2016年河北省唐山市路北区中考数学二模试卷(解析版)
河北省唐山市路北区中考数学二模试卷(含答案解析)

中考数学二模试卷姓名:得分:日期:一、选择题(本大题共 16 小题,共 42 分)1、(3分) 若代数式2有意义,则实数x的取值范围是()x−3A.x=0B.x=3C.x≠0D.x≠32、(3分) 计算3.8×107-3.7×107,结果用科学记数法表示为()A.0.1×107B.0.1×106C.1×107D.1×1063、(3分) 在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3B.4C.5D.64、(3分) 一元一次不等式x+1<2的解集在数轴上表示为()A. B. C. D.5、(3分) 如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°6、(3分) 如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1mL=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下7、(3分) 若阿光以四种不同的方式连接正六边形ABCDEF的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形()A. B. C. D.8、(3分) 已知点A与点B关于原点对称,A的坐标是(2,-3),那么经过点B的反比例函数的解析式是()A.y=-2x B.y=-3xC.y=-6xD.y=-32x9、(3分) 用配方法解一元二次方程x2+4x-5=0,此方程可变形为()A.(x+2)2=9B.(x-2)2=9C.(x+2)2=1D.(x-2)2=110、(3分) 图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11、(2分) 如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A.ℎsinαB.ℎcosαC.ℎtanαD.ℎcotα12、(2分) 在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A.1 6B.12C.13D.2313、(2分) 图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④14、(2分) 如图,在△ABC中,AD平分∠BAC,按如下步骤作图:AD的长为半径在AD两侧作弧,交于两点M、N;第一步,分别以点A、D为圆心,以大于12第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则CF的长是()A.2B.4C.6D.815、(2分) 已知坐标平面上有两个二次函数y=a(x+1)(x-7),y=b(x+1)(x-15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x-15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位16、(2分) 如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述何者正确()A.O是△AEB的外心,O是△AED的外心B.O是△AEB的外心,O不是△AED的外心C.O不是△AEB的外心,O是△AED的外心D.O不是△AEB的外心,O不是△AED的外心二、填空题(本大题共 3 小题,共 12 分)17、(3分) 分式方程3x=1的解是x=______.x+218、(3分) 如图所示,正五边形ABCDE的边长为1,⊙B过五边形的顶点A、C,则劣弧AC的长为______.19、(6分) 将一个直角三角形纸片ABO,放置在平面直角坐标中,点A(√3,0),点B(0,1),点O(0,0),过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于N,沿着MN折叠该纸片,得顶点A的对应点A'.设OM=m,折叠后的△A'MN与四边形OMNB重叠部分的面积为S.(1)如图,当点A'与顶点B重合时,点M的坐标为______.时,点M的坐标为______.(2)当S=√324三、计算题(本大题共 1 小题,共 8 分)20、(8分) 有三个有理数x、y、z,其中x=2(n为正整数)且x与y互为相反数,y与z(−1)−1互为倒数.(1)当n为奇数时,求出x、y、z这三个数,并计算xy-y n-(y-2z)2015的值.(2)当n为偶数时,你能求出x、y、z这三个数吗?为什么?四、解答题(本大题共 6 小题,共 58 分)21、(9分) 阅读与证明:请阅读以下材料,并完成相应的任务.传说古希腊毕达哥拉斯(约公元570年-约公元前500年)学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1、3、6,10…由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n个三角形数可以用n(n+1)2(n≥1)表示.任务:请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数;(2)连续两个三角形数的和是一个完全平方数.22、(9分) 为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23、(9分) 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.24、(10分) 已知函数y=-x+4的图象与函数y=k的图象在同一坐标系内.