旋转几何综合章末练习卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转几何综合章末练习卷(Word 版 含解析)
一、初三数学 旋转易错题压轴题(难)
1.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)
(1)求出a 和b 之间的数量关系.
(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)
①求出此时抛物线的解析式;
②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.
【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(
478,91-8+),
F 1(-8,33-4+),
G 2(8,-8
),F 2(218,-4) 【解析】
【分析】
(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;
(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;
②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出
131t -4+=,2t -4
=,分两类讨论,分别求出G 、F 坐标。

【详解】
解:(1)把A (2,5)代入y=ax 2+bx-3a-5得4a+2b-3a-5=5
∴a+2b=10
∴a 和b 之间的数量关系是a+2b=10
(2)①设直线AD 的解析式为y=kx+c
∵直线AD 与y 轴交于(0,-7),A (2,5)
∴2k c 5{c -7+==解得k 6{c -7
==即直线AD 的解析式为y=6x-7 联立抛物线y=ax 2+bx-3a-5与直线AD :y=6x-7 得2y ax +bx-3a-5{y 6x-7
== 消去y 得ax 2+(b-6)x-3a+2=0
∵抛物线与直线AD 有两个交点
∴由韦达定理可得:x A +x D =b-6-a =2a 2a +,x A x D =-3a 2a
+
∵A (2,5)
∴x A =2即x D =
2a -22a +∵x D =b -2a =a-104a ∴2a -22a +=a-104a 解得a=2∴b=10-a 2
= 4 ∴此时抛物线的解析式为y= 2x 2+4x-11
②如图所示:作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t )
∵A (2,5),∴AI=2,BJ=5-t
∵AB 绕点B 顺时针旋转90°,得到线段BH
∴AB=BH ,∠ABH=90°,∠AIB=∠BJH=90°
∵∠IAB+∠IBA=90°,∠ABH+∠IBA+∠JBH=180°
∴∠IBA+∠JBH=90°即∠IAB=∠JBH
∴△AJB ≌△BJH 即AI=BJ=2,BI=IH=5-t
∴H (5-t ,t-2)
∵D (-1,-13)∴y B -y D =t+13
同理可得:C (t+13,t-1)
设DH 的解析式为y=k 1x+b 1
∴1111-k b -13{5-t k b t-2+=+=()解得11t 11k 6-t {t 11b -13-t-6
+=+= 即直线AD 的解析式为t 1111y x-13-66t t t ++=
-- ∵D 、H 、C 三点共线
∴把C (t+13,t-1)代入AD t 1111y x-13-66t t t ++=--得:t 1111t-1t 13-13-66t t t ++=+--()
整理得2t 2+31t+82=0解得131305t -4+=,231-305t -4= 由图可知:①当131305t -
+=如图1所示: 此时H (51305+,39305-+) ,C (305-21-,35305-+) ∵点G 为DH 中点,点F 为BC 中点
∴G 1(47305+,91305-+) ,F 1(305-21-,33305-+) 由图可知:当231-305t -
=如图2所示: 此时H (51-305,39-305-) ,C (30521+,35-305-) ∵点G 为DH 中点,点F 为BC 中点
∴G 2(47-305,91-305-) ,F 2(30521+,33-305-) (14分) ∴综上所述:G 1(
47305+,91305-+) ,F 1(305-21-,33305-+) G 2(47-3058,91-305-8
) ,F 2(305218+,33-305-4)。

