天文学基础论文.

合集下载

天文学毕业论文开题报告

天文学毕业论文开题报告

天文学毕业论文开题报告尊敬的评审专家:我计划从事一份名为《探索恒星形成区的分子云物理性质与演化》的天文学毕业论文研究。

1. 研究背景与意义大气环境的变化和日益严重的环境问题引起了人们对地球未来的担忧,进一步引发了对于外部星系和宇宙的探索。

天文学作为科学领域的一部分,可以为我们了解星系形成、恒星演化和行星形成提供重要线索。

作为天体物理学的分支之一,天文学旨在研究宇宙中的天体现象和它们所遵循的物理规律。

我的研究将专注于恒星形成区的分子云物理性质与演化,对于深入理解恒星生成的机制和过程至关重要。

2. 研究目标本论文的目标是通过观测和分析恒星形成区的分子云,揭示其物理性质和演化特征,从而为研究恒星形成过程提供重要信息。

具体而言,我将尝试实现以下目标:2.1 研究分子云的成分和结构通过天文观测和分析技术,我将探索分子云的成分和结构。

分子云中的各种元素和分子物质的组成,将为我们解析分子云的物理特性和演化提供线索。

2.2 研究分子云中恒星形成的条件我将深入研究分子云中恒星形成的条件。

包括分子云的密度、温度、流体运动等参数的测量和分析,以及星际物质与尘埃的相互作用对于恒星形成的影响。

2.3 研究恒星形成区的时空演化通过长期的观测和分析,我将揭示恒星形成区的时空演化特征。

从分子云的形成和演化、星际物质的聚集和坍缩,到星云中年轻恒星的形成和早期演化,我将对这一过程进行深入研究。

3. 研究方法与步骤3.1 数据收集针对恒星形成区的分子云,我将收集和整理大量的天文观测数据。

这些数据来自于地面和空间望远镜的观测,包括射电波段和红外波段等。

3.2 数据分析与处理通过适当的数据分析与处理方法,我将提取出有关分子云成分、物理特性和演化的重要信息。

这些方法包括谱学分析、成像处理和统计学方法等。

3.3 结果解释与讨论在论文中,我将详细解释和讨论研究结果,探讨分子云物理性质与演化的潜在机制。

同时,我将与前人的研究成果进行比较和对比,加深对该领域的理解。

高中地理研究性课题—月相变化与观测论文

高中地理研究性课题—月相变化与观测论文

高中地理研究性课题—月相变化与观测论文月相变化与观测邓承忠第四小组全体成员宇宙的奥秘是无穷无尽的,探明宇宙的秘密一直是人类永不放弃的梦想。

作为中学生,我们亦对此抱有浓厚的兴趣。

在广阔无际的太空中,无疑,月球是距离地球最近的天体,月相变化具有的周期性、规律性,在现实生活中是人们计量时间的尺度之一。

生活中的许多事实证明了月亮的阴晴圆缺会给我们的生活带来较大影响,但是我们却对此不甚了解,如为什么上半月的亮面朝西,下半月的亮面朝东,为什么同样时间里月亮有时在西边天空,有时在东边天空,等等。

为了揭开月相变化的神秘面纱,同时培养小组成员对地理的浓厚兴趣,我们选择这一课题,目的是探究月亮圆缺变化的周期性规律,深刻理解月相产生机理、了解月相在现实生活中所起的作用以及月相对地理环境的影响等。

在研究过程中,我们应用了实地观测法,查找资料法等取得了一些研究成果。

通过小组成员近一个月的实地观察,结合相关的理论知识讨论总结、整理后,得出以下结论: 一、什么是月相,月相是天文学术语。

(phase of the moon )是天文学中对于地球上看到的月球被太阳照明部分的称呼。

随着月亮每天在星空中自西向东移动一大段距离,它的形状也在不断地变化着,这就是月亮位相变化,叫做月相。

中国古代人民就观察月相并且记录,月相的变化同中国农历日期相对应。

二、月相是如何形成的,由于月球本身不发光也不透明,月球靠反射阳光发亮,它与太阳相对位置不同,便会呈现出各种形状。

总是一面亮一面暗,向着太阳的半个球面是亮面,另半个球面是暗面。

因为在月球绕地球公转的同时,地球又带着月球绕太阳公转,所以,月亮相对于地球和太阳的位置不断变化。

可见,月相的变化取决于两个因素:一是太阳光照射月球的方向;二是地球上人观察月球的方向。

三、月相变化规律月相变化的规律可以归纳为以下几个阶段:第一阶段:约在农历每月三十或初一,月球位于太阳和地球之间。

地球上的人们正好看到月球背离太阳的暗面,因而在地球上看不见月亮,称为新月或朔。

天文学基础论文——宇宙的观测和假说

天文学基础论文——宇宙的观测和假说

宇宙的观测和假说——探索神秘瑰丽的宇宙世界摘要:宇宙广袤无垠,我们现在所知道有太阳系,银河系,河外星系,并且通过近半世纪对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达大约140亿光年的宇宙深处。

关键词:宇宙起源大爆炸太阳九大行星黑洞宇宙世界神秘莫测,从粒子、宇宙物质、地球、月球、太阳、九大行星到太阳系、银河系、黑洞和宇宙大爆炸,科学家们仿佛一层又一层的揭开了宇宙神秘的面纱,却在欣喜的以为可以了解一个完整的宇宙后,却又发现这只不过是冰山一角。

尽管人们在宇宙面前显得无比渺小,却无法阻止宇宙以其独特的魅力吸引着人们去不断探索它,认识它。

而我所写的这篇论文就是介绍一些我所了解的关于宇宙的假说。

一、关于宇宙起源的假说(宇宙大爆炸的假说)宇宙大爆炸(简称大爆炸)是描述宇宙诞生初始条件及其后续演化的宇宙学模型,这一模型得到了科学研究和观测最广泛且最精确的支持。

宇宙学家所指的宇宙大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的(根据2010年所得到的最佳观测结果,这些初始状态大约存在于133亿年至139亿年前),并经过不断的膨胀到达今天的状态。

比利时神父、物理学家乔治·勒梅特首先提出了关于宇宙起源的大爆炸理论,但他本人将其称作“原生原子的假说”。

这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如空间的均匀和各向同性)。

大爆炸理论的建立基于了两个基本假设:物理定律的普适性和宇宙学原理。

宇宙学原理是指在大尺度上宇宙是均匀且各向同性的。

这些观点起初是作为先验的公理被引入的,但现今已有相关研究工作试图对它们进行验证。

例如对第一个假设而言,已有实验证实在宇宙诞生以来的绝大多数时间内,精细结构常数的相对误差值不会超过10-5。

此外,通过对太阳系和双星系统的观测,广义相对论已经得到了非常精确的实验验证;而在更广阔的宇宙学尺度上,大爆炸理论在多个方面经验性取得的成功也是对广义相对论的有力支持。

