全国各地中考数学分类:直角三角形的边角关系综合题汇编含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国各地中考数学分类:直角三角形的边角关系综合题汇编含答案
一、直角三角形的边角关系
1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)
【答案】AB 的长约为0.6m . 【解析】 【分析】
作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】
解:作BF CE ⊥于F ,
在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,
3.85CF BC cos BCF ⋅∠≈=,
在Rt ADE ∆E 中,
3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=
由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .
【点睛】
考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
2.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.
【答案】553
【解析】
【分析】
如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.
【详解】
解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.
∵AM⊥CD,
∴∠QMP=∠MPO=∠OQM=90°,
∴四边形OQMP是矩形,
∴QM=OP,
∵OC=OD=10,∠COD=60°,
∴△COD是等边三角形,
∵OP⊥CD,
∠COD=30°,
∴∠COP=1
2
∴QM=OP=OC•cos30°=3
∵∠AOC=∠QOP=90°,
∴∠AOQ=∠COP=30°,
∴AQ=1
OA=5(分米),
2
∴AM=AQ+MQ=5+3
∵OB ∥CD ,
∴∠BOD =∠ODC =60°
在Rt △OFK 中,KO =OF•cos60°=2(分米),FK =OF•sin60°=23(分米), 在Rt △PKE 中,EK =22EF FK -=26(分米), ∴BE =10−2−26=(8−26)(分米),
在Rt △OFJ 中,OJ =OF•cos60°=2(分米),FJ =23(分米),
在Rt △FJE′中,E′J =2263-(2)
=26, ∴B′E′=10−(26−2)=12−26, ∴B′E′−BE =4.
故答案为:5+53,4.
【点睛】
本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
3.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.
(1)求之间的距离
(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(223. 【解析】 【分析】
(1)解直角三角形即可得到结论;
(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,
'30CE AA ==3,在Rt △ABC 中,求得DC=
3
3
AC=203,然后根据三角函数的定义即可得到结论. 【详解】
解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,
∴AB=sin 30AC
︒
=6012
=120(m )
(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3,
在Rt △ABC 中, AC=60m ,∠ADC=60°,
∴DC=3AC=203
∴DE=503
∴tan ∠A 'A D= tan ∠'A DC=
'A E DE =503=
2
35
答:从无人机'A 上看目标D 的俯角的正切值是
2
35
.
【点睛】
本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.
4.如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°.
(1)求∠BPQ 的度数;
(2)求该电线杆PQ 的高度(结果精确到1m ).备用数据:
,
【答案】(1)∠BPQ=30°;
(2)该电线杆PQ的高度约为9m.
【解析】
试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;
(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.
试题解析:延长PQ交直线AB于点E,
(1)∠BPQ=90°-60°=30°;
(2)设PE=x米.
在直角△APE中,∠A=45°,
则AE=PE=x米;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,33
米,
∵AB=AE-BE=6米,
则x-
3
3
x=6,
解得:3
则BE=(3)米.
在直角△BEQ中,QE=
3
3
BE=
3
3
(3+3)=(3)米.
∴3(3)3(米).
答:电线杆PQ的高度约9米.
考点:解直角三角形的应用-仰角俯角问题.
5.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.
(1)求∠CAO'的度数.
(2)显示屏的顶部B'比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?
【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.
【解析】
试题分析:(1)通过解直角三角形即可得到结果;
(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得
BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;
(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.
试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=,
∴∠CAO′=30°;
(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,
∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,
∠CAO′=30°,
∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,
∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,
∴显示屏的顶部B′比原来升高了(36﹣12)cm;
(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,
理由:∵显示屏O′B与水平线的夹角仍保持120°,
∴∠EO′F=120°,
∴∠FO′A=∠CAO′=30°,
∵∠AO′B′=120°,
∴∠EO′B′=∠FO′A=30°,
∴显示屏O′B′应绕点O′按顺时针方向旋转30°.
考点:解直角三角形的应用;旋转的性质.
6.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,
∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:
(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;
(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;
(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.
【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣
【解析】
【分析】
(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,
NC=NM=BM进而得出结论;
(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,
②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;
(3) 在Rt△ABM和Rt△ANM中,,
可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.