【点睛】
本题为含参数的二次函数问题,综合性强,难度较大,解题关键在于根据旋转性质,用含参数式子分别表示点的坐标,函数关系式,结合韦达定理,分类讨论求解。

2.阅读材料并解答下列问题:如图1,把平面内一条数轴x 绕原点O 逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和y 轴构成一个平面斜坐标系.xOy
规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴对应的实数为a ,点B 在y 轴对应的实数为b ,则称有序实数对(),a b 为点P 在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点P 的斜坐标是()3,6,点C 的斜坐标是()0,6.
(1)连接OP ,求线段OP 的长;
(2)将线段OP 绕点O 顺时针旋转60︒到OQ (点Q 与点P 对应),求点Q 的斜坐标; (3)若点D 是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点D 为圆心,DC 长为半径作D ,当⊙D 与x 轴相切时,求点D 的斜坐标,
【答案】(1)37OP =;(2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为:(
32
,3)或(6,12). 【解析】 【分析】 (1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ
=︒,由AP=6,则
AC=3,33PC =,再利用勾股定理,即可求出OP 的长度;
(2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ 是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q 的斜坐标;
(3)根据题意,可分为两种情况进行分析:①当OP 和CM 恰好是平行四边形OMPC 的对角线时,此时点D 是对角线的交点,求出点D 的坐标即可;②取OJ=JN=CJ ,构造直角三角形OCN ,作∠CJN 的角平分线,与直线OP 相交与点D ,然后由所学的性质,求出点D 的坐标即可.
【详解】
解:(1)如图,过点P 作PC ⊥OA ,垂足为C ,连接OP ,
∵AP ∥OB ,
∴∠PAC=60θ=︒,
∵PC ⊥OA ,
∴∠PCA=90°,
∵点P 的斜坐标是()3,6,
∴OA=3,AP=6,
∴1cos602
AC AP ︒==, ∴3AC =,
OC=+=,
∴22
PC=-=,336
6333
在Rt△OCP中,由勾股定理,得
22
OP=+=;
6(33)37
(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:
由旋转的性质,得OP=OQ,∠POQ=60°,
∵∠COP+∠POA=∠POA+∠BOQ=60°,
∴∠COP=∠BOQ,
∵OB=OC=6,
∴△COP≌△BOQ(SAS);
∴CP=BQ=3,∠OCP=∠OBQ=120°,
∴∠EBQ=60°,
∵EQ∥OC,
∴∠BEQ=60°,
∴△BEQ是等边三角形,
∴BE=EQ=BQ=3,
∴OE=6+3=9,OF=EQ=3,
∵点Q在第四象限,
∴点Q的斜坐标为(9,3-);
(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:
由平行四边形的性质,得CD=DM,OD=PD,∴点D为OP的中点,
∵点P的坐标为(3,6),
∴点D的坐标为(3
2
,3);
②取OJ=JN=CJ,则△OCN是直角三角形,
∵∠COJ=60°,
∴△OCJ是等边三角形,
∴∠CJN=120°,
作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:
∵CJ=JN,∠CJD=∠NJD,JP=JP,
∴△CJD≌△NJD(SAS),
∴∠JCD=∠JND=90°,
则由角平分线的性质定理,得CD=ND;
过点D作DI∥x轴,连接DJ,
∵∠DJN=∠COJ=60°,
∴OI∥JD,
∴四边形OJDI是平行四边形,
∴ID=OJ=JN=OC=6,
在Rt△JDN中,∠JDN=30°,∴JD=2JN=12;
∴点D的斜坐标为(6,12);
综合上述,点D的斜坐标为:(3
2
,3)或(6,12).
【点睛】
本题考查了坐标与图形的性质,解直角三角形,旋转的性质,全等三角形的判定和性质,角平分线的性质等知识,解题的关键是理解题意,正确寻找圆心D的位置来解决问题,属于中考创新题型.注意运用分类讨论的思想进行解题.
3.已知:如图①,在矩形ABCD中,AB=5,
20
3
AD=,AE⊥BD,垂足是E.点F是点E
关于AB的对称点,连接AF、BF.
(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,求出相应的m的值;(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的ABF为A BF
'',在旋转过程中,设A F''所在的直线与直线AD交于点P,与直线BD 交于点Q,若△DPQ为等腰三角形,请直接写出此时DQ的长.
【答案】(1)4;3(2)3或16
3
(3)