天文学基础的论文

天文学基础的论文

天文学基础摘要:天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。

它同数学、物理、化学、生物、地学同为六大基础学科。

天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。

天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。

由于科技的不断发展,人们对天文学的定义,研究对象,研究范畴,学科分支,论研究等方面都取得了突破性的进展。

天文学正朝着高、精、尖的方向发展。

我们期待着天文学的进一步发展为科学事业和人们的社会生活造福。

关键字:天文学,研究对象,研究理论,天文学四大发现,矮行星,中子星,黑洞通过听天文学基础的课使我对天文学有了一定的了解。

天文学是研究天体、宇宙的结构和发展的自然科学,内容包括天体的构造、性质和运行规律等。

人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。

它同数学、物理、化学、生物、地学同为六大基础学科。

天文学主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。

随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。

现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。

按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。

“几乎所有的自然科学分支研究的都是地球上的现象,只有天文学从它诞生的那一天起就和我们头顶上可望而不可及的灿烂的星空联系在一起。

天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。

天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。

自古以来,人类一直对恒星和行星十分感兴趣。

古代的天文学家仅仅依靠肉眼观察天空,1608年,人们发明了望远镜,此后,天文学家就能够更清楚的观察恒星和行星了。

物理和天文学小课题论文

物理和天文学小课题论文

物理和天文学小课题论文不知怎么的,今天我突然想起了他,我的物理老师。

也许是马上就要新增化学一科,情形与一年前相仿。

一年前,升初二了,于是课程表中增加了“物理”一科。

从此“语数外鼎立,政史地生拉分”的局面被彻底打破了。

还记得第一节物理课。

第一任物理课代表是个武侠迷,课前他将物理老师的名字—“龙凤”写在黑板上,而且还是繁体的,他说这样写更有大侠风范。

也是,他的名儿也挺有武侠韵味的。

上课后,我发现龙老师是位新来的老师,而且没有物理老师那种魁梧严肃的“固然形象”,并且还很瘦,矮。

自我介绍后,他便谈起物理这门学科:“有的同学说物理很难,其实不然。

物理非无理”,勿理也众皆哗然。

最后,他给我们布置了第一项物理作业:写一篇题为《物理随想》的短文。

随想,我们认为随想就是“随便想,想什么写什么”。

于是稀里糊涂地些好就交了。

几天后,作业发下来了,他说:“你们八班的很有趣儿嘛。

”众所周知,巴蜀地区的人受四川话的影响,说普通话就夹着一口川味,美其名曰:川普。

龙老师本来就不是这地方的人,来这儿后又受影响,其语言甚为搞笑,集三种“精华”于一体,谓之“杂普”。

我班同学上课异常“活跃”,龙老师肯定招呼不过来,于是大呼一声:“再闹,再闹就站到盒板上去”众人不明,然后哄堂大笑。

如果逮到“典型”,其必曰:“你懂完咯呵?!”还是大笑……进入电学学习后,知识点变得抽象,很难懂。

又一次单元考试,拿到卷子后,很多看不懂……可想而知,全班成绩不佳。

发卷评讲时,龙老师说:“这次考试有几个不及格的……”众暗喜。

“不过是以十为单位的。

”众打击。

“但是,这次考试是竞赛的难度,所以只当测试练习”众释然。

不过龙老师善于总结知识难点来巧记,什么“物近像远像变大”“左手力右手流”,就这样,枯燥的定理就被轻轻松松地掌握了。

龙老师是个有趣的人,所以他和学生的关系很好。

不仅数学、物理的问题可以问他,就算到办公室去摆弄那些物理器材他都会笑笑了之。

他个子不高,却经常和我们打篮球、乒乓球。

[论文]恒星的形成与演化

[论文]恒星的形成与演化

恒星的形成与演化一、恒星的形成恒星是茫茫宇宙中除太阳、月亮和少数行星之外最引人注目的天体.早在上古时代,人们就对恒星充满了好奇与幻想,中外都流行着非常动人的神话传说.然而,直到望远镜出现后,人们才对恒星有了最基本的认识,了解到恒星在天空中并不是恒定不变的.到了2 0世纪初,爱因斯坦发表了著名的质能关系,人们对原子核反应所产生的巨大能量逐步认识,知道了恒星能量的来源,才渐渐认识到恒星本身也有生命周期,它们像人一样会出生、生长、老去直至死亡.然而,恒星的出生在相当长的时间里还是个谜,直到2 0世纪6 0年代,天文学家在星际空间发现了分子气体,以及嵌埋其中的低温原恒星( p r o t o s t a r) ,才对恒星的出生场所及过程有了最初步的了解.经过 4 0年的研究,天文学家对恒星的出生过程有了相当充分的理解,特别对小质量恒星而言更是如此.现在已经很清楚,恒星是在以分子气体为主的星际分子云中生成的,由于分子云自身的引力作用,开始自身的塌缩并形成所谓的年轻星天体( y o u n g s t e l l a r o b j e c t s ) ,这些年轻星天体经过快速演化最终形成恒星.为了对恒星进行分类,天文学家将小于太阳质量3倍的恒星称为小质量星,3 —8倍的称为中等质量星,而大于8倍太阳质量的则称为大质量星.这一分类并不仅仅是表象的不同,事实上它代表了不同类型的恒星形成时不同的物理过程.(一)小质量恒星形成的理论与观测一般认为,恒星是通过分子云核( mo l e c u l a r c o r e )的塌缩而形成的.