八年级初二数学第二学期平行四边形单元 易错题难题综合模拟测评检测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级初二数学第二学期平行四边形单元易错题难题综合模拟测评检测试题
一、选择题
1.在正方形ABCD 中,P 为AB 的中点,BE PD
⊥的延长线于点E ,连接AE 、BE ,FA AE
⊥交DP 于点F ,连接BF 、FC ,下列结论:①ABE ADF
≅;②FB =AB ;③CF PD
⊥;④FC =EF . 其中正确的是()
A.①②④B.①③④C.①②③D.①②③④
2.如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()
A.3 B.4 C.5 D.6
3.如图所示,E为正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于点F,那么∠AFC的度数为()
A.112.5°B.125°C.135°D.150°
4.矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )
A.3 B.3
2
C.2或3 D.3或
3
2
5.如图,正方形纸片ABCD,P为正方形AD边上的一点(不与点A,点D重合).将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为
EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;
②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )
A .5
B .4
C .3
D .2
6.如图,在矩形ABCD 中,把矩形ABCD 绕点C 旋转,得到矩形FECG ,且点E 落在AD 上,连接BE ,BG ,BG 交CE 于点H ,连接FH ,若FH 平分EFG ,则下列结论:
①AE CH EH +=;
②2DEC ABE ∠=∠;
③BH HG =;
④2CH AB =,其中正确的个数是( )
A .1个
B .2个
C .3个
D .4个
7.如图,在正方形ABCD 中,4AB =,E 是对角线AC 上的动点,以DE 为边作正方形DEFG ,H 是CD 的中点,连接GH ,则GH 的最小值为( )
A .2
B .51-
C .2
D .422-
8.如图所示,在周长是10cm 的ABCD 中,AB AD ≠,AC 、BD 相交于点O ,点E 在AD 边上,且OE BD ⊥,是ABE △的周长是( )
A .2cm
B .3cm
C .4cm
D .5cm
9.如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O .过点O 作EF ∥BC 交AB 于E .交AC 于F .过点O 作OD ⊥AC 于D .下列五个结论:其中正确的有( )
(1) EF=BE+CF ; (2)∠BOC=90°+12
∠A ;(3)点O 到△ABC 各边的距离都相等;(4)设OD=m .若AE 十AF =n ,则S △AEF = mn ;(5)S △AEF=S △FOC .
A .2个
B .3个
C .4个
D .5个
10.如图,矩形ABCD 的面积为20cm 2,对角线相交于点O .以AB 、AO 为邻边画平行四边形AOC 1B ,对角线相交于点O ;以AB 、AO 为邻边画平行四边形AO 1C 2B ,对角线相交于点O 2 :……以此类推,则平行四边形AO 4C 5B 的面积为( )
A .58
cm 2 B .54cm 2 C .516cm 2 D . 5 32
cm 2 二、填空题 11.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段
DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.
12.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .
13.如图,在平面直角坐标系中,直线112
y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.
14.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.
15.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).
16.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.
17.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______
18.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .
19.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________
20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.
三、解答题
21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .
(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;
(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.
22.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .
(1)(观察猜想)如图(1),当点D 在线段CB 上时,
①BCF ∠= ;
②,,BC CD CF 之间数量关系为 .
(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.
(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13
CD BC =,请直接写出CF 的长及菱形ADEF 的面积.
.
23.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .
(1)求证:AEF CGH ∆≅∆
(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:
(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+
24.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF .
(1)操作发现:
①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;
②当折痕经过点A 时,BE 与AE 的数量关系为 .
(2)深入探究:
在矩形ABCD 中,AB =3,BC =23.
①当△BEF 是等边三角形时,求出BF 的长;
②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.
25.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .
(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.
26.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .
()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;
()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-
()3如图3,如果四边形ABCD 不是正方形,但满足
,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.
27.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .
(1)当t =1时,求BF 的长度;
(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值;
(3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.
28.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.
(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)
①请直接写出EAB ∠与DAC ∠的数量关系;
②试判断四边形CDEF 的形状,并证明;
(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.
29.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.
(1)如图1,点E 在上,点在的延长线上,
求证:DM =ME ,DM ⊥.ME
简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.
