东升满族蒙古族乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东升满族蒙古族乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)在,,,,,,7.010010001…(每两个“1”之间依次多一个“0”),
这7个数中,无理数共有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】无理数的认识
【解析】【解答】解:无理数有:,2 π,7.010010001…(每两个“1”之间依次多一个“0”)一共3个。
故答案为:C
【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,有规律但不循环的小数是无理数,就可得出无理数的个数。
2、(2分)若m>n,且am<an,则a的取值应满足条件()
A. a>0
B. a<0
C. a=0
D. a0
【答案】B
【考点】不等式及其性质
【解析】【解答】解:根据题意,在不等式的两边都乘以a后,不等号方向发生了改变,根据不等式的性质,所乘的数一定是负数.
故答案为:B
【分析】不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立。
3、(2分)解为的方程组是()
A.
B.
C.
D.
【答案】D
【考点】二元一次方程组的解
【解析】【解答】解:将分别代入A、B、C、D四个选项进行检验,
能使每个方程的左右两边相等的x、y的值即是方程的解.
A、B、C均不符合,
只有D满足.
故答案为:D.
【分析】由题意把x=1和y=2代入方程组计算即可判断求解。
4、(2分)三元一次方程组的解为()
A. B. C. D. 【答案】C
【考点】三元一次方程组解法及应用
【解析】【解答】解:
②×4−①得2x−y=5④
②×3+③得5x−2y=11⑤
④⑤组成二元一次方程组得,
解得,
代入②得z=−2.
故原方程组的解为.
故答案为:C.
【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
5、(2分)-2a与-5a的大小关系()
A.-2a<-5a
B.2a>5a
C.-2a=-5b
D.不能确定
【答案】D
【考点】实数大小的比较
【解析】【解答】解:当a>0时,-2a<-5a;当a<0时,-2a>-5a;当a=0时,-2a=-3a;所以,在没有确定a 的值时,-2a与-5a的大小关系不能确定.故答案为:D.
【分析】由题意分三种情况:当a>0时,根据两数相乘同号得正,异号得负,再利用两个负数绝对值大的反而小,进行比较,然后作出判断。
当a=0时,根据0乘任何数都得0作出判断即可。
当a<0时,根据两数相
乘同号得正,异号得负,再利用两个负数绝对值大的反而小,进行比较,然后作出判断。
6、(2分)下列各式计算错误的是()
A. B. C. D.
【答案】B
【考点】立方根及开立方
【解析】【解答】A、,不符合题意;
B、,符合题意;
C、,不符合题意;
D、,不符合题意;
故答案为:B.
【分析】求一个数的立方根的运算叫开立方。
(1)根据开立方的意义可得原式=0.2 ;
(2)根据算术平方根的意义可得原式=11;
(3)根据开立方的意义可得原式=;
(4)根据开立方的意义可得原式=-.
7、(2分)若不等式组无解,则实数a的取值范围是()
A. a≥-1
B. a<-1
C. a≤1
D. a≤-1
【答案】C
【考点】解一元一次不等式组
【解析】【解答】解:由①得:x≥4-a
由②得:-3x>-9
解之:x<3
∵原不等式组无解
∴4-a≥3
解之:a≤1
故答案为:C
【分析】先求出不等式组中的每一个不等式的解集,再根据原不等式组无解,列出关于a的不等式,解不等式即可。
注意:4-a≥3(不能掉了等号)。
8、(2分)下列计算正确的是()
A. B. C. ±3 D.
【答案】B
【考点】算术平方根,有理数的乘方
【解析】【解答】解:A.∵-22=-4,故错误,A不符合题意;
B.∵-=-3,故正确,B符合题意;
C.∵=3,故错误,C不符合题意;
D.∵(-2)3=-8,故错误,D不符合题意;
故答案为:B.
【分析】A、D根据乘方的运算法则计算即可判断对错;B、C根据算术平方根或者平方根计算即可判断对错.
9、(2分)用适当的符号表示a的2倍与4的差比a的3倍小的关系式()
A.2a+4<3a
B.2a-4<3a
C.2a-4≥3a
D.2a+4≤3a
【答案】B
【考点】不等式及其性质
【解析】【解答】解:根据题意,可由“a的2倍与4的差”得到2a-4,由“a的3倍”得到3a,然后根据题意可得:2a-4<3a
故答案为:B.
【分析】先表示出“a的2倍与4的差”,再表示出“a的3倍”,然后根据关键字"小"(差比a的3倍小)列出不等式即可。
10、(2分)下列各式是一元一次不等式的是()
A.2x﹣4>5y+1
B.3>﹣5
C.4x+1>0
D.4y+3<
【答案】C
【考点】一元一次不等式的定义
【解析】【解答】解:根据一元一次不等式的概念,用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式,可知2x-4>5y+1含有两个未知数,故不正确;
3>-5没有未知数,故不正确;4x+1>0是一元一次不等式,故正确;根据4y+3<中分母中含有未知数,故不正确.
故答案为:C.
【分析】只含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的不等式叫一元一次不等式。
根据这个定义依次对各选项作出判断即可。
11、(2分)已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()
A. ﹣,
B. ,﹣
C. ,
D. ﹣,﹣
【答案】A
【考点】解二元一次方程组,偶次幂的非负性,绝对值的非负性
【解析】【解答】解:∵|x+y|+(x﹣y+5)2=0,
∴x+y=0,x﹣y+5=0,
即,
①+②得:2x=﹣5,
解得:x=﹣,
把x=﹣代入①得:y= ,
即方程组的解为,
故答案为:A.