在银河系内,存在一类由分子气体组成的天体,由于它们呈弥散的云雾状形态,因此被称为分子云( mo l e c u l a r c l o u d ),其总质量约占银河系可视物质质量的1%,其温度很低,大约为1 0 K .分子云在星际空间缓慢演化,在某些局部形成密度相对较高的区域,被称为分子云核.随着分子云核的进一步演化,其内部的热运动压力不能再抵御自身的引力,便开始了所谓引力塌缩,最终形成恒星.根据研究,从分子云核演化成一颗恒星经过了以下4个阶段:( 1 )云核阶段:分子云核内气体运动压力、磁压、引力及外部压力处于基本平衡状态,云核缓慢收缩,温度开始缓慢上升,形成热分子云核;( 2 )主塌缩阶段:当分子云核的内部压力不能抵抗自身引力时,就开始了塌缩.由于云核中心密度较高,塌缩区域最初位于中心,并以当地声速向外扩张,这就构成“先内后外”的塌缩( i n s i d e—o u t c o 1 .1 a p s e ).塌缩形成一个致密的核心,巨大的引力能使中心温度迅速升高.由于云核的自转,外部物质不会直接落到核心,而是在核心周围形成一个致密的盘状结构,称为吸积盘( a c c r e t i o n d i s k );( 3 )主吸积阶段:由于角动量及磁通量守恒原理,最终成为恒星组成部分的物质并不能直接落到中心星上,而是落在吸积盘上,吸积盘通过一系列复杂的过程,将多余的角动量向外传递,使中心星的质量得以继续增加,因此,吸积盘在恒星形成活动中起了至关重要的作用.在此期间,为了释放角动量,系统还通过目前尚不可知的机制向两极方向抛射物质,形成质量外流(outflow).恒星的大部分质量都是通过吸积获得的,巨大的引力能使中心星的温度急剧上升,从而点燃了星中心区域的氘.( 4 )残余物质驱散阶段:质量外流在这一阶段继续存在,外流与星风的作用使恒星形成的残余物质远离中心星,星周物质以及盘物质变得稀薄,外流的开口张角渐渐变大.中心星仍然从盘中吸积物质但其速率已经很小,中心星的质量不会再有实质性的增长,更多的是准静态收缩.中心星的核心部分这时可能已经开始了氢燃烧,外部出现了对流层.当这一阶段结束时,我们就可以在宇宙空间看见一颗性质不同的恒星,被称为主序星.以上4个阶段为小质量恒星形成理论所预言而在观测上都得到了证实.在观测上,天文学家利用不同波段的观测发现了4类年轻星天体,其能谱特征基本符合上述4个阶段.他们还发现了围绕小质量年轻星天体的吸积盘,以及伴随恒星形成活动的质量外流.质量外流在电磁波的各个波段都有表现,如射电波段的分子外流及喷流,红外波段的喷流,以及光学波段的赫比格一哈罗天体( H e b i g—H a r o o b j e c t ).光学和红外光谱观测还发现了年轻星天体的质量吸积特征,有几项射电波段的观测声称找到了分子云核的塌缩特征,虽然这些观测还需要进一步的证实.总之,虽然在一些细节上还有待证实,小质量星的形成之迷已经为天文学家所揭示,由此发展的小质量星形成理论被认为是正确的.(二)大质量星形成理论与观测大质量星能否像小质量星那样,通过塌缩和吸积而成?这是一个很自然的想法.但在经典的理论模型计算中,如果使用与小质量星相同的模型参数则当年轻星的质量大于太阳的10倍时,它所释放的光子光压足以抵御自身的引力,使得吸积盘中的物质所受的净力方向向外,从而停止吸积过程,中心星的质量不再继续增加.这意味着恒星的最大质量为1 0倍太阳质量,但这与实际情形是明显不符的,因为已经观测到100倍太阳质量的恒星.当然,在不改变基本假设的情况下也有解决这一困难的方法.例如,理论天体物理学家提出,减小星周物质的不透明度,可以使它们所受到的光压减小,理论上,这种假设可以使恒星的最大质量达到太阳质量的40倍.另外,考虑到外流的存在,如果大量光子从年轻星的两极溢出(因为两极的物质相对稀薄),能有效地释放光压.最新的理论研究表明,如果光子从外流所形成的空腔中逃逸,可以使恒星最大质量达到60倍太阳质量,甚至更大.为解决大质量星的光压使吸积停止这一困难,有人提出了另一种思路,即并合说.这种假说是基于大质量星总是与其他小质量星成团出现的观测事实.并合说主张,在最初阶段,通过分子云核的塌缩,形成一团小质量年轻星天体,这些天体经过一段时间的动力学演化,越来越接近,最后发生碰撞并合并在一起,形成大质量星.这一理论同样存在一些弱点.首先,目前观测到的恒星形成区的年龄一般在10e6至10e7年之间,这意味着,大质量星必须在这段时间内形成,要使小质量星团在如此短的时间里发生碰撞合并,需要非常高的星团密度,计算表明,这一密度必须大于每立方光年10e6. 颗年轻星.然而,目前观测到的最大星团密度约为每立方光年10e3颗,比所需的数值小了3个量级.其次,年轻星发生并合时,能释放巨大的引力能,其光度将会增加几个量级,不亚于一颗超新星的爆发,同时还可能伴随高能的活动现象,如γ射线暴及x射线暴,上述现象在目前为止的观测中未得到证实.至此,理论天体物理学家提供了两种不同的大质量星形成的模式,即吸积说(像小质量星形成一样)与并合说.解决争论的唯一途径是通过观测,但由于目前的观测条件所限,我们不能直接看见发生在大质量星附近的事件,只能通过观测大质量周围的现象推测理论的正确性.回忆小质量星形成的理论,可知吸积学说预言恒星形成时存在双极质量外流以及吸积盘.另一方面,并合说指出,由于年轻星碰撞合并等剧烈的动力学过程,星周盘将在这一过程中被瓦解;并合时可能引发物质的向外喷射,与外流有些相似,但一般不会出现高准直的双极型形态.二、恒星的演化1.引力收缩阶段恒星最初诞生于太空中的星际尘埃,科学家形象地称之为“星云”或者“星际云”,其主要成分由氢组成,密度极小,但体积和质量巨大。

古代天文学的论文

古代天文学的论文

古代天文学的论文•相关推荐古代天文学的论文在日常学习和工作生活中,大家一定都接触过论文吧,借助论文可以达到探讨问题进行学术研究的目的。

为了让您在写论文时更加简单方便,以下是小编为大家整理的古代天文学的论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