2512525
31010
3243
-
、、
10
3
【解析】
【分析】
(1)由矩形的性质,利用勾股定理求解BD的长,由等面积法求解AE,由勾股定理求解BE即可,
(2)利用对称与平移的性质得到:AB∥A′B′,∠4=∠1,BF=B′F′=3.当点F′落在AB上时,证明BB′=B′F′即可得到答案,当点F′落在AD上时,证明△B′F′D为等腰三角形,从而可得答案,
(3)分4种情况讨论:①如答图3﹣1所示,点Q落在BD延长线上,证明A′Q=A′B,利用勾股定理求解',,
F Q BQ从而求解DQ,②如答图3﹣2所示,点Q落在BD上,证明点A′落在BC边上,利用勾股定理求解,
BQ从而可得答案,③如答图3﹣3所示,点Q落在BD上,证明∠A′QB=∠A′BQ,利用勾股定理求解,
BQ,从而可得答案,④如答图3﹣4所示,点Q落在BD上,证明BQ=BA′,从而可得答案.
【详解】
解:(1)在Rt △ABD 中,
AB =5,203AD =
, 由勾股定理得:222025533BD ⎛⎫=+= ⎪⎝⎭
. 11,22
ABD S BD AE AB AD =⋅=⋅. 25
3
2053 4.AB AD AE BD ⨯⋅∴=== 在Rt △ABE 中,AB =5,AE =4,
由勾股定理得:BE =3.
(2)设平移中的三角形为△A′B′F′,如答图2所示:
由对称的性质可知,∠1=∠2.
由平移性质可知,AB ∥A′B′,∠4=∠1,BF =B′F′=3.
①当点F′落在AB 上时,
∵AB ∥A′B′,
∴∠3=∠4,
∴∠3=∠2,
∴BB′=B′F′=3,即m =3;
②当点F′落在AD 上时,
∵AB ∥A′B′,∴∠6=∠2,
∵∠1=∠2,∠5=∠1,∴∠5=∠6,
,AB AD ⊥
∴ A′B′⊥AD ,
'''',B F D B DF ∴∠=∠
∴△B′F′D 为等腰三角形,
∴B′D =B′F′=3,
2516333
BB BD B D ''∴=-=-=,即163m =.
(3)DQ 的长度分别为2512525310103243
-
-、、或103. 在旋转过程中,等腰△DPQ 依次有以下4种情形:
①如答图3﹣1所示,点Q 落在BD 延长线上,且PD =DQ ,
∴ ∠2=2∠Q ,
∵∠1=∠3+∠Q ,∠1=∠2,
∴∠3=∠Q ,
∴A′Q =A′B =5, ∴F′Q =F′A′+A′Q =4+5=9.
在Rt △BF′Q 中,由勾股定理得:222293310BQ F Q F B ''=+=+=. 253103
DQ BQ BD ∴=-=-; ②如答图3﹣2所示,点Q 落在BD 上,且PQ =DQ ,∴∠2=∠P ,
∵∠1=∠2,∴∠1=∠P ,∴BA′∥PD ,
∵PD ∥BC ,∴此时点A′落在BC 边上.
∵∠3=∠2,∴∠3=∠1,
∴BQ =A′Q ,∴F′Q =F′A′﹣A′Q =4﹣BQ .
在Rt △BQF′中,由勾股定理得:'2'22,BF F Q BQ +=
即:2223(4),BQ BQ +-= 解得:258
BQ =, 25251253824
DQ BD BQ ∴=-=-=; ③如答图3﹣3所示,点Q 落在BD 上,且PD =DQ ,
∴ ∠3=∠4.
∵∠2+∠3+∠4=180°,∠3=∠4,149022
∴∠︒
∠=﹣. ∵∠1=∠2,1
49012
∴∠=︒-
∠. 1
49012
A Q
B ∴∠'∠︒∠==﹣,
1
18019012
A BQ A Q
B ∴∠'︒∠'∠︒∠=﹣﹣=﹣,
∴∠A′QB =∠A′BQ ,∴A′Q =A′B =5, ∴F′Q =A′Q ﹣A′F′=5﹣4=1.
在Rt △BF′Q 中,由勾股定理得:223110BQ =+=,
25
103
DQ BD BQ ∴=-=
-; ④如答图3﹣4所示,点Q 落在BD 上,且PQ =PD ,
∴ ∠2=∠3.
∵∠1=∠2,∠3=∠4,∠2=∠3, ∴∠1=∠4, ∴BQ =BA′=5,
2510533
DQ BD BQ ∴=-=
-=. 综上所述,DQ 的长度分别为2512525310103243
-
-、、或10
3.
【点睛】
本题是几何变换压轴题,涉及旋转与平移变换、矩形、勾股定理、等腰三角形等知识
点.第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论;在计算过程中,注意识别旋转过程中的不变量,注意利用等腰三角形的性质简化计算.
4.如图,在矩形ABCD中,6
AB cm
=,8
AD cm
=,连接BD,将ABD
△绕B点作顺时针方向旋转得到A B D
'''
△(B′与B重合),且点D'刚好落在BC的延长上,A D''与CD相交于点E.
(1)求矩形ABCD与A B D
'''
△重叠部分(如图1中阴影部分A B CE
'')的面积;(2)将A B D
'''
△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与A B D
'''
△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''
△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.
【答案】(1)2
45
2
cm;(2)
2
2
3316
24(0)
225
88020016
(4)
3335
x x x
y
x x x

