高考数学压轴专题人教版备战高考《平面向量》全集汇编附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新数学《平面向量》专题解析
一、选择题
1.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪
-+≥⎨⎪≥⎩
,设
z OP OA =⋅u u u r u u u r
,则z 的最大值是( )
A .2
B .3
C .4
D .5
【答案】C 【解析】 【分析】
画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】
解:由不等式组202300x y x y y -≤⎧⎪
-+≥⎨⎪≥⎩
可知它的可行域如下图:
Q ()2,1A ,(), P x y
∴2z OP OA x y =⋅=+u u u r u u u r
,可图知当目标函数图象经过点()1,2B 时,z 取最大值,
即24z x y =+=.
故选:C. 【点睛】
本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.
2.已知O 是平面上一定点,满足()||cos ||cos AB AC
OP OA AB B AC C
λ=++u u u r u u u r
u u u r u u u r u u u
r u u u r ,[0λ∈,)+∞,则P 的轨迹一定通过ABC ∆的( )
A .外心
B .垂心
C .重心
D .内心
【答案】B 【解析】 【分析】
可先根据数量积为零得出BC uuu r 与()||cos ||cos AB
AC AB B AC C
λ+u u u r
u u u r
u u u
r u u u r 垂直,可得点P 在BC 的高线
上,从而得到结论.
【详解】
Q ()||cos ||cos AB AC
OP OA AB B AC C
λ=++u u u r u u u r
u u u r u u u r u u u
r u u u r , ∴()||cos ||cos AB AC
OP OA AB B AC C λ-=+u u u r u u u r
u u u r u u u r u u u
r u u u r , 即()||cos ||cos AB AC
AP AB B AC C
λ=+u u u r u u u r
u u u r u u u
r u u u r , Q
cos BA BC
B BA B
C ⋅=u u u r u u u r u u u r u u u r ,cos CA CB C CA CB
⋅=u u u r u u u r u u u r u u u r , ∴
()0||cos ||cos AB AC
BC BC BC AB B AC C
⋅+=-+=u u u r u u u r
u u u r u u u r u u u r u u u r u u u r , ∴BC uuu r 与()||cos ||cos AB AC
AB B AC C
λ+u u u r u u u r
u u u
r u u u r 垂直, 即AP BC ⊥uu u r uu u r
,
∴点P 在BC 的高线上,即P 的轨迹过ABC ∆的垂心.
故选:B . 【点睛】
本题重点考查平面向量在几何图形中的应用,熟练掌握平面向量的加减运算法则及其几何意义是解题的关键,考查逻辑思维能力和转化能力,属于常考题.
3.在平行四边形OABC 中,2OA =,OC =
6
AOC π
∠=
,动点P 在以点B 为圆
心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r
,则43λμ+的最大值为( )
A .2+
B .3+
C .5+
D .7+
【答案】D 【解析】 【分析】
先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r
,再求出
7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r
的最大值为.
【详解】
如图所示,由2OA =,6
AOC π
∠=
,
由余弦定理得23
4+32231,12
AC AC =-⨯⨯⨯=∴=, ∴90OCA BAC ∠=∠=o , ∴圆B 与AC 相切于点A ,
又OP OA OC λμ=+u u u r u u u r u u u r , ∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r
;
∴()
43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r
;
如图,过点B 作,BD OA ⊥连接,OB 由题得6
BAD π
∠=
,
所以22333333,,(2)()1322222
AD DB OB =⨯
==∴=++=, 所以
7
2cos 13213
BOA ∠==
, 所以
1327213
OB OA ⋅=⨯⨯=u u u r u u u r , 因为BP OA ⋅u u u r u u u r
的最大值为32cos023⨯⨯=o ,
∴43λμ+的最大值是723+. 故选:D.
【点睛】
本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.
4.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v
()
A .4
B .6
C .23
D .43
【答案】B 【解析】 【分析】
根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果. 【详解】 如图所示,
菱形形ABCD 的边长为2,60ABC ∠=︒,
∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =30BDC ∠=︒,
∴|||3 302|3262
BD CD BD CD cos =⨯⨯︒=⨯=⋅u u u r u u u r u u u r u u u r ,
故选B . 【点睛】
本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..
5.已知向量a r 与向量b r 满足||2a =r ,||2b =r ||||5a b a b +⋅-=r r r r ,则向量a r
与向量b r
的夹角为( )
A .
4π或
34
π B .6π或56π
C .3π或23π
D .2π 【答案】A 【解析】 【分析】
设向量a r ,b r
的夹角为θ,则2||1282a b θ+=+r r ,2||1282a b θ-=-r r ,即可
求出2cos θ,从而得到向量的夹角; 【详解】
解:设向量a r ,b r
的夹角为θ,222||||||2||||cos 4882a b a b a b θθ+=++=++r r r r r r 1282θ=+,222||||||2||||cos 48821282a b a b a b θθθ-=+-=+-=-r r r r r r
,所以
2222||||144128cos (45)80a b a b θ+⋅-=-==r r r r ,2
1cos 2
θ∴=,因为[0,)θπ∈,故
4
π
θ=
或
34
π
,故选:A. 【点睛】
本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.