摘要:中国古代天文学有着上千年的悠久历史,自神话时期兴起,绵延千年不衰。

但中外学者对于中国古代天文学的质疑也从未停止过。

本文从科学哲学角度,叙述中国古代天文学的兴起与发展,详细分析其功能效用与历史影响,从而辨别中国古代天文学是否为真科学。

关键词:中国古代天文学;科学哲学;真科学一、中国古代天文学的兴起从众多资料来看,中国古代天文学的历史之悠久,可以追溯到上古时期。

传说在少昊氏时,人人私下研习天文,都搞起了沟通上天的巫术,致使天下大乱。

颛顼帝命令重、黎二人“绝地天通”,禁止了平民与上天沟通交流。

之后与天交流的权利就专属于天子,也只有天子钦定的巫觋才有资格去沟通上天。

从此天文学在古代中国就成了皇家的专属品,而天子也开始拥有了对“天命”的解读权。

这也就是中国漫长天文学史的开端。

二、中国古代天文学的发展我国天文学至于夏商周代时已经有了一定水准的历法。

特别是到了周代,已经有人开始观测流星、行星等天象及星辰。

相比于上古时代,这已经有了很大的进步。

传统的天文学体系是在春秋战国时期正式完成的。

在这一时期,不仅二十八星宿体系确立,而且在历法方面有了重大的进步。

我们古人开始通过观测日影长短的周年变化来确定冬至和夏至的日期。

并且在这一时期流传了大量人们观测流星、彗星等天象的详细记录。

这些都成了我国历史上的宝贵资料。

自从春秋战国时期传统天文学大框架建立之后,秦、汉、魏晋南北朝、隋、唐、宋时期,天文学进一步蓬勃发展。

不仅历法得到统一,二十四节气,浑天仪等天文知识以及天文学仪器的进一步发明使得我国的天文学一路高歌猛进。

到了元朝,由于铁木真缔造了一个横跨欧亚大陆的辉煌帝国,我国古代天文学甚至传到阿拉伯等国,可谓是盛极一时。

自然科学论文开普勒三定律及其意义

自然科学论文开普勒三定律及其意义

开普勒三定律及其意义开普勒(1571-1630年)是德国近代著名的天文学家、数学家、物理学家和哲学家。

他将数学和天文观测结合起来,在天文学方面做出了巨大的贡献。

开普勒是继哥白尼之后第一个站出来捍卫日心说、并在天文学方面有突破性成就的人物,被后世的科学史家称为“天上的立法者”。

开普勒定律:也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。

由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。

开普勒定律是开普勒发现的关于行星运动的定律。

他于1609年在他出版的《新天文学》上发表了关于行星运动的两条定律,又于1618年,发现了第三条定律。

开普勒很幸运地能够得到,著名的丹麦天文学家第谷·布拉赫所观察与收集的,非常精确的天文资料。

大约于1605年,根据布拉赫的行星位置资料,开普勒发现行星的移动遵守三条相当简单的定律。

开普勒的定律给予亚里士多德派与托勒密派在天文学与物理学上极大的挑战。

他主张地球是不断地移动的;行星轨道不是周转圆(epicycle的,而是椭圆形的;行星公转的速度不等恒。

这些论点,大大地动摇了当时的天文学与物理学。

经过了几乎一世纪披星戴月,废寝忘食的研究,物理学家终于能够用物理理论解释其中的道理。

牛顿利用他的第二定律和万有引力定律,在数学上严格地证明开普勒定律,也让人们了解其中的物理意义。

开普勒的三条行星运动定律改变了整个天文学,彻底摧毁了托勒密复杂的宇宙体系,完善并简化了哥白尼的日心说。

一、开普勒第一定律开普勒第一定律,也称椭圆定律;也称轨道定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。

二、开普勒第二定律开普勒第二定律,也称面积定律:在相等时间内,太阳和运动中的行星的连线(向量半径)所扫过的面积都是相等的。

关于天文学概论的论文3000字

关于天文学概论的论文3000字

关于天文学概论的论文3000字篇一:《天文学概论》期末论文恒星《天文学概论》期末作业之想一想对恒星的认识姓名:舒必成学号:202113020213学院:法学院专业:法学本学期我选修了天文学概论这门课程,通过一学期学习,我收获天文学了很多有关物理学方面的知识,也许是因为星空更为重要谜样就很神秘,充满魅力,指引着我选择专业课程了天文学选修课。

在课堂上,与浩瀚的宇宙的一次次碰撞,一次次惊叹,一次次感慨;与古今思想体系的一点点接触,一点点欣喜,一点点感悟;使我的选修课有感叹,有乐趣,有收获,没有遗憾。

形形色色在老师的引导和种种疑问的追寻下,我对恒星的演化过程进行了一番探究,恒星就像一个长寿的人——再机缘巧合下诞生,倔壮成长后,历练漫长的黄金阶段,接着是膨胀的失婚,最后慢慢的衰老。

所以下面我会从恒星的四个阶段谈谈我对恒星的认识。

一、快速成长的科袋恒星最初诞生宇宙飞船于太空中的外太空尘埃,科学家形象地称之为“星云”或者“星际云”,其主要成分由氧组成,密度极小,但体积和准确度巨大。

密度足够大的星云在自身引力作用下,不断收缩、温度升高,当温度达到1 000万度时其内部发生热核聚变反应,核聚变成小的结果是把四个氢原子核聚变结合成一个氦原子核,并释放出大量的核工业,形成辐射压,当压力增高到足以和无可自身收缩的引力抗衡时,一颗恒星诞生了。

恒星形成的初始阶段几乎完全被密集的星云气体和灰尘所掩盖。

通常,正在产生恒星的星源会通过在四周光亮的气体云上产生阴影而楼前被观测到,这被称为包克球。

质量非常小的原恒星不能达到足够开始氢的核融合反应,它们会正式成为棕矮星。

产品质量更高的原恒星,核心的温度可以达到1,000万K,可以开始质子-质子链反应将氢先融合成氘,再融合成氦。

在质量如上所述太阳效率质量的恒星,碳氮氧循环在能量的产生上所贡献了可观的数量。

新诞生的有各种不同的大小和颜色。

光谱类型的范围从高热的蓝色到低温的型态红色,质量则从最低的0.085太阳可靠性到数十倍于太阳可靠性。

人类对月亮的探索历程——天文学史的论文

人类对月亮的探索历程——天文学史的论文

人类对月亮的探索历程摘要:在古代,人类便与月亮结下了不解之缘,对月亮充满了美好的想象.但是当伽利略第一次将望远镜对准月亮时,人们才知道月亮其实应该叫“月球”,它的表面没有月宫和嫦娥,而是崎岖不平的荒凉之地。

自此,人类开始探索月球的历程。

探测月球具有重大的科技、政治和经济等意义,随着人类社会经济和科技的发展,世界各国综合国力的提高,人类开展人造地球卫星和载人航天之后与时俱进,经过从主要的二十世纪五十年代初到至今的,我们人类开展了一系列月球探测活动。

而我国本着循序渐进、分步实施、不断跨越的原则,制定了作为国家重大科技专项的中国月球探测计划,计划分“绕、落、回”三个阶段实施。

关键词:古代、探测月亮、探测历程、我国、引言:2020年7月20日是第51个人类月球日。

在辽阔的夜空中,人类肉眼所能看到的最亮的天体就是月球。

月球到底是什么样子?月球上有没有生命在活动?月球开发对人类有哪些益处?数千年来,人类对月亮充满了无限遐想,我们也一直在孜孜不倦地观察和研究月球。

随着近现代科学技术进步和航天活动的发展,直到51年前的今天,美国宇航员阿姆斯特朗迈出人类在月球上的第一步,这是人类探索宇宙道路上的闪亮时刻,也因这一刻,7月20日被定为“人类月球日”。

我国古代的探索月球历程:就在古代,人类便与月亮结下了不解之缘,对月亮充满了美好的想象。

如“兔寒蟾泣天色,云楼半开壁斜白”、“明月几时有,把酒问青天”等,这些脍炙人口的诗歌体现了月亮给古人带来的浪漫与古人对月亮充满了遐想和美好的向往。

古人对月亮最原始的认识是源于中国民间的一个美丽传说——嫦娥奔月。

相传,美丽的嫦娥是射下九个太阳的英雄后羿的妻子,偷吃了后羿的长生不老丹而飞上天界,进入了广寒宫,从此只有捣药的玉兔相伴,每年农历八月十五日,嫦娥走出广寒宫,遥望人间,思念丈夫后羿。

这个传说反映了古代中国人对月球构造的朦胧认识,也可以说是人类最早的登月向往。

由于地球引力的存在,人类本身(不借助外力的情况下)无法在空中飞行,加之古代技术有限,无法登上太空,所以人类就一直对月亮、对太空充满兴趣,积极探索。

现代天文学论文-探索宇宙空间的未解之谜——火星

现代天文学论文-探索宇宙空间的未解之谜——火星

现代天文学期末试题题目:探索宇宙空间的未解之谜——火星学生姓名:学院专业:国际商学部国际金融班级:星期三10—11节学号:任课老师:马2014年6月5日探索宇宙空间的未解之谜——火星摘要:火星自古以来就以其火红的外表和捉摸不定的运动轨迹而使人着迷。

