二次函数全集汇编附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数全集汇编附答案解析
一、选择题
1.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t01234567…
h08141820201814…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线
9
2
t ;
③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()
A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
【详解】
解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,
∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,
∴足球距离地面的最大高度为20.25m,故①错误,
∴抛物线的对称轴t=4.5,故②正确,
∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,
∵t=1.5时,y=11.25,故④错误,∴正确的有②③,
故选B.
2.已知,二次函数y=ax2+bx+a2+b(a≠0)的图象为下列图象之一,则a的值为()
A.-1 B.1 C.-3 D.-4
【答案】A
【解析】
【分析】
分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a2=3,由抛
物线与x 的交点坐标得到x 2=-a ,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a 2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a 的值.
【详解】
解:若二次函数的图形为第一个,对称轴为y 轴,则b=0,y=ax 2+a 2,其顶点坐标为(0,a 2),而a 2>0,所以二次函数的图形不能为第一个;
若二次函数的图形为第二个,对称轴为y 轴,则b=0,y=ax 2+a 2,a 2=3,而当y=0时,x 2=−a ,所以−a=4,a=−4,所以二次函数的图形不能为第二个;
若二次函数的图形为第三个,令x=−1,y=0,则a−b+a 2+b=0,所以a=−1;
若二次函数的图形为第四个,令x=0,y=0,则a 2+b=0①;令x=−2,y=0,则
4a−2b+a 2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.
故选A.
【点睛】
本题考查了二次函数y=ax 2+bx+c(a≠0)的图象与系数的关系:a >0,开口向上;a <0,开口向下;抛物线的对称轴为直线x=-
;顶点坐标为(-,);也考查了点在抛物线
上则点的坐标满足抛物线的解析式.
3.如图,抛物线2119
y x =
-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )
A .2
B .322
C .52
D .3
【答案】A
【解析】
【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12
BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即
可.
【详解】 ∵2119
y x =-, ∴当0y =时,21019x =
-, 解得:=3x ±,
∴A 点与B 点坐标分别为:(3-,0),(3,0),
即:AO=BO=3,
∴O 点为AB 的中点,
又∵圆心C 坐标为(0,4),
∴OC=4,
∴BC 长度5=,
∵O 点为AB 的中点,E 点为AD 的中点,
∴OE 为△ABD 的中位线,
即:OE=12
BD , ∵D 点是圆上的动点,
由图可知,BD 最小值即为BC 长减去圆的半径,
∴BD 的最小值为4,
∴OE=12
BD=2, 即OE 的最小值为2,
故选:A.
【点睛】
本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.
4.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.
【详解】
∵函数的图象开口向上,与y 轴交于负半轴
∴a>0,c<0
∵抛物线的对称轴为直线x=-
2b a
=1 ∴b<0
∴abc >0;①正确;
∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,
∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.
∴当x=-1时,y<0,
即a-b+c<0,所以②不正确;
∵抛物线的顶点坐标为(1,m ), ∴2
44ac b a =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;
∵抛物线与直线y=m 有一个公共点,
∴抛物线与直线y=m+1有2个公共点,
∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.
故选:C .
【点睛】
考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.
5.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )
A .﹣1<x <1
B .﹣3<x <﹣1
C .x <1
D .﹣3<x <1
【答案】D
【解析】
【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.
【详解】
解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1, ∴抛物线与x 轴的另一交点坐标是(﹣3,0),
∴当y >0时,x 的取值范围是﹣3<x <1.
所以答案为:D .
【点睛】
此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.
6.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】
【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;
根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;
根据函数对称轴可得:-2b a
=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-
c=0,则③正确;
根据函数的交点以及函数图像的位置可得④正确.
点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.
7.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及
()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )
A .向左平移2个单位长度
B .向右平移2个单位长度
C .向左平移10个单位长度
D .向右平移10个单位长度
【答案】D
【解析】
【分析】
将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.