函数y=-x+4的图象x如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m=______,S△AOB=______;的图象分成两部分,并且这两部分长度的比为1:3,求(2)如果线段MN被反比例函数y=kxk的值;(3)如图2,若反比例函数y=k图象经过点N,此时反比例函数上存在两个点E(x1,y1)、Fx(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.25、(10分) 某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=95,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?26、(11分) 如图,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切.现动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置)(1)如图①,点P从A→B→C→D,全程共移动了______cm(用含a、b的代数式表示);(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图②,已知a=20,b=10.是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?如存在,直接写出点P的移动速度V1与⊙O 移动速度V2的比值(即V1的值);如不存在,请简要说明理由.V22019年河北省唐山市路北区中考数学二模试卷【第 1 题】【答案】D【解析】解:由题意得,x-3≠0,解得,x≠3,故选:D.根据分式有意义的条件列出不等式解不等式即可.本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.【第 2 题】【答案】D【解析】解:3.8×107-3.7×107=(3.8-3.7)×107=0.1×107=1×106.故选:D.直接根据乘法分配律即可求解.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律简便计算.【第 3 题】【答案】A【解析】解:作OC⊥AB 于C ,连结OA ,如图,∵OC⊥AB , ∴AC=BC=12AB=12×8=4,在Rt△AOC 中,OA=5,∴OC=√OA 2−AC 2=√52−42=3,即圆心O 到AB 的距离为3.故选:A . 作OC⊥AB 于C ,连接OA ,根据垂径定理得到AC=BC=12AB=4,然后在Rt△AOC 中利用勾股定理计算OC 即可.本题考查了垂径定理:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.关键是根据勾股定理解答.【 第 4 题 】【 答 案 】B【 解析 】解:不等式x+1<2,解得:x <1,如图所示:故选:B .求出不等式的解集,表示出数轴上即可.此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.【 第 5 题 】【 答 案 】A【 解析 】解:∵AD 平分∠BAC ,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD ,∴∠ACD=180°-∠BAC=40°,故选:A .根据角平分线定义求出∠BAC ,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可. 本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC 的度数,再结合∠ACD+∠BAC=180°.【 第 6 题 】【 答 案 】C【 解析 】解:设一颗玻璃球的体积为x cm 3,则由题意可知,300ml 的被子,被导入180ml 的水后,还留下120ml 的空间,当加入3颗玻璃球时,水没有满,有3x <120,当加入4颗玻璃球时,水满溢出,有4x >120,即{3x <1204x >120,解得30<x <40 因此,一颗玻璃球的体积在30cm 3以上,40cm 3以下故选:C .先求出剩余容量,然后根据水没满和水满溢出,列出相应的不等式,联立成不等式组求解,就可知道球的体积范围.特别需要注意的是对水没满与水满溢出两种状态的理解.【 第 7 题 】【 答 案 】D【 解析 】解:A 、是轴对称图形,故此选项错误;B 、是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.【第 8 题】【答案】C【解析】解:点A(2,-3),∴点A关于原点对称的点B的坐标(-2,3),∵反比例函数y=k经过B点,x∴k=-2×3=-6,∴反比例函数的解析式是y=-6.x故选:C.先根据中心对称的点的横坐标互为相反数,纵坐标互为相反数,求得B为(-2,3),然后把(-2,3)代入函数y=k中可先求出k的值,那么就可求出函数解析式.x本题考查了关于原点的对称的点的坐标和待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.【第 9 题】【答案】A【解析】解:x2+4x-5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.