随着航天技术的不断发展,对火星的探索也逐步深入,尤其是对于火星生命的探索,成为人类始终不懈追求的目标。

关键词:火星探索未解之谜一、火星概况火星是太阳系由内往外数的第四颗行星,属于类地行星,直径为地球的一半,自转轴倾角、自转周期相近,公转一周则花两倍时间。

在英语中火星被称为玛尔斯(Mars,意思是战神),古汉语中则因为它荧荧如火,位置、亮度时常变动让人无法捉摸而称之为荧惑。

火星在视觉上呈现为橘红色是由其地表所广泛分布的氧化铁造成的。

无论是质量还是体积,在太阳系的八大行星中,火星比水星略大,为第二小的行星。

火星的直径约为地球的一半,自转轴倾角、自转周期则与地球相当,但绕太阳公转一周则需花费约两倍于地球的时间。

二、火星的研究现状及热点1. 大气和温度火星的大气仅及地球大气密度的1%,主要是二氧化碳,占95.32%,其他气体仅占少数,氮2.7%,氩1.6%,氧0.13%,水0.03%。

火星大气中的水含量仅为地球的千分之一,尽管如此,这少量的水仍能凝结,从而形成云,高居于大上层,在山谷中形成早晨的雾。

火星上还有一些明显的天气现象,如风、尘暴等。

火星上的气压很低,只有地球的1/200。

在海盗登陆舱2号的登陆点,每年冬天都有薄薄的水霜。

由于火星与太阳之间的距离约为日地平均距离的1.5倍,所以其表面平均温度比地球低很多,加之火星大气稀薄干燥,保温极差,其昼夜温差常在100℃左右。

2. 地形地貌火星那与众不同的红被古人视为灾难的象征。

事实上,火星表面遍布富含氧化铁的岩石导致的,与凶吉无关。

在类地行星中,火星是除地球以外地形有着最多变化的一个行星。

火星直径是地球的一半,但它却有几个火山超过了地球上最大的火山。

天文漫谈-期末论文-黑洞

天文漫谈-期末论文-黑洞

黑洞漫谈匡亚明学院2011级理强张梦陶 111242054一黑洞的预言(1)拉普拉斯预言的黑洞:早在1800 年,拉普拉斯(第一个提出星云假说的人)就指出,一个物体的表面积和密度越大,那么它的表面引力和逃逸速度也就越大。

物体的大面积和大质量相结合会产生很大的表面引力,以至于它的逃逸速度将等于甚至超过光速,在这种情况下,物体不向外发光。

当时,这个假设只被认为是个理想的推测,因为关于物体处于上述状态时的极大面积和极稠密度,我们还一无所知。

公式:但是,要指出的是暗星不同于广义相对论的黑洞,因为:•暗星仍由普通物质构成,这些物质能够支撑起自己不会塌缩•光子的逃逸半径更大•不是时空弯曲的结果•可以有超光速的粒子逃逸出去(2) 史瓦西预言的黑洞爱因斯坦的广义相对论预言,一定质量的天体,将对周围的空间产生影响而使他们“弯曲”。

弯曲的空间会迫使其附近的光线发生偏转。

例如太阳就会使经过其边缘的遥远星体光线发生1.75弧秒的偏转。

由于太阳的光太强,人们无法观看太阳附近的情景。

1919年,一个英国日全蚀考察队终于观测到太阳附近的引力偏转现象,爱因斯坦因此成了家喻户晓的明星。

爱因斯坦创立广义相对论之后第二年(1916年),德国天文学家卡尔•史瓦西(Karl Schwarzschild,1873~1916年)通过计算得到了爱因斯坦引力场方程的一个真空解,这个解表明,如果将大量物质集中于空间一点,其周围会产生奇异的现象,即在质点周围存在一个界面──“视界”,一旦进入这个界面(图3-3),即使光也无法逃脱。

这种“不可思议的天体”被美国物理学家约翰•阿奇巴德•惠勒(John Archibald Wheeler)命名为“黑洞”。

1915年,Einstein 方程:史瓦西从“爱因斯坦引力方程”求得了类似拉普拉斯预言的结果,即一个天体的半径如果小于“史瓦西半径”,那么光线也无法逃脱它的引力。

这个史瓦西半径的范围可以按照下式估算:其中,没是天体质量,c是光速。

天文学论文

天文学论文

天文学论文篇一:天文学论文分数日期______湘潭大学文化素质教育自学课程专题读书论文(体会)(封面)课程名称____天文学基础________专题读书论文(体会)____太阳的奥秘________导师杨雪娟姓名________学号班级名称__学院名称__商学院_______提交日期:2022年11月20日湘潭大学教务处制太阳之谜怀抱着好奇心,我选择了本学期的天文基础选修课,希望能通过学习让自己的常识丰富起来,通过学习我也收获了很多。