--+≤<
⎪⎪
=⎨
⎪-+≤≤
⎪⎩
;(3)存在,使得AA B''
△成为等腰三角形的x的值有:0秒、
3
2
669
-

【解析】
【分析】
(1)先用勾股定理求出BD的长,再根据旋转的性质得出10
B D BD cm
''==,
2
CD B D BC cm
'=''-=,利用B D A
∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;
(2)分类讨论,当
16
5
x
≤<时和当
16
4
5
x
≤≤时,分别列出函数表达式;
(3)分类讨论,当AB A B
'=''时;当AA A B
'=''时;当AB AA
'='时,根据勾股定理列方程即可.
【详解】
解:(1)6
AB cm
=,8
AD cm
=,
10
BD cm
∴=,
根据旋转的性质可知10
B D BD cm
''==,2
CD B D BC cm
'=''-=,
tan
A B CE
B D A
A D CD
''
'''
∠==
'''

682CE ∴=, 3
2
CE cm ∴=,
()286345
22222
A B CE A B D CED S S S cm ''''''⨯∴==
-⨯÷=-; (2)①当1605x ≤<
时,22CD x '=+,3
2
CE x =, 233
+22
CD E S x x '∴=
△, 221333
68242222
y x x x ∴=⨯⨯-=--+;
②当
1645x ≤≤时,102BC x =-,()4
1023
CE x =- ()2
21488020010223333
y x x x ∴=⨯-=-+.
(3)①如图1,当AB A B '=''时,0x =秒;
②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+
,24
5
A M N
B '==, 2236AN A N +'=,
22
2418623655x ⎛
⎫⎛⎫∴-++= ⎪ ⎪⎝
⎭⎝⎭,
解得:x =
秒,(x =舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+
,24
5
A M N
B '==, 2222AB BB AN A N +'=+'
22
2
24183646255x x ⎛
⎫⎛⎫∴+=-++ ⎪ ⎪⎝
⎭⎝⎭
解得:3
2
x =
秒.
综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、
32秒、95