移项后配方,再根据完全平方公式求出即可.本题考查了解一元二次方程的应用,关键是能正确配方.【第 10 题】【答案】A【解析】解:(1)-3的绝对值是3,正确,故原题解答错误;(2)(a2)3=a6,错误,故原题解答错误;(3)a的相反数是:-a,错误,故原题解答正确;(4)√2的倒数是√22,错误,故原题解答错误;(5)cos45°=√22,错误,故原题解答正确;故选:A.直接利用幂的乘方运算法则以及相反数的定义以及绝对值的性质、倒数的定义分别分析得出答案.此题主要考查了幂的乘方运算以及相反数的定义以及绝对值的性质、倒数的定义,正确把握相关定义是解题关键.【第 11 题】【答案】B【解析】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=CDBC,∴BC=CDcos∠BCD =ℎcosα,故选:B.根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=CDBC,即可求出BC的长度.本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.【第 12 题】【 解析 】解:从中随机摸出一个小球,恰好是黄球的概率=23+2+1=13.故选:C .直接根据概率公式求解.本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.【 第 13 题 】【 答 案 】A【 解析 】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A . 由平面图形的折叠及正方体的表面展开图的特点解题.本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.【 第 14 题 】【 答 案 】A【 解析 】解:由作法得EF 垂直平分AD ,∴EA=ED ,FA=FD ,EF⊥AD ,∵AD 平分∠BAC ,∴△AEF 为等腰三角形,∴AE=AF ,∴AE=DE=DF=AF ,∴四边形AEDF 为菱形,∴DF∥AE ,∴CF AF =CD BD ,即CF 4=36,∴CF=2.由作法得EF垂直平分AD,根据垂直平分线的性质得到EA=ED,FA=FD,EF⊥AD,再证明四边形AEDF为菱形得到DF∥AE,然后根据平行线分线段成比例定理可计算出CF.本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).【第 15 题】【答案】A【解析】解:∵y=a(x+1)(x-7)=ax2-6ax-7a,y=b(x+1)(x-15)=bx2-14bx-15b,∴二次函数y=a(x+1)(x-7)的对称轴为直线x=3,二次函数y=b(x+1)(x-15)的对称轴为直线x=7,∵3-7=-4,∴将二次函数y=b(x+1)(x-15)的图形向左平移4个单位,两图形的对称轴重叠.故选:A.将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.【第 16 题】【答案】B【解析】解:如图,连接OA、OB、OD.∵O是△ABC的外心,∴OA=OB=OC,∵四边形OCDE是正方形,∴O 是△ABE 的外心,∵OA=OE≠OD ,∴O 不是△AED 的外心,故选:B .根据三角形的外心的性质,可以证明O 是△ABE 的外心,不是△AED 的外心.本题考查三角形的外心的性质.正方形的性质等知识,解本题的关键是灵活运用所学知识解决问题,属于中考常考题型.【 第 17 题 】【 答 案 】1【 解析 】解:3x x+2=1,去分母,得3x=x+2.整理得2x=2,解方程得x=1.经检验x=1是原分式方程的解.故原分式方程的解是x=1.故答案为:1.先确定分式方程的最简公分母为(x+2),两边同乘最简公分母将分式方程转化为整式方程求解. 本题主要考查的是分式方程的解法,解分式方程要注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.【 第 18 题 】【 答 案 】35π【 解析 】解:∵五边形ABCDE 是正五边形,∴∠B=15(5-2)×180°=108°,∴劣弧AC 的长=108π×1180=35π; 故答案为:35π.由正五边形的性质好内角和定理得出∠B=108°,然后由弧长公式即可得出结果.本题考查了正五边形的性质、多边形内角和定理、弧长公式;熟练掌握正五边形的性质,由内角和定理求出∠B 的度数是解决问题的关键.【 第 19 题 】【 答 案 】(√33,0) (2√33,0) 【 解析 】解:(1)当点A'与顶点B 重合时,∴N 是AB 的中点,∵点A (√3,0),点B (O ,1),∴AB=2,∴AN=1,∵∠OAB=30°,∴AM=2√33, ∴M (√33,0);(2)在Rt△ABO 中,tan∠OAB=OB OA =√3=√33, ∴∠OAB=30°,由MN⊥AB ,可得:∠MNA=90°,∴在Rt△AMN 中,MN=AM•sin∠OAB=12(√3-m ), AN=AN•cos∠OAB=√32(√3-m ), ∴S △AMN =12MN•AN=√38(√3-m )2,由折叠可知△A'MN≌△AMN ,则∠A'=∠OAB=30°,∴∠A'MO=∠A'+∠OAB=60°,∴在Rt△COM 中,可得CO=OM•tan∠A'MO=√3m ,∴S△COM=12OM•CO=√32m 2,∵S△ABO=12OA•OB=√32,∴S=S △ABO -S △AMN -S △COM =√32-√38(√3-m )2-√3m 2, 即S=-5√38m 2+34m+√38(0<m <√33); ①当点A′落在第二象限时,把S 的值代入(2)中的函数关系式中,解方程求得m ,根据m 的取值范围判断取舍,两个根都舍去了;②当点A′落在第一象限时,则S=SRt△AMN ,根据(2)中Rt△AMN 的面积列方程求解,根据此时m 的取值范围,把S=√324代入,则点M 的坐标为(2√33,0). 