【详解】
解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,
∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4,
∵4-(-6)=10,
∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠.
故选:D .
【点睛】
本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.
8.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .a
B .b
C .c
D .d
【答案】D
【解析】
【分析】
根据题意可以得到该函数的对称轴,开口方向和与x轴的交点坐标,从而可以判断a、b、c、d的正负,本题得以解决.
【详解】
∵二次函数图象的顶点坐标为(2,-1),此函数图象与x轴相交于P、Q两点,且PQ=6,∴该函数图象开口向上,对称轴为直线x=2,
∴图形与x轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),
∵此函数图象通过(1,a)、(3,b)、(-1,c)、(-3,d)四点,
∴a<0,b<0,c=0,d>0,
故选:D.
【点睛】
此题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.
9.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),则下列说法错误的是()
A.a+c=0
B.无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2
C.当函数在x<
1
10
时,y随x的增大而减小
D.当﹣1<m<n<0时,m+n<2 a
【答案】C
【解析】
【分析】
根据二次函数的图象和性质对各项进行判断即可.【详解】
解:∵函数经过点M(﹣1,2)和点N(1,﹣2),
∴a﹣b+c=2,a+b+c=﹣2,
∴a+c=0,b=﹣2,
∴A正确;
∵c=﹣a,b=﹣2,
∴y=ax2﹣2x﹣a,
∴△=4+4a2>0,
∴无论a为何值,函数图象与x轴必有两个交点,
∵x1+x2=2
a
,x1x2=﹣1,
∴|x1﹣x2|=>2,
∴B 正确;
二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <
110时,y 随x 的增大而减小; ∴C 错误;
∵﹣1<m <n <0,a >0,
∴m +n <0,
2a >0, ∴m +n <2a
; ∴D 正确,
故选:C .
【点睛】
本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.
10.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭
是抛物线上两点,则12y y >.其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
【答案】B
【解析】
【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.
【详解】
解:∵抛物线开口向下,
∴a <0,
∵抛物线的对称轴为直线12b x a =-
= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,
∴abc <0,所以①错误;
∵b=-2a ,
∴2a+b=0,所以②正确;
∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,
∴抛物线与x 轴的另一个交点为(3,0),
∴当x=3时,y=0,
∴930a b c ++=,所以③错误;
∵抛物线的对称轴为直线x=1,且抛物线开口向下,
∴当x 1<时,y 随x 的增大而增大
∵103132
-<-< 点13,2y ⎛⎫- ⎪⎝⎭
到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确.
故选B .
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.
11.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )
A .t >﹣5
B .﹣5<t <3
C .3<t≤4
D .﹣5<t≤4
【答案】D
【解析】
【分析】
先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.
【详解】
∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标
当x=1时,y=3,
当x=5时,y=﹣5,
由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,
∴﹣5<t≤4.
故选:D .
【点睛】
本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.
12.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ) A . B . C . D .
【答案】C
【解析】
【分析】
根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
【详解】
当a >0时,二次函数的图象开口向上,
一次函数的图象经过一、三或一、二、三或一、三、四象限,
故A 、D 不正确;
由B 、C 中二次函数的图象可知,对称轴x=-2b a >0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .
故选C .
13.将抛物线243y x x =
-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )
A .先向右平移4个单位,再向上平移5个单位
B .先向右平移4个单位,再向下平移5个单位
C .先向左平移4个单位,再向上平移5个单位
D .先向左平移4个单位,再向下平移5个单位
【答案】C
【解析】
【分析】
先把抛物线243y x x =
-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】
∵抛物线243y x x =-+可化为()221y x =--
∴其顶点坐标为:(2,−1),
∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.
【点睛】
本题考查二次函数图像,熟练掌握平移是性质是解题关键.