(2)如图2,在DC的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.
(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点E在直线CD上,则DM= ;若点E在直线BC上,则DM= .
30.(问题情境)
在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:
PD+PE=CF.
图① 图② 图③
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
(变式探究)
当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.
请运用上述解答中所积累的经验和方法完成下列两题:
(结论运用)
如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH 的值;
(迁移拓展)
在直角坐标系中.直线l1:y=
4
4
3
x
-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别
交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据已知和正方形的性质推出∠EAB=∠DAF,∠EBA=∠ADP,AB=AD,证△ABE≌△ADF即可;取EF的中点M,连接AM,推出AM=MF=EM=DF,证∠AMB=∠FMB,BM=BM,
AM=MF,推出△ABM≌△FBM即可;求出∠FDC=∠EBF,推出△BEF≌△DFC即可.
【详解】
解:∵正方形ABCD,BE⊥ED,EA⊥FA,
∴AB=AD=CD=BC,∠BAD=∠EAF=90°=∠BEF,
∵∠APD=∠EPB,
∴∠EAB=∠DAF,∠EBA=∠ADP,
∵AB=AD,
∴△ABE≌△ADF,∴①正确;
∴AE=AF,BE=DF,
∴∠AEF=∠AFE=45°,
取EF的中点M,连接AM,
∴AM⊥EF,AM=EM=FM,
∴BE∥AM,
∵AP=BP,
∴AM=BE=DF,
∴∠EMB=∠EBM=45°,
∴∠AMB=90°+45°=135°=∠FMB,
∵BM=BM,AM=MF,
∴△ABM≌△FBM,
∴AB=BF,∴②正确;
∴∠BAM=∠BFM,
∵∠BEF=90°,AM⊥EF,
∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,
∴∠APF=∠EBF,
∵AB∥CD,
∴∠APD=∠FDC,
∴∠EBF=∠FDC,
∵BE=DF,BF=CD,
∴△BEF≌△DFC,
∴CF=EF,∠DFC=∠FEB=90°,
∴③正确;④正确;
故选D.
【点睛】
本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
2.D
解析:D
【分析】
连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.
【详解】
解:连接AC、CE,CE交BD于P,连接AP、PE,
∵四边形ABCD是正方形,
∴OA=OC,AC⊥BD,即A和C关于BD对称,
∴AP=CP,
即AP+PE=CE,此时AP+PE的值最小,
所以此时△PAE周长的值最小,
∵正方形ABCD的边长为4,点E在边AB上,AE=1,
∴∠ABC=90°,BE=4﹣1=3,
由勾股定理得:CE=5,
∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,
故选D.
【点睛】
本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型. 3.A
解析:A
【解析】
【分析】
根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:∵CE=AC,
∴∠E=∠CAE,
∵AC是正方形ABCD的对角线,
∴∠ACB=45°,
∴∠E+∠CAE=45°,
∴∠E=1
2
×45°=22.5°,
在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.
故答案为:A.
【点睛】
本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
4.D
解析:D
【解析】
【分析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC=22
43
=5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得x=3
2
,
∴BE=3
2
;
②当点B′落在AD边上时,如图2所示.
此时ABEB′为正方形,
∴BE=AB=3.
综上所述,BE的长为3
2
或3.
故选D.
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
5.B
解析:B
【分析】
①③利用正方形的性质、翻折不变性即可解决问题;
②构造全等三角形即可解决问题;
④如图2,过B作BQ⊥PH,垂足为Q.证明△ABP≌△QBP(AAS),以及△BCH≌△BQH 即可判断;
⑤利用特殊位置,判定结论即可;
【详解】
解:根据翻折不变性可知:PE=BE,故①正确;
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH−∠EPB=∠EBC−∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
,故③正确;
∴∠APB=∠BPH,即PB平分APG
如图1中,作FK⊥AB于K.设EF交BP于O.
∵∠FKB=∠KBC=∠C=90°,
∴四边形BCFK是矩形,
∴KF=BC=AB,
∵EF⊥PB,
∴∠BOE=90°,
∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,
∵∠A=∠EKF=90°,
∴△ABP≌△KFE(ASA),
∴EF=BP,故②正确,
如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
∠APB=∠BPH,∠A=∠BQP,BP=BP,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH(HL)
∴QH=HC,
∴PH=PQ+QH=AP+HC,故④正确;
当点P与A重合时,显然MH>MF,故⑤错误,故选:B.