【分析】根据非负数之和为0,则每一个数都为0,得出x+y=0,x﹣y+5=0,再解二元一次方程组求解,即可得出答案。
12、(2分)如图,已知数轴上的点A,B,C,D分别表示数﹣2、1、2、3,则表示数的点P应落在线段()
A. AO上
B. OB上
C. BC上
D. CD上
【答案】B
【考点】实数在数轴上的表示,估算无理数的大小
【解析】【解答】∵2<<3,∴0<<1,故表示数的点P应落在线段OB上.故答案为:B
【分析】根号5的被开方数介于两个完全平方数4和9之间,根据算数平方根的意义,被开方数越大,其算数
平方根也越大,故根号5介于2和3 之间,从而得出∴介于0和1之间,进而得出点P表示的数应该落的位置。
二、填空题
13、(1分)山脚下有一池塘,泉水以固定的流量(即单位时间里流入池中的水量相同)不停地向池塘内流淌.现池塘中有一定深度的水,若用一台A型抽水机抽水,则1小时正好能把池塘中的水抽完;若用两台A型抽水机抽水,则20分钟正好把池塘中的水抽完.问若用三台A型抽水机同时抽,则需要________分钟恰好把池塘中的水抽完.
【答案】12
【考点】解三元一次方程组
【解析】【解答】解:设池塘中的水有a,山泉每小时的流量是b,一台A型抽水机每小时抽水量是x.
根据题意,得,
解得b= x,a= x.
设若用三台A型抽水机同时抽,则需要t小时恰好把池塘中的水抽完.
3tx=a+bt,
t= = .
即t=12分钟.
答:若用三台A型抽水机同时抽,则需要12分钟恰好把池塘中的水抽完.
【分析】根据一台A型抽水机1小时正好能把池塘中的水抽完,得x=a+b,根据用两台A型抽水机抽水,则20分钟正好把池塘中的水抽完,得×2x=a+b,若用三台A型抽水机同时抽,则需要t小时恰好把池塘中的水抽完,再根据3tx=a+bt求解。
14、(1分)方程3x+2y=12的非负整数解有________个.
【答案】3
【考点】二元一次方程的解
【解析】【解答】解:由题意可知:
∴
解得:0≤x≤4,
∵x是非负整数,
∴x=0,1,2,3,4
此时y=6,,3,,0
∵y也是非负整数,
∴方程3x+2y=12的非负整数解有3个,
故答案为:3
【分析】将方程3x+2y=12 变形可得y=,再根据题意可得x0,,,解不等式组即可
求解。
15、(3分)分析统计图.
①小玲家6月份生活费总支出是1600元.其中支出最多的一项是________,文化教育费支出了________元.
②如果小玲家每个月生活费都是1600元,请你对她家7月份(暑期)的生活费用提出调整建议.________ 【答案】伙食;400;建议7月份(暑期)多朝文化教育上投资,如:家长可多给孩子买一下课外书看,带领孩子出去旅游,让孩子增长见识,等等
【考点】扇形统计图
【解析】【解答】解:①小玲家6月份生活费总支出是1600元.其中支出最多的一项是伙食,文化教育费支出:1600×25%=400(元);
故文化教育费支出了400元。
②家长可多给孩子买一下课外书看,带领孩子出去旅游,让孩子增长见识,等等。
【分析】①根据扇形统计图中的各项支出占的百分数,确定出支出最多的一项是伙食支出;根据生活费总支出是1600元,文化教育费支出占了25%,用乘法计算求出文化教育费支出;②根据自己的理解,提出合理的调整建议.本题先根据扇形统计图找出单位“1”,读出数据,然后根据数量关系求解.
16、(1分)如图,FE∥ON,OE平分MON,FEO=28°,则∠MON=________
【答案】56°
【考点】角的平分线,平行线的性质
【解析】【解答】解:∵FE∥0N
∴∠FEO=∠EON=28°
∵OE平分∠MON
∴∠MON=2∠EON=2×28°=56°
故答案为:56°
【分析】好、根据平行线的性质,可求出∠EON的度数,再根据角平分线的定义,得出∠MON=2∠∠EON,从而可求出∩MON的度数。
17、(1分)如图,已知AB∥CD,∠1=130°,则∠2=________.
【答案】50°
【考点】平行线的性质
【解析】【解答】解:如图:
∠3=180°-∠1=180°-130°=50°
∵AB∥CD
∴∠2=∠3=50°
【分析】根据邻补角是180度,得出∠3=50°,再根据两直线平行,同位角相等,得出∠2=∠3=50°
18、(1分)已知二元一次方程组则________
【答案】11
【考点】解二元一次方程组
【解析】【解答】解:
由得:2x+9y=11
故答案为:11
【分析】观察此二元一次方程的特点,将两方程相减,就可得出2x+9y的值。
三、解答题
19、(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
20、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的
解为;乙看错了方程②中的b,得到方程组的解为,试计算的值. 【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。
21、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
22、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|
-3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
23、(5分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【答案】解:∵∠FOC=90°,∠1=40°,
∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,
∴∠DOB=∠3=50°
∴∠AOD=180°-∠BOD=130°
∵OE平分∠AOD
∴∠2=∠AOD=×130°=65°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。
24、(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
25、(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),
故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;
(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;
(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.
26、(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.。