【点睛】
本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.
5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;
②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想
∠AEB=θ是否成立?请说明理由.
【答案】(1)证明见解析;
(2)成立,理由见解析
【解析】
试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出
OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;
②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出
∠BEA=90°,即可得出结论;
(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相
等和三角形内角和定理即可得出∠AEB=θ.
试题解析:(1)证明:①∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵OA=OB,C、D为OA、OB的中点,
∴OC=OD,
∴OC′=OD′,
在△AOC′和△BOD′中,,
∴△AOC′≌△BOD′(SAS),
∴AC′=BD′;
②延长AC′交BD′于E,交BO于F,如图1所示:
∵△AOC′≌△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,∠OAC′+∠AFO=90°,
∴∠OBD′+∠BFE=90°,
∴∠BEA=90°,
∴AC′⊥BD′;
(2)解:∠AEB=θ成立,理由如下:如图2所示:
∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵CD∥AB,
∴,
∴,
∴,
又∠AOC′=∠BOD′,
∴△AOC′∽△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,
∴∠AEB=∠AOB=θ.
考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.
6.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
(1)求证:BE=CE
(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分
别与AB,BC相交于点M,N.(如图2)
①求证:△BEM≌△CEN;
②若AB=2,求△BMN面积的最大值;
③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.
【答案】(1)详见解析;(2)①详见解析;②2;③62
.
【解析】
【分析】
(1)只要证明△BAE≌△CDE即可;
(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;
②构建二次函数,利用二次函数的性质即可解决问题;
③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.
【详解】
(1)证明:如图1中,
∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵E是AD中点,
∴AE=DE,
∴△BAE≌△CDE,
∴BE=CE.
(2)
①解:如图2中,
由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,
∵∠ABC=∠BCD=90°,
∴∠EBM=∠ECN=45°,
∵∠MEN=∠BEC=90°,
∴∠BEM=∠CEN,
∵EB=EC,
∴△BEM≌△CEN;
②∵△BEM≌△CEN,
∴BM=CN,设BM=CN=x,则BN=4-x,
∴S△BMN=1
2
•x(4-x)=-
1
2
(x-2)2+2,
∵-1
2
<0,
∴x=2时,△BMN的面积最大,最大值为2.
③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,
∵S△BEG=1
2
•EG•BN=
1
2
•BG•EH,
∴EH=3?(13)
m m
+3+3
m,
在Rt△EBH中,sin∠EBH=
3+3
62
2
6
EH
EB m
+
==

【点睛】
本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定
和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,
7.请认真阅读下面的数学小探究系列,完成所提出的问题:
()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B
顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为2
1.(2
a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE
()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺
时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由.
()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针
旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.
【答案】(1)详见解析;(2)BCD 的面积为
2
12
a ,理由详见解析;(3)BCD 的面积为
2
14a . 【解析】 【分析】
()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出
ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;
()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出
ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;
()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形
的性质可以得出1
BF BC 2
=
,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】
()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,
BED ACB90
∠∠
∴==,
由旋转知,AB AD
=,ABD90
∠=,
ABC DBE90
∠∠
∴+=,
A ABC90
∠∠
+=,
A DBE
∠∠
∴=,
在ABC和BDE中,
ACB BED
A DBE
AB BD
∠=∠


∠=∠

⎪=


ABC
∴≌()
BDE AAS
BC DE a
∴==,
BCD
1
S BC DE
2
=⋅,
2
BCD
1
S a
2
∴=;
()2BCD的面积为2
1
a
2

理由:如图2,过点D作BC的垂线,与BC的延长线交于点E,BED ACB90
∠∠
∴==,
线段AB绕点B顺时针旋转90得到线段BE,
AB BD
∴=,ABD90
∠=,
ABC DBE90
∠∠
∴+=,
A ABC90
∠∠
+=,
A DBE
∠∠
∴=,
在ABC和BDE中,
ACB
BED A DBE AB BD ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ABC ∴≌()BDE AAS , BC DE a ∴==,
BCD 1
S BC DE 2=⋅,
2BCD 1
S a 2
∴=;
()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,
AFB E 90∠∠∴==,11BF BC a 22
==, FAB ABF 90∠∠∴+=,
ABD 90∠=,
ABF DBE 90∠∠∴+=,
FAB EBD ∠∠∴=,
线段BD 是由线段AB 旋转得到的,
AB BD ∴=,
在AFB 和BED 中, AFB E FAB EBD AB BD ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, AFB ∴≌()BED AAS , 1BF DE a 2
∴==
, 2BCD
1111S
BC DE a a a 2224
=
⋅=⋅⋅=, BCD ∴的面积为21
a 4

【点睛】 本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运
用相关的性质与定理是解题的关键.
8.(1)发现
如图,点A 为线段BC 外一动点,且BC a =,AB b =.
填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)
(2)应用
点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .
①找出图中与BE 相等的线段,并说明理由;
②直接写出线段BE 长的最大值.
(3)拓展
如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.
【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)
【解析】
【分析】
(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出
△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;
(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰
直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为22+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.
【详解】
解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,
∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,
故答案为CB的延长线上,a+b;
(2)①CD=BE,
理由:∵△ABD与△ACE是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD与△EAB中,
AD AB
CAD EAB
AC AE