天文学是人类运用所掌握的最新的物理学、化学、数学等知识以及最尖端的科学技术手段,对宇宙中的恒星、行星、星系以及其它像黑洞等天文现象进行专业研究的一门科学。

它是一门基础学科,也是一门集人类智慧之大成的综合系统。

天文学往往引起人们神秘莫测的感觉,他研究的大都是遥不可及的东西,不能用尺量,不能用称约,更不能改变它的条件。

只能远远的看着,有关他的知识全靠人们依据观测推理取得。

我们每天都能看见太阳,但是有多少人了解它呢?下面让我来揭示太阳的奥秘。

p太阳的定义太阳是距离地球最近的恒星,是太阳系的中心天体。

太阳系质量的99.87%都集中在太阳。

太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳运行(公转)。

在浩瀚的宇宙中,太阳只是一颗非常普通的恒星。

在广阔的星空中,太阳的亮度、大小和物质密度都处于中等水平。

仅仅因为它离地球很近,它看起来就像天空中最大最亮的物体。

其他太阳系外恒星离我们很远。

即使是最近的恒星也比太阳远27万倍。

它看起来像一个闪光点。

太阳是位于太阳系中心的恒星,太阳质量的大约四分之三是氢,剩下的几乎都是氦,包括氧、碳、氖、铁和其他的重元素质量少于2%。

地球围绕太阳公转的轨道是椭圆形的,每年7月离太阳最远(称为远日点),1月最近(称为近日点),平均距离是1亿4960万公里(天文学上称这个距离为1天文单位)。

以平均距离算,光从太阳到地球大约需要经过8分19秒。

天文学论文2000字

天文学论文2000字

天文学论文2000字我的天文选修课世界上有两件东西能够深深地震撼人们的心灵,一件是我们心中崇高的道德准则,另一件是我们头顶上灿烂的星空。

——记我的天文选修课数周之前,我们的天文选修课开课了,第一次课,老师的话很风趣,让我原本以为的枯燥无味的天文学的印象全无。

温总理说:“我们的民族是大有希望的民族。

希望同学们经常地仰望天空,学会做人,学会思考,学会知识和技能,做一个关心国家命运的人。

”从这句话我认识到了,我们要学的天文学不仅仅是纯粹的天文知识,而是要放眼世界,瞩目未来。

无论是一个人也好,还是一个民族,都生活在这个世界中,而世界是无限广大,又是不断发展和变化的。

我们要适应这个世界,要生活得更好,就时时刻刻都要明白所身处的坐标和位置,要有不屈服又不侵凌于人的忧患之心面对各种生机与危机,要抓住机遇不断地发展和壮大自己。

我从此对我的天文学有了更深的了解,我的天文选修课也从此开始。

仰望星空,我们看到的是数以万计的繁星,虽然不能得到什么,但这是我们认识宇宙的开始。

人类虽然认识了地球,可是没有认识宇宙之时,以为自己是地球上的霸者,宇宙的中心。

人类开始狂妄自大,疯狂的改造世界,互相征服满足自己的私欲。

突然有一天,有人发现太阳才是宇宙的中心,人们惶恐了??当人类真正的脱离重力场,就如惠更斯所言“加入升上地球之巅,从高处往下观察,我们就不会对地球上称之为伟大的东西赞不绝口,也就会藐视大多数凡夫俗子所津津乐道的区区小事”,仰望天空之所以重要,是因为认识了宇宙,我们才认识到了自己在宇宙的位置,便不会那样自大、狂妄。

也更深刻的认识了生命,人类的文化、科技才能更好更快的发展,人类才能发展。

神奇的星座学与星相学,从一开始,它们似乎便被赋予了神秘而又特殊的色彩。

古今中外,多少人都以为自己的命运、前途竟然与数亿千米外的星座息息相关。

即使现在,也有多少年轻人热衷于星座学。

当我们进入模拟星空的界面,瑰丽的星座固然漂亮,一个个的背后都有一个美丽的神话,可是这些遥远的星座跟我们的有什么关系呢?看来,我们把星座占卜上的备注当成我们命运的指南针是荒谬的。

天文学课程论文《通过光谱研究恒星》PDF

天文学课程论文《通过光谱研究恒星》PDF

恒星光经过色散系统光栅或棱镜分解后形成的红橙黄绿青蓝紫七色光带。

恒星光谱的形态决定于恒星的物理性质、化学成分和运动状态。

光谱中包含着关于恒星的各种特征的最丰富的信息到现在为止关于恒星的本质的知识几乎都是从恒星光谱的研究中得到的。

绝大多数恒星光谱与太阳光谱很相似都是在连续光谱上面有许多暗黑的谱线的吸收光谱说明恒星是被较冷的恒星大气包围的炽热的气体球。

恒星间谱线数目和分布差异较大其中大部分是地球上已存在的化学元素的谱线。

通过恒星光谱的研究可以测定恒星的化学组成恒星大气的温度、压力和恒星运动的视向速度等。

恒星光谱可分为几种不同类型其中按哈佛系统根据绝对温度把恒星分成O、B、A、F、G、K、M及附加的R、N、S等类型其中每型又分为10个次型。

20世纪初美国哈佛大学天文台已经对50万颗恒星进行了光谱研究。

并对恒星光谱根据它们中谱线出现情况进行了分类。

结果发现它们与颜色也有关系即蓝色的“O”型、蓝白色的“B”型、白色的“A”型、黄白色的“F”型、黄色的“G”型、橙色的“K”型、红色的“M”型等主要类型。

实际上这是一个恒星表面温度序列从数万度的O型到2-3千度的M型。

丹麦天文学家赫茨普龙和美国天文学家罗素根据恒星光谱型和光度的关系建起著名的“光谱-光度图”也称“赫-罗”图。

大部分恒星分布在从图的左上到右下的对角线上叫主星序都是矮星。

其它还有超巨星、亮巨星、巨星、亚巨星、亚矮星和白矮星等类型而这一不同类型表示了它们有不同的光度。

赫--罗图是研究恒星的重要手段之一。

它不仅显示了各类恒星的特点同时也反映恒星的演化过程。

在恒星的光谱分类中O、B、A型称为“早型星”F和G型称“中间光谱型”K和M型称为“晚型星”。

20世纪90年代末期天文学家越过M型把恒星光谱分类扩展到温度更低的情况先提出了新的L型继而又提出了比L型温度更低的光谱分类T型。

通过恒星的颜色可以确定恒星表面的温度。

然而星光所携带的信息远不仅限于恒星表面温度。

大众天文学论文

大众天文学论文

大众天文学论文从远古时代起,我国古代的先民们就对宇宙结构、天地关系等问题作出种种推测,很早就有了天圆地方、天高地卑的盖天说。

战国时期,随着天文观测材料的积累,人们对天圆地方提出了质疑,出现了第二次盖天说。

它认为,天是半圆形的,地是拱形的,日月星辰附着天而平转,不能转到地的下面等。

这一学说一直到西汉时还很流行。

汉代,人们对宇宙有了进一步的认识,出现了浑天说和宣夜说,它们和盖天说一起被称为“论天三家”。

浑天说是一种以地球为中心的宇宙理论。

它认为,天形浑圆如鸡蛋壳,地居天内似蛋黄,天地乘气而立,载水而行,比较近似地说明了天体的运行。

宣夜说则阐述了“天无形质”的思想,认为天是没有形质的,七曜星辰均浮空,依靠气的作用而运动。

它打破了其他宇宙论中认为存在一个有形质的天球的思想,在人类认识宇宙的历史上有极其重要的意义。

魏晋南北朝时期,又出现了三家宇宙理论,它们是断天论、穹天论和安天论。

断天论是由孙吴太常姚信所创。

他认为,天之体类人,南低北高。

冬至太阳离人远,所以变冷,夏至太阳离人近,所以天热。

穹天论是晋虞耸提出,其理论不出盖、浑两家所论。

而安天论则是由晋虞喜据宣夜说而创。

认为天高地深皆无穷,星辰运行,犹江海之有潮汐。

一直到西方现代天文学说传入以前,我国在宇宙理论上再没有大的突破。

古希腊天文学是近代天文学的直接渊源。

希腊在天文学上成绩巨大,与其他文明古国相比,它的理论性最强,体系也最为完整、科学,方法上也达到了古代的高峰,它的影响也是具有深远意义的。

依据前后年代对大自然的看法差异,古希腊天文学大致上可分成四个主要的时期,或说前后形成的四个学派。

也就是,公元前七世纪起,泰勒斯(Thales,约624—547 BC.)提出以「思辩」方法来探究和理解宇宙形状、功能和基本组成的爱奥尼亚学派;主张「球形大地」的毕达哥拉斯(Pythagoras,约570—500 BC.)学派;公元前四世纪,提出「同心球宇宙」构思的柏拉图(Plato,约428- 347 BC.)学派;公元前三世纪,应用天文观测和量测方法的亚历山大学派。