【点睛】
本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.
6.C
解析:C
【分析】
如图,作BM⊥EC于M.证明△BEA≌△BEM(AAS),△BMH≌△GCH(AAS),利用全等三角形的性质即可一一判断.
【详解】
解:如图,作BM⊥EC于M.
∵CB=CE,
∴∠CBE=∠CEB,
∵AD∥BC,
∴∠AEB=∠CBE,
∴∠AEB=∠MEB,
∵∠A=∠BME=90°,BE=BE,
∴△BEA≌△BEM(AAS),
∴AE=EM,AB=BM.
∵∠BMH=∠GCH=90°,∠BHM=∠GHC,BM=AB=CG,
∴△BMH≌△GCH(AAS),
∴MH=CH,BH=HG,
∴EH=EM+MH=AE+CH,故①③正确,
∵∠AEB+∠ABE=90°,
∴2∠AEB+2∠ABE=180°,
∵∠DEC+∠AEC=180°,∠AEC=2∠AEB,
∴∠DEC+2∠AEB=180°,
∴∠DEC=2∠ABE,故②正确,
∵FH平分∠EFG,
∴∠EFH=45°,
∵∠FEH=90°,
∴AB=EF=EH,
∵EH>HM=CH,
∴CH <AB ,故④错误.
故选:C .
【点睛】
本题考查性质的性质,矩形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
7.A
解析:A
【分析】
取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,再根据正方形及勾股定理求出OE ,即可得到GH 的长.
【详解】
取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,
∵AD=AB=4,
∴AO=12AB=2 在Rt △AOE 中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4
解得OE=2
∴GH 的最小值为2
故选A .
【点睛】
本题考查了正方形的性质,根据题意确定E 点的位置是解题关键.
8.D
解析:D
【分析】
根据平行四边形的性质求出AB+AD=5cm,根据线段的垂直平分线求出BE=DE,求出ABE ∆的周长等于AB+AD ,代入求出即可.
【详解】
∵10ABCD C cm =
∴=5AB AD cm +
∵在ABCD 中,OB=OD ,OE BD ⊥
∴EB=ED
∴AEB C
AB AE BE AB AE BE AB AD =++=++=+ ∴5AEB C cm =
故选:D .
【点睛】
本题主要考查的知识点是平行四边形对边相等的这条性质,结合线段的垂直平分线的性质来进行计算是解题的关键.
9.B
解析:B
【分析】
由在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得②1902BOC A ∠=+∠︒正确;由平行线的性质和角平分线的定义得出BEO ∆和CFO ∆是等腰三角形得出EF BE CF =+故①正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD m =,AE AF n +=,则12
AEF S mn ∆=,故③错误;E 、F 不可能是三角形ABC 的中点,则EF 不能为中位线故④正确.
【详解】
解:在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,
12OBC ABC ∴∠=∠,12
OCB ACB ∠=∠,180A ABC ACB ∠+∠+∠=︒, 1902
OBC OCB A ∴∠+∠=︒-∠, 1180()902
BOC OBC OCB A ∴∠=︒-∠+∠=︒+∠;故(2)正确; 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,
OBC OBE ∴∠=∠,OCB OCF ∠=∠,
//EF BC ,
OBC EOB ∴∠=∠,OCB FOC ∠=∠,
EOB OBE ∴∠=∠,FOC OCF ∠=∠,
BE OE ∴=,CF OF =,
EF OE OF BE CF ∴=+=+,
故(1)正确;
过点O 作OM AB ⊥于M ,作ON BC ⊥于N ,连接OA ,
在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,
ON OD OM m ∴===,
1111()2222
AEF AOE AOF S S S AE OM AF OD OD AE AF mn ∆∆∆∴=+=+=+=;故(3)正确,(4)错误;
12EOB S BE OM ∆=,12
OCF S FC OD ∆=, OM OD =,BE 不一定等于CF ,
EOB S ∆∴不一定等于FOC S .故(5)错误,
综上可知其中正确的结论是(1)(2)(3),
故选:B .