故答案为:(√33,0);(2√33,0).(1)根据折叠的性质得出AN=BN ,再由含30度角的直角三角形的性质进行解答即可;(2)根据勾股定理和三角形的面积得出△AMN ,△COM 和△ABO 的面积,进而表示出S 的代数式即可;再把S=√324代入解答即可.此题考查了一次函数的综合问题,关键是利用勾股定理、三角形的面积,三角函数的运用进行分析.【 第 20 题 】【 答 案 】解:(1)当n 为奇数时,x=-1,y=1,z=1,则原式=-1-1+1=-1;(2)当n 为偶数时,不能求出x ,y ,z 的值,理由为:分明为0,无意义.【 解析 】(1)由n 为奇数,利用乘方的意义确定出x 的值,进而求出y 与z 的值,代入原式计算即可得到结果;(2)由n 为偶数,利用乘方的意义确定出x 无意义,不能求出y 与z 的值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.【 第 21 题 】【 答 案 】证明:(1)∵第n 个三角形数为n(n+1)2个, ∴(n(n+1)2×8+1=4n+4n+1=(2n+1)2即任意一个三角形数乘8再加1是一个完全平方数.(2)∵第n-1个三角形数为(n−1)(n−1+1)2个,第n 个三角形数为n(n+1)2个, ∴(n−1)(n−1+1)+n(n+1)=1(n2-n+n2+n)2=n2,即连续两个三角形数的和是一个完全平方数.【解析】8再加1,再利用完全平方公式整理得出答案即可;(1)第n个三角形数n(n+1)2(2)分别用n表示出第n-1,n个三角形数,进一步相加整理得出答案即可.此题考查完全平方数,用字母表示出第n个三角形数,利用完全平方公式因式分解是解决问题的关键.【第 22 题】【答案】(1)由条形统计图可知,男生一共2+6+8+4+4=24人,其中位数是第12、第13个数的平均数,第12、13两数均为7,故男生中位数是7;=7(分),女生成绩平均分为:5×4+6×2+7×10+8×6+9×224=7(分);其中位数是:7+72补充完成的成绩统计分析表如下:(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小;(3)设男生新增优秀人数为x人,则:2+4+x++2x=48×50%,解得:x=6,故6×2=12(人).答:男生新增优秀人数为6人,女生新增优秀人数为12人.【解析】解:(1)本题需先根据中位数的定义,再结合统计图得出它们的平均分和中位数即可求出答案;(2)本题需先根据以上表格,再结合女生的平均分和方差两方面说出支持女生的观点;(3)根据之前男、女生优秀人数+新增男、女生优秀人数=总人数×50%,列方程求解可得.本题考查的是条形统计图的综合运用.熟练进行平均数和中位数的计算是基础,读懂统计图,从统计图中得到必要的信息是解决问题的关键.【 第 23 题 】【 答 案 】(1)证明:∵AF∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,{∠AFE =∠DBE ∠FEA =∠BED AE =DE∴△AFE≌△DBE (AAS );(2)证明:由(1)知,△AFE≌△DBE ,则AF=DB .∵AD 为BC 边上的中线∴DB=DC ,∴AF=CD .∵AF∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC ,∴四边形ADCF 是菱形;(3)连接DF ,∵AF∥BD ,AF=BD ,∴四边形ABDF 是平行四边形,∴DF=AB=5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF=12×4×5=10. 【 解析 】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.【 第 24 题 】【 答 案 】(1)∵M (2,m )在直线y=-x+4的图象上,∴m=-2+4=2,函数y=-x+4的图象与坐标轴交于A 、B 两点,∴A (4,0),B (0,4),∴OA=4,OB=4,∴S △AOB =12OA×OB=12×4×4=8.故答案为2,8.(2)∵m=2,∴M (2,2),∵点N 与点M 关于y 轴对称,∴N (-2,2),∴MN=4,∵线段MN 被反比例函数y =k x 的图象分成两部分,并且这两部分长度的比为1:3,且交点为D , ①当ND DM =13时,即:ND MN =14,∴ND=1,∴D (-1,2),∴k=-1×2=-2,②当ND DM =31时,即:MN DM =41,∴DM=14MN=14×4=1, ∴D (1,2),∴k=1×2=2.故k 的值为-2或2.