(易错题精选)初中数学函数基础知识基础测试题含答案解析(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(易错题精选)初中数学函数基础知识基础测试题含答案解析(2)
一、选择题
1.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S (cm2),则S(cm2)与t(s)的函数关系可用图象表示为()
A.B.
C.D.
【答案】D
【解析】
试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣
t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线
开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.
解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF
=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t
=﹣t2+4t
=﹣(t﹣4)2+8;
当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.
故选D.
考点:动点问题的函数图象.
2.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )
A .
B .
C .
D .
【答案】A
【解析】
【分析】
根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.
【详解】
解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,
∴AC=5, 12
AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =, 依题意得:
12
AQ AP =, 又∵A A ∠=∠
∴APQ ABC V :V , ∴90AQP C ∠=∠=︒ 则3PQ t =,
II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,
故选:A .
【点睛】
此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.
3.已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )
A .
B .
C .
D .
【答案】A
【解析】
【分析】
根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.
【详解】
解:由题意得,12
×2πR×l =8π, 则R =
8l
π, 故选A .
【点睛】 本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.
4.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( ) m
1 2 3 4 v 0.01 2.9 8.03 15.1
A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1
【答案】B
【解析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
解:当m=4时,
A、v=2m﹣2=6;
B、v=m2﹣1=15;
C、v=3m﹣3=9;
D、v=m+1=5.
故选B.
5.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()
A.3 B3C.3D.3
【答案】C
【解析】
【分析】
将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.
【详解】
解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;
直线l向右平移直到点F过点B时,y3;
当直线l过点C时,x=a+2,y=0
∴菱形的边长为a+2﹣a=2
3)=4
∴当点E与点D重合时,由勾股定理得a2+2
∴a=1
3
∴菱形的面积为3
故选:C.
【点睛】
本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,
6.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12
MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )
A .
B .
C .
D .
【答案】A
【解析】
【分析】
设a =
12
BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12
BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·
tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12
(BM·DM−CN·EN )=
()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2
a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,
故选:A .
【点睛】
本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.
7.如图1,在扇形OAB 中,60O ∠=︒,点P 从点O 出发,沿O A B →→以1/cm s 的速度匀速运动到点B ,图2是点P 运动过程中,OBP V 的面积()2y cm
随时间()x s 变化
的图象,则a ,b 的值分别为( ) 图1图2
A .4,
43π B .4,443π+ C .22,22π3 D .22,22223
π+ 【答案】B
【解析】
【分析】
结合函数图像中的(a ,43)可知OB=OA=a ,S △AOB =43,由此可求得a 的值,再利用弧长公式进而求得b 的值即可.
【详解】
解:由图像可知,当点P 到达点A 时,OB=OA=a ,S △AOB =43,
过点A 作AD ⊥OB 交OB 于点D ,
则∠AOD=90°,
∴在Rt △AOD 中,sin ∠AOD=AD AO , ∵∠AOB=60°, ∴sin60°=
3AD AD AO a ==, ∴AD=32
a , ∵S △AOB =43,
∴13432a a ⨯⨯=, ∴a=4(舍负),
∴弧AB 的长为:
60441803ππ⨯⨯=, ∴443
b π=+. 故选:B .
【点睛】
本题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形结合思想的应用.
8.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )
A .
B .
C.D.
【答案】D
【解析】
【分析】
判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.
【详解】
解:∵EF∥BC,
∴△AEF∽△ABC,
∴
5
5
EF x BC
-
=,
∴EF=5
5
x
-
•10=10-2x,
∴S=1
2
(10-2x)•x=-x2+5x=-(x-
5
2
)2+
25
4
,
∴S与x的关系式为S=-(x-5
2
)2+
25
4
(0<x<5),
纵观各选项,只有D选项图象符合.
故选:D.
【点睛】
此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.
9.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()
A.以相同速度行驶相同路程,甲车消耗汽油最多
B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米
C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少
D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油
【答案】D
【解析】
【分析】
根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.
【详解】
解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.
以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误.
以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误.
以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确.
故选D.
【点睛】
本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
10.如图,AB为半圆的直径,点P为AB上一动点.动点P从点A 出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S与时间t 之间的函数图象大致为()
A.B.C.D.
【答案】D
【解析】
【分析】
【详解】
解:设P点运动速度为v(常量),AB=a(常量),则AP=vt,PB=a-vt;
则阴影面积
2
2222 111
S)()()
22222244
a vt a vt v av
t t
πππππ
-
=--=+(
由函数关系式可以看出,D的函数图象符合题意.故选D.