【点睛】 此题考查了三角形中位线定理的运用,以及平行线的性质、等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.
10.A
解析:A
【分析】
设矩形ABCD 的面积为S=20cm 2,由O 为矩形ABCD 的对角线的交点,可得平行四边形AOC 1B 底边AB 上的高等于BC 的12
,依此类推可得下一个图形的面积是上一个图形的面积的
12
,然后求解即可. 【详解】 设矩形ABCD 的面积为S=20cm 2,
∵O 为矩形ABCD 的对角线的交点,
∴平行四边形AOC 1B 底边AB 上的高等于BC 的
12, ∴平行四边形AOC 1B 的面积=12
S , ∵平行四边形AOC 1B 的对角线交于点O 1,
∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的
12, ∴平行四边形AO 1C 2B 的面积=
12×12S=22S , ……
依此类推,平行四边形AO 4C 5B 的面积=
52S =5202=58(cm 2), 故选:A .
【点睛】
本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图
形的面积是上一个图形的面积的1
2
是解题的关键.
二、填空题
11.22
【解析】
分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以
AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明
CE=1
2
(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得
到P从点D出发运动至点B停止时,点O的运动路径长.
详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,
∵△AOP为等腰直角三角形,
∴OA=OP,∠AOP=90°,
易得四边形OECF为矩形,
∴∠EOF=90°,CE=CF,
∴∠AOE=∠POF,
∴△OAE≌△OPF,
∴AE=PF,OE=OF,
∴CO平分∠ACP,
∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,
即AC-CE=CF-CP,
而CE=CF,
∴CE=1
2
(AC+CP),
∴2CE=
2
2
(AC+CP),
当AC=2,CP=CD=1时,OC=22×(2+1)=322
, 当AC=2,CP=CB=5时,OC=22×(2+5)=722
, ∴当P 从点D 出发运动至点B 停止时,点O 的运动路径长=722-322=22. 故答案为22.
点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.
12.101-
【分析】
探究点E 的运动轨迹,寻找特殊位置解决问题即可.
【详解】
如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,
在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,
∴DE =10﹣1-5=4(cm ),
如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),
如图3中,当点M 运动到点B ′落在CD 时,
22221310NB C N C B ''''=++=
DB ′(即DE ″)=10﹣110=(910)(cm ),
∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=6﹣4+6﹣(910101)(cm ). 101.
【点睛】
本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.
13.(3,2)-517
【分析】
如图(见解析),先根据一次函数的解析式可得点A 、B 的坐标,从而可得OA 、OB 、AB 的长,再根据正方形的性质可得90BAD ∠=︒,DA AB =,然后根据三角形全等的判定定理与性质可得,AE OB DE OA ==,由此即可得出点D 的坐标;同样的方法可求出点C 的坐标,再根据轴对称的性质可得点C '的坐标,然后根据轴对称的性质和两点之间线段最短得出MDC △的周长值最小时,点M 的位置,最后利用两点之间的距离公式、三角形的周长公式即可得.
【详解】
如图,过点D 作DE x ⊥轴于点E ,作点C 关于y 轴的对称点C ',交y 轴于点F ,连接C D ',交y 轴于点M ',连接C M ',则CF y ⊥轴 对于112
y x =+ 当0y =时,
1102
x +=,解得2x =-,则点A 的坐标为(2,0)A - 当0x =时,1y =,则点B 的坐标为(0,1)B 222,1,5OA OB AB OA OB ∴===+=四边形ABCD 是正方形
90BAD ∴∠=︒,5CD DA AB ===90DAE OAB ABO OAB ∴∠+∠=∠+∠=︒
DAE ABO ∴∠=∠
在ADE 和BAO 中,90AED BOA DAE ABO DA AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
()ADE BAO AAS ∴≅
1,2AE OB DE OA ∴====
213OE OA AE ∴=+=+=
则点D 的坐标为(3,2)D -
同理可证:CBF BAO ≅
1,2CF OB BF OA ∴====
123OF OB BF ∴=+=+=
则点C 的坐标为(1,3)C -
由轴对称的性质得:点C '的坐标为(1,3)C ',且CM C M '=
MDC ∴△的周长为5CD DM CM DM C M
'++=++
由两点之间线段最短得:当点M 与点M '重合时,DM C M '+取得最小值DC ' (3,2),(1,3)D C '-
22(31)(23)17DC '∴=--+-=
则MDC △的周长的最小值为5517DC '+=+
故答案为:(3,2)-,517+.