(3)反比例函数y =k x 图象经过点N ,且N (-2,2),∴k=-2×2=-4,∵反比例函数上存在两个点E (x 1,y 1)、F (x 2,y 2),∴x 1y 1=-4x 2,y 2=-4,∵点E(x1,y1)、F(x2,y2)关于原点对称,∴x2=-x1,y2=-y1,∵M(2,2),N(-2,2),∴点E到直线MN的距离为|y1-2|,点F到直线MN的距离为|y1+2|,∵点E(x1,y1)、F(x2,y2)到直线MN的距离之比为1:3,∴点E(x1,y1)、F(-x1,-y1)到直线MN的距离之比为1:3,①当|y1−2||y1+2|=13时,即:3|y1-2|=|y1+2|当y1>2时,3y1-6=y1+2,∴y1=4,∴y2=-4,x1=-1,x2=1当-2<y1≤2时,-3y1+6=y1+2,∴y1=1,∴y2=-1,x1=-4,x2=4当y1<-2时,-3y1+6=-y1+2,∴y1=2(舍),②当|y1−2||y1+2|=31时,即:3|y1+2|=|y1-2|,当y1>2时,3y1+6=y1-2,∴y1=-4(舍),当-2<y1≤2时,3y1+6=-y1+2,∴y1=-1,∴y2=1,x1=4,x2=-4(∵x1<x2,舍),当y1<-2时,-3y1-6=-y1+2,∴y1=-4,∴y2=4,x1=1,x2=-1(∵x1<x2,舍),∴E(-1,4),F(1,-4)或E(-4,1),F(4,-1)【解析】解:(1)利用点在函数图象上的特点求出m,以及平面直角坐标系中三角形的面积的计算方法(利用坐标轴或平行于坐标轴的直线上的边作为底).(2)利用点的对称点的坐标特点求出N点的坐标,线段MN被反比例函数y=kx的图象分成两部分,并且这两部分长度的比为1:3,且交点为D,分两种情况NDDM =13或NDDM=31计算即可.(3)利用点到平行于坐标轴的直线的距离的计算方法以及和(2)类似的方法分两种情况处理,取绝对值时,也要分情况计算.本题是反比例函数的一道综合题,主要考查了点在函数图象上的特点,如求出m,坐标系中计算三角形面积的方法,利用坐标求两点之间的距离和点到直线的距离,如计算ND,MD,点E,F到直线MN的距离,本题的关键是确定确定两点的距离和点到直线的距离的确定,又用到了分几种情况计算,易丢掉其中一种情况.【 第 25 题 】【 答 案 】解:(1)设线段AB 所表示的y 1与x 之间的函数关系式为y 1=k 1x+b 1,根据题意,得:{b1=60120k 1+b 1=40,解得:{k 1=−16b 1=60,∴y 1与x 之间的函数关系式为y 1=-16x+60(0<x≤120);(2)若m=95,设y 2与x 之间的函数关系式为y 2=k 2x+95,根据题意,得:50=120k 2+95,解得:k 2=-38,这个函数的表达式为:y 2=-38x+95(0<x≤120),设产量为xkg 时,获得的利润为W 元,根据题意,得:W=x[(-38x+95)-(-16x+60)]=-524x 2+35x=-524(x-84)2+1470,∴当x=84时,W 取得最大值,最大值为1470,答:若m=95,该产品产量为84kg 时,获得的利润最大,最大利润是1470元;(3)设y=k 2x+m ,由题意得:120k 2+m=50,解得:k 2=50−m 120,这个函数的表达式为:y=50−m 120x+m ,W=x[(50−m 120x+m )-(-16x+60)]=70−m 120x 2+(m-60)x ,∵60<m <70,∴a=70−m 120>0,b=m-60>0,∴-b 2a <0,即该抛物线对称轴在y 轴左侧,∴0<x≤120时,W 随x 的增大而增大,当x=120时,W 的值最大,故60<m <70时,该产品产量为120kg 时,获得的利润最大.【 解析 】(1)待定系数法求解可得;(2)先求出m=95时,y2与x之间的函数关系式,再根据:总利润=销售量×(售价-成本)列出函数关系式,配方后根据二次函数性质可得其最值情况;(3)用含m的式子表示出y2与x之间的函数关系式,根据:总利润=销售量×(售价-成本)列出函数关系式,再结合60<m<70判断其最值情况.本题主要考查待定系数求一次函数解析式及二次函数的实际应用能力,根据相等关系列出函数关系式,熟练根据二次函数的性质判断函数的最值情况是解题的关键.【第 26 题】【答案】(1)∵点P从A→B→C→D,∴点P移动的长度=AB+BC+CD=(a+2b)cm故答案为:a+2b(2)∵在整个运动过程中,点P移动的距离为(a+2b)cm点O移动的距离为2(a-4)cm,且点P与⊙O的移动速度相等,∴a+2b=2(a-4)①∵点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,∴b 2=a23②∴由①②得a=24,b=8∴点P速度=82=4cm/s∴这5s时间内圆心O移动的距离=4×5=20cm.(3)如图,过点O1作O1E⊥AD于点E,∵O1E⊥AD,AB⊥AD∴∠BAD=∠O1ED=90°,且∠BDA=∠O1DE∴△ABD∽△O1DE∴O1E AB =DEAD即210=DE20∴DE=4∵AD,DP是⊙O1的切线∴∠BDP=∠ADB∵BC∥AD∴∠PBD=∠ADB∴BP=PD在Rt△PCD 中,PD 2=PC 2+CD 2,∴BP 2=(20-BP )2+100∴BP=252∴点P 移动路程=10+252=452cm ∵BP=252>10∴⊙O 在与CD 相切后,返回时与DP 相切,∴⊙O 移动路程=20-4+(4-2)=18cm∴V 1V 2=45218=54 【 解析 】解:(1)由题意可直接求得;(2)由题意可得a+2b=2(a-4),b 2=a 23,可求a=24,b=8,可求点P 的速度,即可求解.(3)由相似三角形的性质和勾股定理分别求出点P 与⊙O 的移动距离,即可求解.本题是圆的综合题,考查了圆的有关知识,矩形的性质,相似三角形的性质和判定,勾股定理等知识,求出点P 移动的路程是本题的关键.。
(word完整版)2016年河北省中考数学试卷及答案(最新word版),推荐文档

