邯山区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邯山区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 在二项式的展开式中,含x 4
的项的系数是( )
A .﹣10
B .10
C .﹣5
D .5
2. 已知角α的终边上有一点P (1,3),则
的值为( )
A .﹣
B .﹣
C .﹣
D .﹣4
3. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )
A .4
B .2
C .
D .2 4. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )
A .1
B .
C .2
D .4
5. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )
A .若m ∥β,则m ∥l
B .若m ∥l ,则m ∥β
C .若m ⊥β,则m ⊥l
D .若m ⊥l ,则m ⊥β
6. 已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )
A .60°
B .90°
C .45°
D .以上都不正确
7. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面
ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )
A B D .34
8. 10y -+=的倾斜角为( )
A .150
B .120
C .60
D .30
9. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2]
C .[1,2)
D .(1,2]
10.已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范
围是( )
A .(0,1)
B .(1,+∞)
C .(﹣1,0)
D .(﹣∞,﹣1)
11.已知函数()21
11
x f x x ++=
+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2-
12.如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )
A .﹣2
B .﹣1
C .1
D .2
二、填空题
13.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则
k= .
14.已知函数2
1()sin cos sin 2f x a x x x =-+
的一条对称轴方程为6
x π
=,则函数()f x 的最大值为( )
A .1
B .±1
C
D .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
15.长方体1111ABCD A BC D -中,对角线1AC 与棱
CB 、CD 、1CC 所成角分别为α、β、, 则2
22sin
sin sin αβγ++= .
16.(文科)与直线10x -=垂直的直线的倾斜角为___________.
17.如果实数,x y 满足等式()2
2
23x y -+=,那么
y
x
的最大值是 .
18.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .
三、解答题
19.(本小题满分13分)
如图,已知椭圆2
2:14
x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP
与直线:2l y =-分别交于点,M N ,
(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;
(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.
【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.
20.已知f (x )=x 2﹣3ax+2a 2.
(1)若实数a=1时,求不等式f (x )≤0的解集; (2)求不等式f (x )<0的解集.
21.(1)计算:(﹣
)0+lne ﹣
+8
+log 62+log 63;
(2)已知向量=(sin θ,cos θ),=(﹣2,1),满足∥,其中θ∈(,π),求cos θ的值.
22.已知函数f (x )=lg (x 2﹣5x+6)和的定义域分别是集合A 、B ,
(1)求集合A ,B ; (2)求集合A ∪B ,A ∩B .
23.(本小题满分12分)求下列函数的定义域:
(1)()f x =;
(2)()f x =.
24.已知定义域为R的函数f(x)=是奇函数.
(Ⅰ)求b的值;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
邯山区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】解:对于,
对于10﹣3r=4,
∴r=2,
则x4的项的系数是C52(﹣1)2=10
故选项为B
【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.
2.【答案】A
【解析】解:∵点P(1,3)在α终边上,
∴tanα=3,
∴====﹣.
故选:A.
3.【答案】A
【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),
∴AB是正方体的体对角线,AB=,
设正方体的棱长为x,
则,解得x=4.
∴正方体的棱长为4,
故选:A.
【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.
4.【答案】B
【解析】解:设圆柱的高为h,则
V圆柱=π×12×h=h,V球==,
∴h=.
故选:B .
5. 【答案】D
【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可
【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D
6. 【答案】B
【解析】解:∵E 是BB 1的中点且AA 1=2,AB=BC=1, ∴∠AEA 1=90°, 又在长方体ABCD ﹣A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,
∴A 1D 1⊥AE , ∴AE ⊥平面A 1ED 1,
故选B
【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.
7. 【答案】D 【解析】