【详解】
(1)证明:∵△ABC是等腰直角三角形,
∴∠BAC=∠C=45°,
∵AM是∠BAC的平分线,MN⊥AC,
∴BM=MN,
在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,
∴∠BME=∠NMF,
∴△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵CN=CF+NF,
∴BE+CF=BM;
(2)针对图2,同(1)的方法得,△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵NC=NF﹣CF,
∴BE﹣CF=BM;
针对图3,同(1)的方法得,△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵NC=CF﹣NF,
∴CF﹣BE=BM;
(3)在Rt△ABM和Rt△ANM中,,
∴Rt△ABM≌Rt△ANM(HL),
∴AB=AN=+1,
在Rt△ABC中,AC=AB=+1,
∴AC=AB=2+,
∴CN=AC﹣AN=2+﹣(+1)=1,
在Rt△CMN中,CM=CN=,
∴BM=BC﹣CM=+1﹣=1,
在Rt△BME中,tan∠BEM===,
∴BE=
,
∴①由(1)知,如图1,BE+CF=BM , ∴CF=BM ﹣BE =1﹣
②由(2)知,如图2,由tan ∠BEM=,
∴此种情况不成立;
③由(2)知,如图3,CF ﹣BE=BM , ∴CF=BM+BE=1+, 故答案为1,1+或1﹣
.
【点睛】
本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.
7.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:
如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:
把图1中的△AEF 绕点A 顺时针旋转.
(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记
AC
BC
=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)
【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3
CPE V 总是等边三角形 【解析】 【分析】
(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有
EM FP
MC PB
=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.
(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC
BC
=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】
解:(1)PC=PE 成立,理由如下:
如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴
EM FP
MC PB
=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;
(2)PC=PE 成立,理由如下:
如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,
∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴
DM FP
MC PB
=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE ,
∴PC=PE ;
(3)如图4,∵△CPE 总是等边三角形,
∴∠CEP=60°,
∴∠CAB=60°,
∵∠ACB=90°,
∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC ,AC BC
=tan30°, ∴k=tan30°=
33, ∴当k 为3时,△CPE 总是等边三角形.
【点睛】
考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.
8.如图,AB 是⊙O 的直径,E 是⊙O 上一点,C 在AB 的延长线上,AD ⊥CE 交CE 的延长线于点D ,且AE 平分∠DAC .
(1)求证:CD 是⊙O 的切线;
(2)若AB =6,∠ABE =60°,求AD 的长.
【答案】(1)详见解析;(2)9 2
【解析】
【分析】
(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.
【详解】
证明:如图,连接OE,
∵AE平分∠DAC,
∴∠OAE=∠DAE.
∵OA=OE,
∴∠AEO=∠OAE.
∴∠AEO=∠DAE.
∴OE∥AD.
∵DC⊥AC,
∴OE⊥DC.
∴CD是⊙O的切线.
(2)解:∵AB是直径,
∴∠AEB=90°,∠ABE=60°.
∴∠EAB=30°,
在Rt△ABE中,AE=AB·cos30°3
33
在Rt△ADE中,∠DAE=∠BAE=30°,
∴AD=cos30°×AE=3
2×33
9
2
.
【点睛】
本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.
9.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .
(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.
(2)若2ABD BDC ∠=∠.
①求证:CF 是O e 的切线.
②当6BD =,3tan 4
F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =
. 【解析】
【分析】
(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;
(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;
②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=
BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=
OC CF =34
,即可求出CF . 【详解】
解:(1)AB 是O e 的直径,且D 为O e 上一点, 90ADB ∴∠=︒,
CE DB ⊥Q ,
90DEC ∴∠=︒,
//CF AD ∴,
180DAC ACF ∴∠+∠=︒.
(2)①如图,连接OC .
OA OC =Q ,12∴∠=∠.
312∠=∠+∠Q ,
321∴∠=∠.
42BDC Q ∠=∠,1BDC ∠=∠,
421∴∠=∠,
43∴∠=∠,
//OC DB ∴.
CE DB ⊥Q ,
OC CF ∴⊥.
又OC Q 为O e 的半径,
CF ∴为O e 的切线.