2016年河北省初中毕业升学文化课考试 数学试卷一、选择题(本大题有16个小题,共42分.1 —10小题各3分;11 —16小题各2分.在每小 题给出的四个选项中,只有一项是符合题目要求的 ) 1. 计算:-(-1)= () A. ± 1 B.-2 C.-1 D.1 2. 计算正确的是 ()A. ( 5)0 0B. x 2 x 3 x 5C. (ab 2)3 a 3b 5D. 2a 2 a 1 2a5. 若k 0, b 0,则y kx b 的图象可能是 ()7. 关于12的叙述,错误的是() A.12是有理数B.面积为12的正方形边长是.12C. 12 2 ..3D.在数轴上可以找到表示,12的点8. 图1-1和图1-2中所有的正方形都全等,将图1-1的正方形放在图1-2中的①②③④某一 位置,所组成的图形不能围成正方体的位置是 (3.下列图形中,既是轴对称图形,又是中心对称图形的是4.下列运算结果为 A. 1 1xx 2B.-x 1的是 1亠D.( C.6. 关于□ ABCD 勺叙述,正确的是 A.若AB 丄BC 则口 ABCD 是菱形 () B. 若AC 丄BD 则口 ABCD 是正方形 D. 若AB=AD 贝U □ ABCD 是正方形 oO1 _±_-Fl② C. ③ D. 图1- 1/>A.①B.9. 图2为4M的网格图,A,B,C, D, O均在格点上,点O是()A. △ ACD勺外心B. △ ABC的外心C. △ ACM内心D. △ ABC的内心/>10. 如图3,已知钝角厶ABC 依下列步骤尺规作图,并保留痕迹 步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,点交弧①于点 D; 步骤3:连接AD 交BC 延长线于点H. 下列叙述正确的是 ()A.BH 垂直平分线段ADB.AC 平分/ BAD14. a , b, c 为常数,且(a c )2 a 2 c 2,则关于x 的方程ax 2 bx c 0根的情况是() A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根D.有一根为015. 如图6,A ABC 中,/ A=78°, AB=4 AC=6将厶ABC 沿图示中的虚线剪开,剪下的阴影C. S ABC BC AHD.AB=AD11. 点A ,B 在数轴上的位置如图所示,其对应的数分别是 甲:b a 0; 乙:a b 0; 丙:a |b ;A.甲乙B.丙丁C.甲丙D.乙丁a 和b ,对于以下结论:丁: b0.其中正确的是()a12. 在求3x 的倒数的值时,嘉淇同学误将 述情形,所列关系式成立的是()3x 看成了 8x ,她求得的值比正确答案小 5,依上 B.1 3x8x 5D.8x 513. 如图5,将口ABC [沿对角线AC 折叠,使点B 落在点B'处,若/ 1- / 2=44° ()A.66 °B.104°C.114°D.124°,则/ B 为图216. 如图7,/ AO=120°, OP 平分/ AOB 且 0F=2,若点 M N 分别在 OA 0B 上,且△ PMN二、填空题(本大题共3个小题,共10分,17-18小题各3分;19小题有2个空,每空2分, 把答案写在题中横线上)仃.8的立方根为 _________________18. 若 mn m 3,则 2mn 3m 5mn 10 _________________19. 如图8,已知/ AO=7°,一条光线从点A 发出后射向0B 边,若光线与0B 边垂直,则光 线沿原路返回到点A,此时/ A=90° -7° =83° .当/A<83。
年河北省中考数学试卷含答案解析(word版)

2016年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=( )A.±1 B.﹣2ﻩC.﹣1ﻩD.12.计算正确的是()A.(﹣5)0=0ﻩB.x2+x3=x5C.(ab2)3=a2b5ﻩD.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.ﻩD.4.下列运算结果为x﹣1的是( )A.1﹣B.•ﻩC.÷ D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.ﻩB.ﻩC.ﻩD.6.关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形ﻩB.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是( )A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①ﻩB.②ﻩC.③ﻩD.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心ﻩC.△ACD的内心 D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论: 甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是( )A.甲乙ﻩB.丙丁ﻩC.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5B.=+5ﻩC.=8x﹣5ﻩD.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根ﻩB.有两个不相等的实数根C.无实数根ﻩD.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A.