天文学的历史与现状——《天文学》教案二2

天文学的历史与现状——《天文学》教案二2

天文学的历史与现状——《天文学》教案二2。

一、天文学的历史天文学的历史可以追溯到人类的远古时期。

早在远古时期,人们就开始观测天体了。

大约在公元前6000年左右,人们在中东地区就开始观测金星和太阳。

古巴比伦人在公元前5千多年前进行过月食和日食的记录,印度人约在公元前3千年前开始进行天文观测,殷商时期的史书《尚书》和《周易》中也有记录了不少天象现象。

在中国,古代天文学的发展历程亦是一个较为漫长的过程。

早在公元前2600年左右,中国商代就已经有了严格观测日、月、星象的制度,其历法的贡献为后世的历法体系制定奠定了基础。

春秋战国时期,古代中国天文学最有名的人物是商鞅、郑国公主及韩国的商鞅推出的《纪年》,它是古代中国最早的纪年书之一,记录了公元前841年—公元前481年的177年间的重要天象和历史事件。

至汉代的三统历和日食谱,更是中国天文学中的杰出成果。

中国历史上天文学的发展历程,曾经在技术和理论方面均处于世界领先地位,形成了独特的天文文化。

在西方,古希腊人开始了天文学的正式研究,希臘天文學著名人物有毕达哥拉斯、阿那克萨戴蒂斯等人。

毕达哥拉斯提出了“行星偏移”的思想,通过对行星位置的变化微调,达到接近精确的计算结果。

这一思想被后来的哥白尼所发扬光大,成为现代天文学的基础。

中世纪,天文学经历了一个重大的变革期,这主要得益于阿拉伯科学的传播和贡献。

阿拉伯人对印度,希腊,波斯和中国的成就有着兴趣, 他们把它们中最好的技术方法和一些年鉴,史书和天文文献翻译成阿拉伯语,为西方的天文学进步奠定了基础。

同时,在欧洲的各大城市,天文台和宇宙学家也相继出现,他们研究了如黄道与近点、大约多少时间一种星座都会到达夏至点等,为天文学研究提供了丰富而新的材料。

随着时间的推移,天文学的研究领域也逐渐拓宽,如星际物理学、黑洞物理学、宇宙背景辐射等等都成为了天文学中的专业领域,促进了这一学科的快速发展。

二、天文学的现状天文学的现状十分丰富多彩,无论是研究领域还是研究对象,都在不断的发展和推进中。

天文学论文范文范文

天文学论文范文范文

天文学论文范文范文天文学它一开始就同人类的劳动和生存密切相关。

远古时候,人们为了根据生活的需要而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法,因此说天文学是最古老的自然科学学科之一古代的天文学家因为没有可以凭借的工具,只能靠肉眼观察天空。

我国自古以农耕为主,春种秋收,季节最为重要。

中国古代天文学家用来观测星象最重要的工具是浑仪。

在望远镜发明以前,浑仪是世界上最先进的天文观测工具。

(现今存世最早的浑仪是明代正统七年(1442)制成的,陈列在南京紫金山天文台)公元二世纪时,古希腊天文学家托勒密提出的地心说,这一学说统治了西方对宇宙的认识长达1000多年。

十六世纪,波兰天文学家哥白尼提出新的宇宙体系的理论,日心说,天文学的发展进入了全新的阶段,使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。

到了1610年,意大利天文学家伽利略某某某制造折射望远镜,成为最早使用望远镜研究太空的人之一、人类第一次通过望远镜观察到了太阳黑子、月球和其他一些行星表面的状况。

在同时代,牛顿创立牛顿力学,使天文学出现了一个新的分支学科----天体力学。

天体力学诞生使天文学从单纯描述天体的几何关系造成天体运动的原因的新阶段,在天文学的发展历史上,是一次巨大的飞跃。

19世纪中叶天体摄影和分光技术的发明,使天文学家可以进一步深入地研究天体的物理性质、化学组成、运动状态和演化规律,从而更加深入到问题本质,从而也产生了一门新的分支学科天体物理学。

这又是天文学的一次重大飞跃。

20世纪50年代,射电望远镜开始应用。

到了20世纪60年代,取得了称为“天文学四大发现”的成就:微波背景辐射、脉冲星、类星体和星际有机分子。

而与此同时,人类也突破了地球束缚,可到天空中观测天体,通过发射的航天探测器来了解一些太空信息。

除可见光外,天体的紫外线、红外线、无线电波、X射线、γ射线等都能观测到了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地质工程与测绘学院天文学基础课程论文论文名称: 大地天文学专业: 大地测量学与测量工程学号: 2014126044 学生姓名: 姚利辉指导教师: 张永智撰写时间: 2014年12月摘要摘要:天文学是一门最古老的科学,他一开始就和人类的劳动和生存密切相关。

他同数学、物理、化学、生物、地学同为六大基础学科。

大地天文学也是由来已久,从公元前开始到现在,从用传统的方法到现在的各种精密的测量仪器,经历了翻天覆地的变化。

本文主要从大地天文学的基础概念入手,主要利用大地天文学只是来测定经纬度和其他,从而确定地面点的位置。

基础知识主要有天球上基本的概念,天球与地球的关系以及天球与地球坐标系的关系与转换,运用这些关系,确定的一些大地天文学的测量方法和在各种方面的应用。

关键字:大地天文学,天球坐标系,坐标系转换,测量方法与应用AbstractAbstract:astronomy is a one of the oldest science, he started and is closely related to the ministry of Labour and survival of human beings. He with mathematics, physics, chemistry, biology, study as the six basic subjects. Astronomy earth also has a long history, from the beginning to now, from the traditional way to the present all kinds of precision measuring instruments, undergone earth-shaking changes. This article mainly from the basic concept of the astronomy, the main use of the land of astronomy is to determine the latitude and longitude and the other, to determine the position of the ground points. Basic knowledge is mainly on the basic concept, the celestial sphere celestial's relationship with the earth and the relationship between the celestial coordinate system with earth and transformation, using these relationships, determine some of the astronomy measurement on the methods and applications in various aspects.Key words:the astronomy, celestial coordinate, coordinate transformation, measuring method and application目录摘要 (1)一、大地天文学基本概念 (1)二、大地天文学的发展概况 (1)三、天球的基本概念 (2)3.1天球的定义 (2)3.2 天球的分类 (2)3.3天球的两个特性 (2)3.4 关于天球的基本知识 (2)四、天球与地球的相关关系 (3)4.1 天球上与地球公转有关的圈、线、点 (3)4.2 天球上与地球自转有关的圈、线、点 (5)五、天球坐标系 (6)5.1 天球坐标系分类 (6)5.1.1 地平天球坐标系 (7)5.1.2 时角天球坐标系 (8)5.1.3 赤道天球坐标系 (9)5.1.4 黄道天球坐标系: (9)5.2 天球坐标系之间的转换 (9)5.2.1 天文坐标与天球坐标之间的关系 (10)5.2.2 地平坐标与时角坐标之间的关系 (10)5.2.3 天球直角坐标系及其转换 (11)六、大地天文学的方法及应用 (13)参考文献 (15)大地天文学一、大地天文学基本概念大地天文学是天文学的一个分支,也是大地测量的一个重要组成部分。

