
(2)若x=9,则四个数字为1,2,4,9;
又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,
取出的三个数字为1、2、9时,有A33=6种情况,
取出的三个数字为2、4、9时,有A33=6种情况,
则此时一共有6+6=12个能被3整除的三位数;
(3)若x=0,则四个数字为1,2,4,0;
又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,
当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,
当末位是2或4时,有A21×A21×A21=8种情况,
此时三位偶数一共有6+8=14个,
(4)若x=0,可以组成C31×C31×C21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,
则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,
故x=0不成立;
当x≠0时,可以组成无重复三位数共有C41×C31×C21=4×3×2=24种,共用了24×3=72个数字,
则每个数字用了=18次,
则有252=18×(1+2+4+x),解可得x=7.
【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x为0与否两种情况讨论.
23.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若为直线,代入得,即, m 1=x 13422=+y x 23±=y )23,1(P )2
3,1(-Q 直接计算知,,,不符合题意 ; 29PQ =2
25||||2121=+Q F P F 22211PQ F P F Q ¹+1=x ②若直线的斜率为,直线的方程为m k m (1)y k x =-由得 ⎪⎩
⎪⎨⎧-==+)1(1342
2x k y y x 0)124(8)43(2222=-+-+k x k x k 设,,则, 11(,)P x y 22(,)Q x y 2221438k k x x +=+222143124k k x x +-=⋅由得,22211PQ F P F Q =+110
F P FQ ×=即,0)1)(1(2121=+++y y x x 0
)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k 代入得,即 0438)1()143124)(1(222222=+⋅-+++-+k
k k k k k 0972=-k 解得,直线的方程为 773±=k m )1(773-±=x y 24.【答案】
【解析】解:证明:,∴,∴.2
()10f x x x x =⇔+-=2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩21122211λλλλ⎧-=⎪⎨-=⎪⎩
∵, (3分)12111111112122222222111111n n n n n n n n n n
a a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+,,11120a a λλ-≠-12
0λλ≠∴数列为等比数列. (4分)12n n a a λλ⎧
⎫-⎨⎬-⎩⎭
(Ⅱ)证明:设,则.m =
()f m m =由及得,,∴.112a =111n n a a +=+223a =335a =130a a m <<<∵在上递减,∴,∴.∴,(8分)()f x (0,)+∞13()()()f a f a f m >>24a a m >>1342a a m a a <<<<下面用数学归纳法证明:当时,.n N *∈2121222n n n n a a m a a -++<<<<①当时,命题成立. (9分)
1n =②假设当时命题成立,即,那么n k =2121222k k k k a a m a a -++<<<<由在上递减得()f x (0,)+∞2121222()()()()()k k k k f a f a f m f a f a -++>>>>∴2222321
k k k k a a m a a +++>>>>由得,∴,2321k k m a a ++>>2321()()()k k f m f a f a ++<<2422k k m a a ++<<∴当时命题也成立, (12分)
1n k =+由①②知,对一切命题成立,即存在实数,使得对,.n N *∈m n N *
∀∈2121222n n n n a a m a a -++<<<<。

相关文档
最新文档