ﻩB.C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A .1个ﻩB.2个ﻩC .3个ﻩD.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m +3,则2mn +3m﹣5mn +10=______.19.如图,已知∠AOB=7°,一条光线从点A 出发后射向OB 边.若光线与O B边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB反射到线段AO 上的点A 2,易知∠1=∠2.若A1A 2⊥AO,光线又会沿A2→A 1→A原路返回到点A ,此时∠A=______°.…若光线从A 点出发后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F ,C ,E 在直线l上(F ,C之间不能直接测量),点A,D 在l 异侧,测得AB=DE,AC =DF,BF=EC .(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P,并指出她与嘉嘉落回到圈A的可2能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元) x1x2=6 x3=72x4…xn调整后的单价y(元)y1y2=4y=59y4…y n3已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出0t的取值范围.2016年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2016年河北省中考数学试题及答案

2016年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2016年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2016河北路北区二模(word版,有答案)汇总

20 1 6年路北区九年级第二次模拟检测理科综合试卷本试卷分卷I和卷lI两部分;卷I为选择题。
卷Il为非选择题。
本试卷满分120分,考试时间为120分钟。
卷I(选择题,共47分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
答在试卷上无效。
一、选择题(本题包括22个小题,共47分。
其中l~19题为单选题,每题2分;20~22小题为多选题.每题3分。
对于多选题,漏选得2分,错选、多选得0分。
) 1.小明的妈妈总是膝盖疼,医生说她骨质疏松,需要补钙,下列食品中不适合的是A.火白菜B.虾皮C.豆浆D.牛奶2.夏天从冰箱里拿出一瓶饮料,观察到饮料外壁潮湿,说明空气中含有A.氧气B.氮气C.水蒸气D.二氧化碳3.图1所示的实验操作中,正确的是4.钒被誉为“合金的维生素”,钒元素的相关信息如图2。
下列有关钒的说法正确的是A.在化学反应中容易得到电子B.原子序数为23C.原子核内中子数为23D.相对原子质量为50.94g5.在中考体育考试中,很多学生在测试结束后感觉小腿酸痛,这是因为在剧烈的高强度运动中,人体内的葡萄糖(C6H1206)会进行无氧反应,产生乳酸(C3H603),下列说法正确的是A.乳酸是一种氧化物B.乳酸分子是山碳元素、氢元素和氧元素组成的C.葡萄糖与乳酸中所含的元素种类相同D.葡萄糖不能为人体提供能量6.图3是A、B、C三种固体物质的溶解度曲线,下列分析不正确的是A.50℃时,三种物质的溶解度由大到小的顺序是A>B>CB.50℃时,把5g A放入10g水中形成15gA的饱和溶液C.给50℃A的饱和溶液降温一定会析出晶体D.分别将一定量三种物质的饱和溶液从50℃降至20℃时,所得溶液溶质质量分数大小关系是B>C=A7.图4所示的图像肯定不能正确反应的变化关系是A.牛锈的铁钉放在足量盐酸中,时间与产生气体质量的关系B.部分变质的氢氧化钠溶液中滴加稀盐酸,加入盐酸的质量与溶液总质量的关系C.向实验室制取CO2剩余的废液中加入碳酸钠溶液,加入碳酸钠溶液的质量与产生沉淀的质量的关系D.锌铜合金中加入盐酸,反应时间与剩余固体的质量的关系8.生活中有太多的变化,请你判断下列与其他三种变化有本质上区别的是A.树根“变”根雕B.牛奶“变”酸奶C.玉石“变”印章D.机器人“变”形9.下列关于物质分类的说法正确的是A.海水、泉水、糖水、冰水都属于溶液B.盐酸、氢氧化钠溶液、紫铜等都是靠自由电子导电的物质C.陶瓷、合成橡胶、塑料都是很好的绝缘材料D.金刚石、石墨和C60都是由原子构成的物质10.下列厨房中的一些现象或做法与其对应知识的关系,不正确的是A.打开醋瓶能闻到酸味——表明醋分子做无规则运动B.用高压锅煲汤——利用降低锅内气压来提高水的沸点C.燃气灶点燃——将燃料的化学能转化为内能D.炒菜时——主要是6111热传递来改变菜的内能11.图5所示情景所对应的图像正确的是A.甲图:向二氧化锰中加入双氧水,加入双氧水的质量和产生气体的质量关系B.乙图:电源电压不变,移动P,电压表示数和电流表示数的图像C.丙图:往浴缸中匀速注水直至注满,浴缸底部受到水的压强随时问变化的曲线D.丁图:除去一氧化碳中的二氧化碳,通入气体的质量与溶液质量的关系12.下列做法不符合“节能减排”理念的是A.提倡使用可降解塑料B.全面实现垃圾分类和无害化处理C.路灯照明使用人阳能发电D.空调、电脑等电器长期待机13.对下列现象的解释正确的是A.雨后的彩虹是山于光的反射彤成的B.人向平面镜走近的过程中,人在平面镜中所成的像逐渐变人C.