它的重要任务,是用天文方法观测天体的位置来确定地面点在地球上的位置(经纬度)和某一方向的方位角,以供大地测量和其他有关的科学技术部门使用. 这是天体测量学与大地天文学的边缘学科,在测站(通常称为天文点)使用天体测量仪器观测天体以测定天文经度和纬度,也可测定测站至相邻固定目标的方位角从而确定测站的子午线。

大地天文学的传统课题包括:①测定地面点的天文经度,就是在同一瞬间测定地面上一点与本初子午线上的地方时之差。

该点上的时刻可使用经纬仪、中星仪、棱镜等高仪以及照相天顶筒等仪器测定;本初子午线上的地方时则可通过收录无线电时号求得。

②测定地面点的天文纬度。

这等同于测定地面点的天极高度。

该点的纬度可使用带有纬度水准的经纬仪、天顶仪、棱镜等高仪以及照相天顶筒等仪器测定。

③地面目标方位角的测定。

这等同于确定某天文点的子午线方向。

观测恒星,测定其时角,算出它的方位角,然后测定该瞬间恒星与地面目标之间的水平角,从而得到目标的方位角。

这些任务都包含对各种误差的分析及对削弱和消除误差的研究。

近代已能测定地面点在以地心为原点的三维直角坐标系中的地心直角坐标,用诸如甚长基线干涉测量、激光测距、全球定位系统测量等技术,精度可达几厘米量级。

二、大地天文学的发展概况大地天文学是天文学中发展最早的一个分支。

公元前3世纪,古希腊天文学家用观测夏至日正午太阳高度的方法测定了子午线的长度。

公元8世纪,中国天文学家一行(本名张遂,683~727)等通过观测北极星高度推算出了子午线1°的弧长。

元代天文学家郭守敬(1231~1316)组织过全国范围的纬度测量。

然而,直到17世纪光学望远镜、测微器与天文钟问世以后,才形成精密的大地天文学。

现代大地天文学的测量设备包括天文观测仪器、守时仪器、记时仪器和无线电接收机。

天文观测仪器主要是全能经纬仪,也可用中星仪和棱镜等高仪等。

守时仪器已全部采用石英钟。

记时仪器用以记录观测恒星的时刻。

无线电接收机则用以收录时号。

为提高观测精度和效率,各国都在研制新的观测仪器,例如美国的自动天文定位系统、方位角监测仪,意大利的天顶摄影机等。

三、天球的基本概念3.1天球的定义各个天体同地球上的观测者的距离都不相同。

天体和观察者间的距离与观测者随地球在空间移动的距离相比要大得多,人的肉眼分辨不出天体的远近,所以看上去天体似乎都离我们一样远,仿佛散布在以观测者为中心的一个圆球的球面上(站心天球)。

实际上我们看到的是天体在这个巨大的圆球的球面上的投影位置,这个圆球就称为天球。

3.2 天球的分类文学上就将以空间某一点为中心,以无限大为半径,内表面分布着各种各样天体的球面称为天球。

天球是研究天体的位置和运动而引进的一个半径为无限大的假想圆球,想象中所有天体都附着在天球表面上。

根据所选取的天球中心不同,有站心天球、日心天球、地心天球等。

3.3天球的两个特性由于天球的半径可视为无穷大,在空间任何有限的距离与天球半径相比,都微小到可以忽略不计。

因此天球具有下面两个特性:1)相距有限距离的所有平行直线,向同一方向延长与天球交于一点。

2)相距有限距离的所有平行平面天球交于同一大圆。

3.4 关于天球的基本知识观测者所能直接辨别的只是天体的方向。

在球面上处理点和弧段的关系,比在空间处理视线方向间的角度要简便得多,在天文学的一些应用中,都用天体投影在天球上的点和点之间的大圆弧段来表示它们之间的位置关系。

天球的半径是任意选定的,可以当作数学上的无穷大。

我们站在地球上仰望星空,看到天上的星星好像都离我们一样远。

星星就好像镶嵌在一个圆形天幕上的宝石。

实际上星星和我们的距离有远有近,我们看到的是它们在这个巨大的圆球球面上的投影,这个假想的圆球就称为天球,它的半径是无限大。

而地球就悬挂在这个天球中央。

星星在天空中移动的方向并不是杂乱无章的,而且星座的形状并不会改变。

星星从东方的地平线爬上来,爬到最高点(中天),然后往西方沉下去。

看起来就像整个天球围绕着地球旋转一样。

相信大家都明白,地球并不是宇宙的中心,星体并不会绕着地球转。

星体在天空中绕着我们旋转,是因为地球自转而产生的错觉,天球本身是不会移动的。

我们身在地球中,并不会感觉自己在转动的,就好像们乘坐火车时看见窗外的景物向后移动,而并不感觉到自己在移动中。

天球是一个直观的假象球,其形成的原因是人的肉眼分辨不出天体的远近。

设在地球中心照准空间远近不等的天体,将各天体方向线延长与天球相交的各投影点称为各天体在天球上的位置,如图(3-1)所示。

显然,就存在有两个或多个天体在天球上的投影位置是重合的。

图 3-1四、天球与地球的相关关系4.1 天球上与地球公转有关的圈、线、点黄道在天球上的位置较难确定。

所谓黄道是指地球绕着太阳运行的公转轨道平面无限扩大与天球相交截出的大圆,它也是地球公转轨道在天球上的投影。

地球每年绕太阳运行一周,但在地球上的人们看来,却好像是太阳在天空众星之间绕地球转圈。

因此,黄道也就是太阳每年在天球上所作视运动的路线,如图(4-1)所示。

图4-1 地球公转轨道与黄道黄极与天极的角距离等于黄道与天赤道的交角,如图(4-2)所示。

图4-2 天球赤道与黄道的交点黄道面是地球绕太阳系质心运动的平均轨道平面,将这一平面延伸与天球相交的大圈称为黄道;过天球中心作一条直线垂直与黄道面,这条直线与天球相交于K和K′两点,靠近北天极的K点称为北黄极,靠近南天极的K′点称为南黄极。

黄道面与赤道面的夹角称为黄赤交角,一般用ε来表示,其值约为23.5º。

天球上距离黄道90°的两点,即黄道轴与天球相交的两点,称黄极。

靠近北天极的一点叫北黄极(通常用K表示),靠近南天极的一点叫南黄极(通常用K′表示)。

二分点和二至点:天球上黄道与赤道相交于和两点,称为二分点,即春分点和秋分点。

在黄道上距春分点和秋分点90º的两个点称为二至点,即夏至点和冬至点,其中在赤道以北(最北)的那一点称为夏至点。

在赤道以南(最南)的那一点称为冬至点。

二分圈和二至圈:在天球上通过天极、春分点和秋分点的大圈,称为二分圈。

在天球上通过天极、夏至点和冬至点的大圈,称为二至圈。

4.2 天球上与地球自转有关的圈、线、点如图(4-3)所示,我们要经常用到的基本圈、线、点为:天轴和天极:通过天球中心(这里为测站点)而与地球瞬时自转轴pp′相平行的直线PP′称为天轴,它与天球相交的两点P和P′称为天极。

相关文档
最新文档