②由(1)知//CF AD ,
BAD F ∴∠=∠,
3tan tan 4BAD F ∴∠==
, 34
BD AD ∴=. 6BD =Q 483AD BD ∴=
=, 226810AB ∴=+=,5OB OC ==.
OC CF Q ⊥,
90OCF ∴∠=︒,
3tan 4
OC F CF ∴==, 解得203
CF =. 【点睛】
本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.
10.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A ,B 重合),
作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.
(1)用含t的代数式表示线段DC的长:_________________;
(2)当t =__________时,点Q与点C重合时;
(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【答案】(1);(2)1;(3)t的值为或或.
【解析】
【分析】
(1)先求出AC,用三角函数求出AD,即可得出结论;
(2)利用AQ=AC,即可得出结论;
(3)分三种情况,利用锐角三角函数,即可得出结论.
【详解】
(1)∵AP= , AB=4,∠A=30°
∴AC= , AD=
∴CD=;
(2)AQ=2AD=
当AQ=AC时,Q与C重合
即=
∴t=1;
(3)①如图,当PQ的垂直平分线过AB的中点F时,
∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.
∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=
②如图,当PQ的垂直平分线过AC的中点N时,
∴∠QMN=90°,AN=AC=,QM=PQ=AP=t.
在Rt△NMQ中,
∵AN+NQ=AQ,∴
③如图,当PQ的垂直平分线过BC的中点F时,
∴BF=BC=1,PE=PQ=t,∠H=30°.
∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.
在Rt△PEH中,PH=2PE=2t.
∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.
即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.
【点睛】
此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.
11.已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.
(1)如图1,当AB=AC,且sin∠BEF=3
5
时,求
BF
CF
的值;
(2)如图2,当tan∠ABC=1
2
时,过D作DH⊥AE于H,求EH EA
⋅的值;
(3)如图3,连AD交BC于G,当2
FG BF CG
=⋅时,求矩形BCDE的面积
【答案】(1)1
7
;(2)80;(3)100.
【解析】【分析】
(1)过A 作AK ⊥BC 于K ,根据sin ∠BEF=35得出35
FK AK =,设FK =3a ,AK =5a ,可求得BF =a ,故17
BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积.
【详解】
解:(1)过A 作AK ⊥BC 于K ,
∵sin ∠BEF =
35,sin ∠FAK =35, ∴35
FK AK =, 设FK =3a ,AK =5a ,
∴AK =4a ,
∵AB =AC ,∠BAC =90°,
∴BK =CK =4a ,
∴BF =a ,
又∵CF =7a , ∴17
BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,
∵∠AGE =∠DHE =90°,
∴△EGA ∽△EHD , ∴EH ED EG EA
=, ∴·EH EA EG ED ⋅=,其中EG =BK , ∵BC =10,tan ∠ABC =
12, cos ∠ABC
∴BA =BC · cos ∠ABC
BK= BA·cos ∠ABC 8
= ∴EG =8,
另一方面:ED =BC =10,
∴EH ·EA =80 (3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,
∵BC ∥KT , BF AF FG KE AE ED
==,
∴BF KE FG DE =,同理:FG ED CG DT
= ∵FG 2= BF ·CG ∴
BF FG FG CG =, ∴ED 2= KE ·DT ∴KE ED DE DT
= , 又∵△KEB ∽△CDT ,∴
KE CD BE DT
=, ∴KE ·DT =BE 2, ∴BE 2=ED 2 ∴ BE =ED
∴1010100BCDE S =⨯=矩形
【点睛】
此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.
12.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长
米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距
离(如图②).
【答案】1.5米.
【解析】
试题分析:延长OA 交BC 于点D .先由倾斜角定义及三角形内角和定理求出
在Rt △ACD 中,
米,CD =2AD =3米,再证明△BOD 是等边三角形,得到
米,然后根据
BC =BD −CD 即可求出浮漂B 与河堤下端C 之间的距离.
试题解析:延长OA 交BC 于点D .
∵AO的倾斜角是,
∴
∵
在Rt△ACD中, (米),∴CD=2AD=3米,
又
∴△BOD是等边三角形,
∴(米),
∴BC=BD−CD=4.5−3=1.5(米).
答:浮漂B与河堤下端C之间的距离为1.5米.。