6.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v
,则( )
A .1263BD OA OC =-u u u v u u u v u u u v
B .5263BD OA O
C =-u u u v u u u v u u u v
C .5163
BD OA OC =-u u u v u u u v u u u v
D .1163
BD OA OC =+u u u v u u u v u u u v
【答案】A 【解析】 【分析】
利用向量的加法、减法的几何意义,即可得答案;
【详解】
Q BD OD OB =-u u u v u u u v u u u v ,()
22123333
OB OA AC OA OC OA OA OC =+=+-=+u u u
v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,
12OD OA =u u u v u u u v ,
∴1263
BD OA OC =-u u u v u u u v u u u v ,
故选:A. 【点睛】
本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.
7.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若
(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r
,则λ+μ的值为( )
A .
65
B .
85
C .2
D .83
【答案】B 【解析】 【分析】
建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r
,列
出方程组求解即可. 【详解】
建立如图所示的平面直角坐标系,则D (0,0).
不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),
(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u r
CA CE DB λμ=+u u u r u u u r u u u r Q
∴(-2,2)=λ(-2,1)+μ(1,2),
2222λμλμ-+=-⎧∴⎨+=⎩解得65
2
5λμ⎧=⎪⎪⎨⎪=⎪⎩
则85λμ+=.
故选:B 【点睛】
本题主要考查了由平面向量线性运算的结果求参数,属于中档题.
8.在ABC ∆中,若点D 满足3CD DB =u u u r u u u r ,点M 为线段AC 中点,则MD =u u u u r
( )
A .3144A
B A
C -u u u
r u u u r B .1136
AB AC -u u u r u u u r
C .2133AB AC -u u u r u u u r
D .3144
AB AC +u u u
r u u u r
【答案】A 【解析】 【分析】
根据MD MA AB BD =++u u u r u u u u u u r u r u u u r
,化简得到答案. 【详解】
()
11312444
MD MA AB BD AC AB AC AB AB AC =++=-++-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u
u u u u r r u u u r .
故选:A . 【点睛】
本题考查了向量的运算,意在考查学生的计算能力.
9.如图,在ABC ∆中,12AN NC =u u u r u u u r
,P 是线段BN 上的一点,若15
AP mAB AC =+u u u r u u u r u u u r ,
则实数m 的值为( )
A .
35
B .
25
C .
1415
D .
910
【答案】B 【解析】 【分析】
根据题意,以AB u u u r ,AC u u u
r 为基底表示出AP u u u r 即可得到结论. 【详解】
由题意,设()
NP NB AB AN λλ==-u u u r u u u r u u u r u u u r
,
所以,()
()113
AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r
, 又15
AP mAB AC =+u u u r u u u r u u u r ,
所以,
1135λ-=,且m λ=,解得2
5
m λ==. 故选:B. 【点睛】
本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.
10.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点
C 在AB 边上的射影为
D ,则CD =( )
A .4
B .2
C .2
D 2
【答案】A 【解析】 【分析】
画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫
- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求2
2
1
216y y -=,结合22
1244
y y CD =-即可求解 【详解】
如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫
- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,12y y >, 由90ACB ∠=︒可得
0CA CB ⋅=u u u r u u u r ,2222
12121212,
,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭
u u u r u u u r ,
()222221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()2
22122212016
y y y y ---= 解得2
2
1
216y y -=(0舍去),所以2222
12124444
y y y y CD -=-==
故选:A 【点睛】
本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题
11.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u u
r u u u r 的最小值为
( ) A .1- B .3-
C .1
2
-
D .32
-
【答案】A 【解析】 【分析】
建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】
建立如图所示坐标系,
设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以
(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r
,
故22
3131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝
⎭u u u r u u u r u u u r
22
3322122x y ⎛⎫⎛
⎫=-+-- ⎪ ⎪⎝⎭⎝
⎭
所以当3
2
x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.
故选:A . 【点睛】
本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.
12.设双曲线()22
2210,0x y a b a b
-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线
于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若
(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225
+=8
λμ,则双曲线的离心率为( )
A
.
3
B
.
5
C
.
2
D .
98
【答案】A 【解析】 【分析】
先根据已知求出,u λ,再代入2
2
5
+=
8
λμ求出双曲线的离心率. 【详解】
由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2
(,),(,),(,),bc bc b A c B c P c a a a
-
因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a a
λλ=+-.
