奈曼旗二中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奈曼旗二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若
1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.
2. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )
A .2sin 2cos 2αα-+
B .sin 3αα+
C. 3sin 1αα+ D .2sin cos 1αα-+ 3. 函数f (x )=1﹣xlnx 的零点所在区间是( )
A .(0,)
B .(,1)
C .(1,2)
D .(2,3)
4. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}
|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}
|303x x x <-<<或
5. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )
A .123S S S <<
B .123S S S >>
C .213S S S <<
D .213S S S >> 6. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )
A .1﹣
B .﹣
C .
D .
7. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,26
8. 已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )
A .﹣3
B .3
C .﹣1
D .1
9. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )
A .﹣
B .﹣5
C .5
D .
10.已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )
A .
B .
C .
D .
11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )
A .{}4,2
B .{}1,3
C .{}1,2,3,4
D .以上情况都有可能 12.设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )
A .10
B .40
C .50
D .80
二、填空题
13.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:
).
14.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .
15.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .
16.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .
17.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)
①﹣,1是函数g (x )=2x 2﹣1有两个不动点;
②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;
⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.
18.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.
三、解答题
19.已知函数f (x )=2x 2﹣4x+a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[﹣1,3m]上不具有单调性,求实数m 的取值范围;
(2)若f (1)=g (1) ①求实数a 的值;
②设t 1=f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.
20.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域.
21.已知抛物线C :y 2=2px (p >0)过点A (1,﹣2).
(Ⅰ)求抛物线C 的方程,并求其准线方程;
(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 的
距离等于?若存在,求直线L 的方程;若不存在,说明理由.
22.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一 次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指 数不低于70,说明孩子幸福感强).
(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留
(2)从5人中随机抽取2人进行家访, 求这2个学生中恰有一人幸福感强的概率.
参考公式:2
2
()()()()()
n ad bc K a b c d a c b d -=++++
附表:
23.已知椭圆()22
22:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点1,2P ⎛⎫ ⎪ ⎪⎝⎭
,直线1PF
交y 轴于Q ,且22,PF QO O =为坐标原点. (1)求椭圆C 的方程;
(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.
24.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .
(1)当k =5
4
时,求cos B ;
(2)若△ABC 面积为3,B =60°,求k 的值.
奈曼旗二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 2. 【答案】A 【解析】
试题分析:利用余弦定理求出正方形面积()
ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112
1
42=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.
考点:余弦定理和三角形面积的求解.
【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角
形面积公式ααsin 2
1
sin 1121=⨯⨯⨯=
S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()
αcos 2-1122+,进而得到正方形的面积()
ααcos 22cos 2-11221-=+=S ,最后得到
答案.
3. 【答案】C
【解析】解:∵f (1)=1>0,f (2)=1﹣2ln2=ln <0, ∴函数f (x )=1﹣xlnx 的零点所在区间是(1,2). 故选:C .
【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.
4. 【答案】B 【解析】
试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称
可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。
故选B 。
考点:1.函数的奇偶性;2.函数的单调性。
5. 【答案】A
【解析】
考点:棱锥的结构特征.
6.【答案】A
【解析】解:设扇形的半径为r,则扇形OAB的面积为,
连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴
影部分的面积为:﹣,
∴此点取自阴影部分的概率是.
故选A.
7.【答案】C
【解析】解:从30件产品中随机抽取6件进行检验,
采用系统抽样的间隔为30÷6=5,
只有选项C中编号间隔为5,
故选:C.
8.【答案】D
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由z=ax+y,得y=﹣ax+z,
若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.
若a>0,则目标函数的斜率k=﹣a<0.
平移直线y=﹣ax+z,
由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,
此时﹣a=﹣1,即a=1.
若a<0,则目标函数的斜率k=﹣a>0.
平移直线y=﹣ax+z,
由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.
综上a=1.
故选:D.
【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.
9.【答案】B
【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),
∴a n+1=3a n>0,
∴数列{a n}是等比数列,公比q=3.
又a2+a4+a6=9,
∴=a5+a7+a9=33×9=35,
则log(a5+a7+a9)==﹣5.
故选;B.
10.【答案】A
【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,
上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:
故选A .
【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.
11.【答案】A 【解析】
试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为
{}4,2.
考点:复合函数求值. 12.【答案】 C
【解析】 二项式定理. 【专题】计算题.
【分析】利用二项展开式的通项公式求出展开式的x k
的系数,将k 的值代入求出各种情况的系数.
【解答】解:(x+2)5的展开式中x k 的系数为C 5k 25﹣k
当k ﹣1时,C 5k 25﹣k =C 5124
=80, 当k=2时,C 5k 25﹣k =C 5223
=80, 当k=3时,C 5k 25﹣k =C 5322
=40, 当k=4时,C 5k 25﹣k =C 54
×2=10, 当k=5时,C 5k 25﹣k =C 55
=1,
故展开式中x k
的系数不可能是50
故选项为C
【点评】本题考查利用二项展开式的通项公式求特定项的系数.
二、填空题
13.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】该几何体是半个圆柱。
所以
故答案为:
14.【答案】[1,)∪(9,25].