14.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm /s 的速度沿折线A →C →B 运动,点Q 从点A 出发以vcm /s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sin B =
13;③图象C 2段的函数表达式为y =﹣13
x 2+103x ;④△APQ 面积的最大值为8,其中正确有( )
A .①②
B .①②④
C .①③④
D .①②③④
【答案】A 【解析】【分析】
①根据题意列出y=1
2
AP•AQ•sin A,即可解答
②根据图像可知PQ同时到达B,则AB=5,AC+CB=10,再代入即可
③把sin B=1
3
,代入解析式即可
④根据题意可知当x=﹣
5
22
b
a
=时,y最大=
25
12
【详解】
①当点P在AC上运动时,y=1
2
AP•AQ•sin A=
1
2
×2x•vx=vx2,
当x=1,y=1
2
时,得v=1,
故此选项正确;
②由图象可知,PQ同时到达B,则AB=5,AC+CB=10,
当P在BC上时y=1
2
•x•(10﹣2x)•sin B,
当x=4,y=4
3
时,代入解得sin B=
1
3
,
故此选项正确;
③∵sin B=1
3
,
∴当P在BC上时y=1
2
•x(10﹣2x)×
1
3
=﹣
1
3
x2+
5
3
x,
∴图象C2段的函数表达式为y=﹣1
3
x2+
5
3
x,
故此选项不正确;
④∵y=﹣1
3
x2+
5
3
x,
∴当x=﹣
5
22
b
a
=时,y最大=
25
12
,
故此选项不正确;
故选A.
【点睛】
此题考查了二次函数的运用,解题关键在于看图理解
15.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在
这条抛物线上,则点M 的坐标为( )
A .(1,-5)
B .(3,-13)
C .(2,-8)
D .(4,-20)
【答案】C
【解析】
【分析】
【详解】
解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .
【点睛】
本题考查二次函数的性质.
16.下列函数(1)y =x (2)y =2x ﹣1 (3)y =
1x
(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )
A .4个
B .3个
C .2个
D .1个 【答案】B
【解析】
【分析】
分别利用一次函数、二次函数和反比例函数的定义分析得出即可.
【详解】
解:(1)y =x 是一次函数,符合题意;
(2)y =2x ﹣1是一次函数,符合题意; (3)y =
1x
是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;
(5)y =x 2﹣1是二次函数,不符合题意;
故是一次函数的有3个.
故选:B .
【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.
17.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有( ) A .0
B .1
C .2
D .3
【答案】B
【解析】
【分析】
根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.
【详解】
若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.
故答案为:B.
【点睛】
本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.
18.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()
A.2 B.4 C.3D.3
【答案】C
【解析】
【分析】
点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】
解:设AB=a,∠C=30°,则AC=2a,BC3a,
设P、Q同时到达的时间为T,
则点P的速度为3a
T
,点Q
3a
,故点P、Q的速度比为33
故设点P、Q的速度分别为:3v3,
由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,
y=1
2
⨯AB×BQ=
1
2
⨯6v×23v=63,解得:v=1,
故点P、Q的速度分别为:3,3,AB=6v=6=a,
则AC=12,BC=63,
如图当点P在AC的中点时,PC=6,
此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,
PC=6,则PH=PC sin C=6×1
2
=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=
3,
PQ=22
PH HQ
+=39
+=23,
故选:C.
【点睛】
本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
19.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:
①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a >﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断
【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣
2b a
>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a
>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;
④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:2
44ac b a ->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;
因此正确的结论是①②④.
故选:C .
【点睛】
本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.
20.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】
【分析】 首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断.
【详解】
解:Q 抛物线开口向下,
0a ∴<,
Q 对称轴12b x a
=-=, 0b ∴>,
Q 抛物线与y 轴的交点在x 轴的上方,
0c ∴>,
0abc ∴<,故①错误;
Q 抛物线与x 轴有两个交点,
240b ac ∴->,故②正确;
Q 对称轴12b x a
=-
=, 2a b ∴=-, 20a b ∴+=,故③正确;
根据图象可知,当1x =-时,0y a b c =-+<,故④正确;
故选:C .
【点睛】
此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.。