所以,,b
u c u c
λλ+=-= 解之得,.22b c c b
u c c
λ+-=
= 因为2
2
5+=8λμ
,所以225(
)(),228b c c b c e c c a +-+=∴=∴= 故答案为A 【点睛】
本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能
力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v
求出,u λ.
13.在平行四边形ABCD 中,4AB =,2AD =,3
BAD π
∠=
,M 为DC 的中点,N
为平面ABCD 内一点,若AB NB AM AN -=-u u u v u u u v u u u u v u u u v ,则AM AN ⋅=u u u u v u u u v
( )
A .16
B .12
C .8
D .6
【答案】D 【解析】 【分析】
根据条件及向量加减法的几何意义即可得出|AN u u u r |=|MN u u u u r
|,再根据向量的数量积公式计
算即可 【详解】
由|AB NB -u u u r u u u r |=|AM AN -u u u u r u u u r |,可得|AN u u u r |=|NM u u u u r
|, 取AM 的中点为O ,连接ON ,则ON ⊥AM ,
又12
AM AD AB =+u u u u r u u u r u u u r ,
所以AM u u u u r •21122AN AM ==u u u r u u u u r (12AD AB +u u u r u u u r )212=(2214AD AB AD ++u u u r u u u r u u u r •AB u u u r )12=
(414+
⨯16+2×41
2⨯)=6, 故选:D .
【点睛】
本题主要考查了平面向量的几何表示,数量积的几何意义,运算求解能力,属于中档题
14.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r
的值为( )
A .1
B .2
C .3
D .4
【答案】C 【解析】 【分析】
由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r
,利用数量积的分配律即得解.
【详解】
AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r
,
()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r
2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r
故选:C
【点睛】
本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.
15.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=u u u v u u u v ( )
A .13
B .12
C .23
D .1
【答案】C
【解析】
【分析】
利用向量的加减法及数乘运算用,CA CB u u u r u u u r 表示CP u u u v
,再利用数量积的定义得解.
【详解】
依据已知作出图形如下:
()
11213333
CP CA AP CA AB CA CB CA CA CB =+=+=+-=+u u u v u u v u u u v u u v u u u v u u v u u u v u u v u u v u u u v . 所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅u u u v u u u v u u v u u u v u u u v u u v u u u v u u u v 221211cos 13333
π=
⨯⨯⨯+⨯= 故选C
【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.
16.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r ,则当,1[]2t ∈-时,a tb
-r r 的最大值为( )
A
B
C .2 D
【答案】D
【解析】
【分析】 根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r ,得到1a =r ,1b =r ,0a b ⋅=r r ,再利
用a tb -==r r 求解.
【详解】 因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r , 所以1a =r ,1b =r ,0a b ⋅=r r ,
所以a tb -==r r
当[]2,1t ∈-
时,max
a t
b -=r r 故选:D
【点睛】
本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.
17.设a r ,b r 不共线,3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,3CD a mb =+u u u r r r ,若A ,C ,D 三点共线,则实数m 的值是( )
A .23
B .15
C .72
D .152
【答案】D
【解析】
【分析】 计算25AC a b =+u u u r r r ,得到()
253a b a mb λ+=+r r r r ,解得答案. 【详解】
∵3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,∴25AC AB BC a b =+=+u u u r u u u r u u u r r r
, ∵A ,C ,D 三点共线,∴AC CD λ=u u u r u u u r ,即()
253a b a mb λ+=+r r r r , ∴235m λλ=⎧⎨=⎩,解得23152m λ⎧=⎪⎪⎨⎪=⎪⎩
. 故选:D .
【点睛】
本题考查了根据向量共线求参数,意在考查学生的计算能力和转化能力.
18.在ABC V 中,4AC AD =u u u r u u u r ,P 为BD 上一点,若14AP AB AC λ=+u u u r u u u r u u u r ,则实数λ的值( )
A .34
B .320
C .316
D .38
【答案】C
【解析】
【分析】
根据题意,可得出144
λ=+u u u r u u u r u u u r AP AB AD ,由于B ,P ,D 三点共线,根据向量共线定理,即可求出λ.
【详解】
解:由题知:4AC AD =u u u r u u u r ,14
AP AB AC λ=+u u u r u u u r u u u r , 所以144
λ=+u u u r u u u r u u u r AP AB AD , 由于B ,P ,D 三点共线,
所以1414λ+
=, ∴316
λ=. 故选:C.
【点睛】
本题考查平面向量的共线定理以及平面向量基本定理的应用.
19.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )
A .10
B .16
C .52
D .410【答案】C
【解析】
【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.
【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,
则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.
【点睛】
本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.
20.已知向量(),1a x =-r , (b =r ,若a b ⊥r r ,则a =r ( )
A B C .2 D .4 【答案】C
【解析】
由a b r r ⊥,(),1a x =-r , (b r =,可得:x 0x ,==,即)1a =-r
所以2a =
=r 故选C。