点:异面直线所成的角. 8. 【答案】C 【解析】
10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1
考点:直线的斜率与倾斜角.
9. 【答案】D
【解析】解:由A 中不等式变形得:﹣2≤2x ≤4,即﹣1≤x ≤2, ∴A=[﹣1,2],
由B 中y=lg (x ﹣1),得到x ﹣1>0,即x >1, ∴B=(1,+∞), 则A ∩B=(1,2], 故选:D .
10.【答案】A
【解析】解:函数f (x )=
的图象如下图所示:
由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点, 即方程f (x )=k 有两个不同的实根, 故选:A
11.【答案】A 【解析】
试题分析:由已知得()2112x f x x x -=
=-,则()21
'f x x
=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 12.【答案】A
【解析】解:结合向量数量积的几何意义及点O 在线段AB ,AC 上的射影为相应线段的中点,
可得,,则•==16﹣18=
﹣2;
故选A.
【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题
二、填空题
13.【答案】﹣1或0.
【解析】解:满足约束条件的可行域如下图阴影部分所示:
kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)
由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,
可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1
综上k=﹣1或0
故答案为:﹣1或0
【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.
14.【答案】A
【解析】
15.【答案】 【解析】
试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:
222
2
2
2
1111
222111sin sin sin BC DC AC AC AC AC αβγ++=++22212
12()2AB AD AA AC ++==.
考点:直线与直线所成的角.
【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键. 16.【答案】3
π 【解析】
33
π. 考点:直线方程与倾斜角.
17.3【解析】
考点:直线与圆的位置关系的应用. 1
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把y
x
的最值转化为直线与圆相切是解答的关键,属于中档试题. 18.【答案】

【解析】解:复数
z==﹣i (1+i )=1﹣i ,
复数
z=(i 虚数单位)在复平面上对应的点(1,﹣1
)到原点的距离为:.
故答案为:

【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.
三、解答题
19.【答案】
【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,
∴ 直线AP 的斜率0101y k x -=
,BP 的斜率020
1
y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有2
00012200011114
y y y k k x x x -+-⋅===-.
(4分)
20.【答案】
【解析】解:(1)当a=1时,依题意得x2﹣3x+2≤0 因式分解为:(x﹣2)(x﹣1)≤0,
解得:x≥1或x≤2.
∴1≤x≤2.
不等式的解集为{x|1≤x≤2}.
(2)依题意得x2﹣3ax+2a2<0
∴(x﹣a)(x﹣2a)<0…
对应方程(x﹣a)(x﹣2a)=0
得x1=a,x2=2a
当a=0时,x∈∅.
当a>0时,a<2a,∴a<x<2a;
当a<0时,a>2a,∴2a<x<a;
综上所述,当a=0时,原不等式的解集为∅;
当a>0时,原不等式的解集为{x|a<x<2a};
当a<0时,原不等式的解集为{x|2a<x<a};
21.【答案】
【解析】(本小题满分12分)
解析:(1)原式=1+1﹣5+2+1=0;…(6分)
(2)∵向量=(sinθ,cosθ),=(﹣2,1),满足∥,
∴sinθ=﹣2cosθ,①…(9分)
又sin2θ+cos2θ+=1,②
由①②解得cos2θ=,…(11分)
∵θ∈(,π),∴cosθ=﹣.…(12分)
【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力.
22.【答案】
【解析】解:(1)由x2﹣5x+6>0,即(x﹣2)(x﹣3)>0,
解得:x>3或x<2,即A={x|x>3或x<2},
由g(x)=,得到﹣1≥0,
当x>0时,整理得:4﹣x≥0,即x≤4;
当x<0时,整理得:4﹣x≤0,无解,
综上,不等式的解集为0<x≤4,即B={x|0<x≤4};
(2)∵A={x|x>3或x<2},B={x|0<x≤4},
∴A∪B=R,A∩B={x|0<x<2或3<x≤4}.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
23.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.
【解析】

点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环. 24.【答案】
【解析】解:(Ⅰ)因为f (x )是奇函数,所以f (0)=0,
即⇒b=1,


(Ⅱ)由(Ⅰ)知

设x 1<x 2则f (x 1)﹣f (x 2)=

=
因为函数y=2x
在R 上是增函数且x 1<x 2∴f (x 1)﹣f (x 2)=
>0
即f (x 1)>f (x 2)
∴f (x )在(﹣∞,+∞)上为减函数
(III )f (x )在(﹣∞,+∞)上为减函数,又因为f (x )是奇函数,
所以f (t 2﹣2t )+f (2t 2
﹣k )<0
等价于f (t 2﹣2t )<﹣f (2t 2﹣k )=f (k ﹣2t 2
),
因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.
即对一切t∈R有:3t2﹣2t﹣k>0,
从而判别式.
所以k的取值范围是k<﹣.
【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略,是一道综合题.。

相关文档
最新文档