【点睛】
本题是一道较难的综合题,考查了正方形的性质、三角形全等的判定定理与性质、轴对称的性质等知识点,正确找出MDC △的周长最小时,点M 的位置是解题关键. 14.6
【分析】
由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S △ABC =S △AB'C =12cm 2,可证点B ,点A ,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE ,即可求解.
【详解】
解:∵四边形ABCD 是平行四边形,
∴AB∥CD,S△ABC=1
24
2
=12cm2,
∵在同一平面内将△ABC沿AC翻折,得到△AB′C,∴∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,∴∠BAB'=180°,
∴点B,点A,点B'三点共线,
∵AB∥CD,AB'∥CD,
∴四边形ACDB'是平行四边形,
∴B'E=CE,
∴S△ACE=1
2
S△AB'C=6cm2,
故答案为:6.
【点睛】
本题考查了翻折变换,平行四边形的判定和性质,证明点B,点A,点B'三点共线是本题的关键.
15.②③
【分析】
根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设
∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出
∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.
【详解】
解:在菱形ABCD中,AC⊥BD,
∴在Rt△AFP中,AF一定大于AP,故①错误;
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠ABE+∠BAE+∠EAD=180°,
设∠BAE=x°,
则∠EAD=2x°,∠ABE=180°-x°-2x°,
∵AB=AE,∠BAE=x°,
∴∠ABE=∠AEB=180°-x°-2x°,
由三角形内角和定理得:x+180-x-2x+180-x-2x=180,
解得:x=36,
即∠BAE=36°,
∠BAE=180°-36°-2×36°=70°,
∵四边形ABCD是菱形,
∴∠BAD=∠CBD=1
2
∠ABE=36°,
∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,
∴BE=BF=AF.故③正确
∵∠AFD=∠BFE=72°,∠EAD=2x°=72°
∴∠AFD=∠EAD
∴AD=FD
又∵AD=AB=AE
∴AE=FD,故②正确
∴正确的有②③
故答案为:②③
【点睛】
本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.
16.16或10
【分析】
等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】
∵四边形ABCD是矩形,
∴DC=AB=16,AD=BC=18.
分两种情况讨论:
(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形
(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.
∵四边形ABCD是矩形,
∴AB∥CD,∠A=90°
又GH∥AD,
∴四边形AGHD是平行四边形,又∠A=90°,
∴四边形AGHD是矩形,
∴AG=DH,∠GHD=90°,即B'H⊥CD,
又B'D=B'C,
∴DH=HC=18
3
CD=,AG=DH=8,
∵AE=3,
∴BE=EB'=AB-AE=16-3=13,
EG=AG-AE=8-3=5,
在Rt△EGB'中,由勾股定理得:
GB′=22
13512,
∴B'H=GH×GB'=18-12=6,
在Rt△B'HD中,由勾股定理得:B′D=22
6810
+=
综上,DB'的长为16或10.
故答案为: 16或10
【点睛】
本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.
17.120 13
【分析】
设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,根据等腰三角形的性质和勾股定理可求AO和OH长,若MN最小,则MO最小即可,而O点到AC的最短距离为OH 长,所以MN最小值是2OH.
【详解】
解:设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,
∵四边形MCNB是平行四边形,
∴O为BC中点,MN=2MO.
∵AB=AC=13,BC=10,
∴AO⊥BC.
在Rt△AOC中,利用勾股定理可得
AO2222
135
AC CO
-=-12.
利用面积法:AO×CO=AC×OH,
即12×5=13×OH,解得OH=60 13
.
当MO最小时,则MN就最小,O点到AC的最短距离为OH长,
所以当M点与H点重合时,MO最小值为OH长是60 13
.
所以此时MN最小值为2OH=120 13
.
故答案为:120 13
.
【点睛】
本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静.