∠∠







∴△CAD≌△EAB,
∴CD=BE;
②∵线段BE长的最大值=线段CD的最大值,
由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,
则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵22,
∴最大值为22+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴PE=AE=2,
∴OE=BO-AB-AE=5-3-2=2-2,
∴P(2-2,2).
【点睛】
考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.
9.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)如图1,求证:△CDE是等边三角形.
(2)设OD=t,
①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
②求t为何值时,△DEB是直角三角形(直接写出结果即可).
【答案】(1)见解析;(2)①见解析;②t=2或14.
【解析】
【分析】
(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;
(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到
C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;
②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得
∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.
【详解】
(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,
∴∠DCE=60°,DC=EC,
∴△CDE是等边三角形;
(2)①存在,当6<t<10时,
由旋转的性质得,BE=AD,
∴C△DBE=BE+DB+DE=AB+DE=4+DE,
由(1)知,△CDE是等边三角形,
∴DE=CD,
∴C△DBE=CD+4,
由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,
此时,CD=,
∴△BDE的最小周长=CD+4=;
②存在,∵当点D与点B重合时,D,B,E不能构成三角形,
∴当点D与点B重合时,不符合题意;
当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,
∴∠BED=90°,
由(1)可知,△CDE是等边三角形,
∴∠DEB=60°,
∴∠CEB=30°,
∵∠CEB=∠CDA,
∴∠CDA=30°,
∵∠CAB=60°,
∴∠ACD=∠ADC=30°,
∴DA=CA=4,
∴OD=OA﹣DA=6﹣4=2,
∴t=2;
当6<t<10时,由∠DBE=120°>90°,
∴此时不存在;
当t>10时,由旋转的性质可知,∠DBE=60°,
又由(1)知∠CDE=60°,
∴∠BDE=∠CDE+∠BDC=60°+∠BDC,
而∠BDC>0°,
∴∠BDE>60°,
∴只能∠BDE=90°,
从而∠BCD=30°,
∴BD=BC=4,
∴OD =14,
∴t =14,
综上所述:当t =2或14时,以D 、E 、B 为顶点的三角形是直角三角形.
【点睛】
本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.
10.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .
(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)
(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;
(3).①当BD=___________时,30DEC ∠=;(直接写出结果)
②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.
【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+
【解析】
【分析】
(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.
【详解】
解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,
ADE ∴∆是等边三角形,
故答案为等边三角形;
(2)AC CD CE +=,
证明:由旋转的性质可知,60,DAE AD AE ∠==,
ABC ∆是等边三角形
60AB AC BC BAC ∴∠︒==,=,
60BAC DAE ∴∠∠︒==,
BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=,
在ABD ∆和ACE ∆中,
AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
, ABD ACE SAS ∴∆∆≌()
BD CE ∴=,
CE BD CB CD CA CD ∴++===;
(3)①BD 为2或8时,30DEC ∠=,
当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,
90AEC ∴∠︒=,
ABD ACE ∆∆≌,
9060ADB AEC B ∴∠∠︒∠︒==,又=,
30BAD ∴∠︒=,
122
BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,
30AEC ∴∠︒=,
ABD ACE ∆∆≌,
3060ADB AEC B ∴∠∠︒∠︒==,又=,
90BAD ∴∠︒=,
28BD AB ∴==,
BD ∴为2或8时,30DEC ∠︒=;
②点D 在运动过程中,DEC ∆
的周长存在最小值,最小值为4+
理由如下:
ABD ACE ∆∆≌,
CE BD ∴=,
则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,
当CE 最小时,DEC ∆的周长最小,
ADE ∆为等边三角形,
DE AD ∴=, AD
的最小值为
DEC ∴∆
的周长的最小值为4+
【点睛】
本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

相关文档
最新文档