11.如图,矩形ABCD的周长是28cm,且AB比BC长2cm.若点P从点A出发,以1/
cm s的速度沿A D C
→→方向匀速运动,同时点Q从点A出发,以2/
cm s的速度沿A B C
→→方向匀速运动,当一个点到达点C时,另一个点也随之停止运动.若设运动
时间为()t s ,APQ V 的面积为()2cm S ,则()2
cm S 与()t s 之间的函数图象大致是( )
A .
B .
C .
D .
【答案】A
【解析】
【分析】
先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.
【详解】
解:由题意得2228AB BC +=,2AB BC =+,
可解得8AB =,6BC =,即6AD =,
①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,
S △APQ =211222
AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;
②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,
S △APQ =118422
AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;
故选:A .
【点睛】
本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.
12.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )
A .
B .
C .
D .
【答案】C
【解析】
分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.
详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212
t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.
13.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;
③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.
【详解】
解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;
②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;
③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),
汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;
④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;
故选:B.
【点睛】
本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.
14.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为( )
A .A
B .B
C .C
D .D
【答案】D
【解析】 根据题意,设小正方形运动的速度为v ,分三个阶段;
①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt ,
②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,
③小正方形穿出大正方形,S=Vt×1,
分析选项可得,D 符合,
故选D .
【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.
15.当实数x 的取值使得2x -有意义时,函数41y x =+中y 的取值范围是( ) A .7y ≥-
B .9y ≥
C .9y <-
D .7y <-
【答案】B
【解析】
【分析】
根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.
【详解】
解:由题意得20x -≥,
解得2x ≥, 419x ∴+≥,
即9y ≥.
故选:B .
【点睛】
本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.
16.如图,点P 是等边△ABC 的边上的一个做匀速运动的动点,其由点A 开始沿AB 边运动到B 再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是( )
A .
B .
C .
D .
【答案】C
【解析】
【分析】
设等边三角形的高为h ,点P 的运动速度为v ,根据等边三角形的性质可得出点P 在AB 上运动时△ACP 的面积为S ,也可得出点P 在BC 上运动时的表达式,继而结合选项可得出答案.
【详解】
设等边三角形的高为h ,点P 的运动速度为v ,
①点P 在AB 上运动时,△ACP 的面积为S=12hvt ,是关于t 的一次函数关系式; ②当点P 在BC 上运动时,△ACP 的面积为S=
12h (AB+BC-vt )=-12hvt+12h (AB+BC ),是关于t 的一次函数关系式;
故选C .
【点睛】
此题考查了动点问题的函数图象,根据题意求出两个阶段S 与t 的关系式,难度一般.
17.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )
A .5
B .2
C .52
D .5【答案】C
【解析】
【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.
【详解】
解:过点D 作DE BC ⊥于点E
由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .
AD BC a ∴==
∴1
2
DE AD a =g 2DE ∴=
由图像得,当点F 从D 到B 时,用5s
5BD ∴=
Rt DBE V 中,
2222(5)21BE BD DE =-=-=
∵四边形ABCD 是菱形,
1EC a ∴=-,DC a =
DEC Rt △中,
2222(1)a a =+-
解得52
a =
故选:C .
【点睛】
本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.
18.按如图所示的运算程序,能使输出k 的值为1的是( )
A .x =1,y =2
B .x =2,y =1
C .x =2,y =0
D .x =1,y =3
【答案】B
【解析】
【分析】 把各项中x 与y 的值代入运算程序中计算即可.
【详解】
解:A 、把x =1,y =2代入y=kx ,得:k =2,不符合题意;
B 、把x =2,y =1代入y=kx-1,得:1=2k ﹣1,即k =1,符合题意;
C 、把x =2,y =0代入y=kx-1,得:0=2k ﹣1,即k =
12
,不符合题意; D 、把x =1,y =3代入y=kx ,得:k =3,不符合题意,
故选:B .
【点睛】
此题考查了待定系数法求一次函数解析式,以及程序图的计算,熟练掌握待定系数法是解本题的关键.
19.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元,则y与x之间的函数关系式为()
A.y=-1
2
x B.y=
1
2
x C.y=-2x D.y=2x
【答案】D
【解析】
依题意有:y=2x,
故选D.
20.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()
A.20 B.24 C.18 D.16
【答案】A
【解析】
【分析】
先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.
【详解】
解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,
设出水管每分钟的出水量为a升,
由函数图象,得:
3020
5
8
a
-
-=,
解得:a=15
4
,
∴关闭进水管后出水管放完水的时间为:30÷15
4
=8分钟,
∴从开始进水到把水放完需要12+8=20分钟,
故选:A.
【点睛】
本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.。