18.2或14
【分析】
利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长
【详解】
解:如图1,当AB=10cm,AD=6cm
∵AE平分∠BAD
∴∠BAE=∠DAE,
又∵AD∥CB
∴∠EAB=∠DEA,
∴∠DAE=∠AED,则AD=DE=6cm
同理可得:CF=CB=6cm
∵EF=DE+CF-DC=6+6-10=2(cm)
如图2,当AD=10cm,AB=6cm,
∵AE平分∠BAD,
∴∠BAE=∠DAE
又∵AD∥CB
∴∠EAB=∠DEA,
∴∠DAE=∠AED则AD=DE=10cm
同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)
故答案为:2或14.
图1 图2
【点睛】
本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.
19.22
【分析】
由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=42,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG 的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最
小,此时CF=1
2
AG=22.
【详解】
解:连接FD
∵正方形ABCD的边长为4,
∴AB=BC=4,∠B=90°,
∴AC=2,
当P与D重合时,PC=ED=PA,即G与A重合,
∴EG的中点为D,即F与D重合,
当点P从D点运动到A点时,则点F运动的轨迹为DF,∵D是AE的中点,F是EG的中点,
∴DF是△EAG的中位线,
∴DF∥AG,
∵∠CAG=90°,∠CAB=45°,
∴∠BAG=45°,
∴∠EAG=135°,
∴∠EDF=135°,
∴∠FDA=45°,
∴F为正方形ABCD的对角线的交点,CF⊥DF,
此时CF最小,
此时CF=1
2
AG=22
故答案为:22.
【点睛】
本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.
20.2
【分析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.
【详解】
解:如图,分别延长AE,BF交于点H,
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE
∴四边形EPFH为平行四边形,
∴EF与HP互相平分,
∵点G为EF的中点,
∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,
∴G的运动轨迹为△HCD的中位线MN,
∵CD=6-1-1=4,
∴MN=1
2
CD=2,
∴点G移动路径的长是2,
故答案为:2.
【点睛】
本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.
三、解答题
21.(1)AG 2=GE 2+GF 2,理由见解析;(2)
6
【分析】 (1)结论:AG 2=GE 2+GF 2.只要证明GA=GC ,四边形EGFC 是矩形,推出GE=CF ,在Rt △GFC 中,利用勾股定理即可证明;
(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .易证AM=BM=2x ,
,在Rt △ABN 中,根据AB 2=AN 2+BN 2,可得1=x 2+(x )2,解得
x=4,推出BN=4
,再根据BG=BN÷cos30°即可解决问题. 【详解】
解:(1)结论:AG 2=GE 2+GF 2.
理由:连接CG .
∵四边形ABCD 是正方形,
∴A 、C 关于对角线BD 对称,
∵点G 在BD 上,
∴GA=GC ,
∵GE ⊥DC 于点E ,GF ⊥BC 于点F ,
∴∠GEC=∠ECF=∠CFG=90°,
∴四边形EGFC 是矩形,
∴CF=GE ,
在Rt △GFC 中,∵CG 2=GF 2+CF 2,
∴AG 2=GF 2+GE 2.
(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .
∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,
∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,
∴∠AMN=30°,
∴AM=BM=2x ,
x ,
在Rt △ABN 中,∵AB 2=AN 2+BN 2,
∴1=x
2+(x )2,
解得x=
4,
∴
∴BG=BN÷cos30°.
【点睛】
本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.
22.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,3【分析】
(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;
(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;
(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132
==
=BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.
【详解】
解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°
∴∠BAD+∠DAC=60°
在菱形ADEF 中
AD=AF
∵∠DAF=∠DAC+∠FAC=60°
∴∠CAF=∠DAB
又∵AC=AB ,AF=AD
∴△ACF ≌△ABD
∴∠ACF=∠ABD=60°,CF=BD
∴∠BCF=∠ACB+∠ACF=120°
故答案为:120°
②∵BC=BD+CD ,BD=CF
∴BD=CF+CD
故答案为:BC=CD+CF
(2)不成立
理由:∵ABC ∆是等边三角形
∴60BAC ABC ACB ∠=∠=∠=,AB AC =
又∵60DAF ∠=。