【解析】解:∵集合,
得(ax﹣5)(x2﹣a)<0,
当a=0时,显然不成立,
当a>0时,原不等式可化为
,
若时,只需满足
,
解得;
若,只需满足
,
解得
9<a≤25,
当a<0时,不符合条件,
综上,
故答案为[1,)∪(9,25].
【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.15.【答案】(1,2).
【解析】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,
即y=2x2.
由ρcosθ=1,得x=1.
联立,解得:. ∴曲线C 1与C 2交点的直角坐标为(1,2).
故答案为:(1,2).
【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.
16.【答案】【解析】
试题分析:因为ABC ∆中,2,60AB BC C ===︒2
sin A
=
,1sin 2A =,又
BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,1
2
ABC
S AB BC ∆=⨯⨯=. 考点:正弦定理,三角形的面积.
【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2
b 、2
a 时,往往用余弦定理,而题设中如果边和正
弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abc R
等等. 17.【答案】 ①②⑤
【解析】解:对于①,令g (x )=x ,可得x=或x=1,故①正确;
对于②,因为f (x 0)=x 0,所以f (f (x 0))=f (x 0)=x 0,即f (f (x 0))=x 0,故x 0也是函数y=f (x )的稳
定点,故②正确;
对于③④,g (x )=2x 2﹣1,令2(2x 2﹣1)2
﹣1=x ,因为不动点必为稳定点,所以该方程一定有两解x=﹣,
1,
由此因式分解,可得(x ﹣1)(2x+1)(4x 2
+2x ﹣1)=0
还有另外两解
,故函数g (x )的稳定点有﹣,1,,其中是稳定点,但不是
不动点,故③④错误;
对于⑤,若函数y=f (x )有不动点x 0,显然它也有稳定点x 0;
若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0 即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,
假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾; 假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾;
故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确. 故答案为:①②⑤.
【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.
18.【答案】
【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:2
三、解答题
19.【答案】
【解析】解:(1)因为抛物线y=2x 2﹣4x+a 开口向上,对称轴为x=1, 所以函数f (x )在(﹣∞,1]上单调递减,在[1,+∞)上单调递增, 因为函数f (x )在[﹣1,3m]上不单调, 所以3m >1,…(2分)
得
,…(3分)
(2)①因为f (1)=g (1),所以﹣2+a=0,…(4分) 所以实数a 的值为2.…
②因为t 1=f (x )=x 2﹣2x+1=(x ﹣1)2, t 2=g (x )=log 2x , t 3=2x ,
所以当x ∈(0,1)时,t 1∈(0,1),…(7分) t 2∈(﹣∞,0),…(9分) t 3∈(1,2),…(11分) 所以t 2<t 1<t 3.…(12分)
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键. 20.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【
解
析
】
试
题解析:
(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨
+=⎩解得1,
5,k b =⎧⎨=⎩
∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.
考点:待定系数法.
21.【答案】
【解析】解:(I )将(1,﹣2)代入抛物线方程y 2
=2px , 得4=2p ,p=2
∴抛物线C 的方程为:y 2
=4x ,其准线方程为x=﹣1
(II )假设存在符合题意的直线l ,其方程为y=﹣2x+t ,
由
得y 2
+2y ﹣2t=0,
∵直线l 与抛物线有公共点,
∴△=4+8t ≥0,解得t ≥﹣
又∵直线OA 与L 的距离d==
,求得t=±1
∵t ≥﹣ ∴t=1
∴符合题意的直线l 存在,方程为2x+y ﹣1=0
【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程
思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.
22.【答案】(1)有95%的把握认为孩子的幸福感强与是否留守儿童有关;(2)35
. 【解析】
∴2
40(67918)4 3.84115252416
K ⨯⨯-⨯=
=>⨯⨯⨯. ∴有95%的把握认为孩子的幸福感强与是否留守儿童有关.
(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:1a ,2a ;幸福感强的孩子3人,记作:1b ,2b ,
3b .
“抽取2人”包含的基本事件有12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,12(,)b b ,
13(,)b b ,23(,)b b 共10个.
事件A :“恰有一人幸福感强”包含的基本事件有11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b 共6个. 故63()105
P A =
=. 考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.
23.【答案】(1)2
212
x y +=;(2)证明见解析. 【解析】
试
题解析:
(1)22PF QO =,∴212PF F F ⊥,∴
1c =, 2222
221
121,1a b c b a b
+==+=+, ∴221,2b a ==,
即2
212
x y +=; (2)设AB 方程为y kx b =+代入椭圆方程
222
12102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22
221
,112
2
A B A B kb b x x x x k k --+==++,
11,A B MA MB A B y y k k x x --==,∴()
11
2A B A B A B A B MA MB A B
A B
y x x y x x y y k k x x x x +-+--+=+=
=,
∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.
【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 24.【答案】
【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得5
4
b =a +
c ,
又a =4c ,∴5
4
b =5
c ,即b =4c ,
由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =1
8.
(2)∵S △ABC =3,B =60°.
∴1
2
ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.
由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×1
2=13.
∴b =13,
∵k sin B =sin A +sin C ,
由正弦定理得k =a +c b =513
=513
13,
即k 的值为513
13
.。