喝完可乐常常会打嗝是因为发生了碳酸分解的化学反应D.用纯碱检验真假红酒,利用的是纯碱溶液呈碱性,能使红酒中色素变色14.从图6所示实验中得出的结论不正确的是A.甲图:紫色石蕊溶液变红说明二氧化碳呈酸性B.乙图:说明硝酸钾的溶解度随温度降低而减小C.丙图:当水位上升到A处时,红灯亮D.丁图:用钢尺击打下部一个棋子,上部棋子仍落在原处是由于上部棋子有惯性15.小明参加体育加试时对一些物理量做了估测,与实际相符的是A.一双运动鞋的质量是10g B.跑完800米所需时间是20sC.加试时当地平均气温约为60℃D.他跑步时的步幅约为1m 16.关于声现象,下列说法正确的是A.声和电磁波都能传递信息且都能在真空中传播B.“听诊器”能使人的心脏振动幅度增大,响度增大C、住宅安装双层玻璃窗可以减小噪声对室内的影响D.只有主人说出暗语时才能打开“声纹锁”,其辨别声音的主要依据是音调17.2015年5月26 日印度出现高温天气,首都马德里的一条道路上的沥青被烤化,斑马线变得扭曲模糊,如图7所示。
河北省2016届中考数学模拟试卷(二)(解析版)

2016年河北省中考数学模拟试卷(二)一、选择题:本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合要求的1.计算4﹣2的结果是()A.﹣8 B.﹣C.﹣D.2.如果是二次根式,那么a的取值范围是()A.a≥﹣4 B.a≤﹣4 C.a≠﹣4 D.a>43.下列图形中,∠1与∠2互为补角的是()A.B.C.D.4.如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.125.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)26.如图,四个有理数在数轴上的对应点分别为M,P,N,Q,若原点在点N与点P之间,则绝对值最大的数表示的点是()A.点M B.点P C.点Q D.点N7.如图所示的两个几何体都是由若干个相同的小正方体搭成的,在它们的三视图中,相同的视图是()A.主视图B.左视图C.俯视图D.三视图8.己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>69.在河北某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里1.6元;方案二:起步价调至8元/3公里,而后每公里1.8元.若某乘客乘坐出租车(路程多于3公里)时用方案一比较核算,则该乘客乘坐出租车的路程可能为()A.7公里B.5公里C.4公里D.3.5公里10.2016年1月5日,河北外国语学院举行“我说我校训”大学生演讲比赛,参赛选手共有12名.梦梦根据比赛中七位评委所给的某位参赛选手的分数制作了如下表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.众数 B.中位数C.平均数D.方差11.郑萌用已知线段a,b(a>b,且b≠a),根据下列步骤作△ABC,则郑萌所作的三角形是()步骤:①作线段AB=a;②作线段AB的垂直平分线MN,交AB于点O;③以点B为圆心,线段b的长为半径画弧,交⊙O于点C,连接BC,AC.A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形12.如图,在一条笔直的小路上有一盏路灯,晚上小雷从点B处径直走到点A处时,小雷在灯光照射下的影长y与行走的路程x之间的函数图象大致是()A .B .C .D .13.如图,在△ABC 中,AC=10,AB=8,直线l 分别与AB ,AC 交于M ,N 两点,且l ∥BC ,若S △AMN :S △ABC =4:9,则AM+AN 的长为( )A .10B .12C .14D .1614.张萌取三个如图所示的面积为4cm 2的钝角三角形按如图所示的方式相连接,拼成了一个正六边形,则拼成的正六边形的面积为( )A .12cm 2B .20cm 2C .24cm 2D .32cm 215.如图,在▱ABCD 中,AB=4,AD=2,E ,F 分别为边AB ,CD 上的点,若四边形AECF 为正方形,则∠D 的度数为( )A .30°B .45°C .60°D .75°16.如图,直线y=x+1分别与x 轴、y 轴交于点M ,N ,一组线段A 1C 1,A 2C 2,A 3C 3,…A n C n 的端点A 1,A 2,A 3,…A n 依次是直线MN 上的点,这组线段分别垂直平分线段OB 1,B 1B 2,B 2,B 3,…,B n ﹣1B n ,若OB 1=B 1B 2=B 2B 3=…=B n ﹣1B n =4,则点A n 到x 轴的距离为( )A.4n﹣4 B.4n﹣2 C.2n D.2n﹣2二、填空题:本大题共4小题,每小题3分,共12分17.2015年12月31日,石家庄城市轨道交通建设规划调整获国家发改委批复,该项目的总投资约为132********元,其中资本金占总投资的40%,该资本金由石家庄市财政资金解决.用科学记数法表示资本金为元.18.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为.19.将一张宽为4cm的矩形纸片折叠成如图所示图形,若AB=6cm,则AC的长度为.20.如图,已知直线y=2x+6与x轴、y轴分别交于M,N两点,以OM为边在x轴下方作等边三角形OMP,现将△OMP沿y轴向上平移,当点P恰好落在直线MN上时,点P运动的路程为.三、本大题共6小题,共66分,解答应写出文字说明、证明过程或演算步骤21.已知分式(+n)÷,然后解答下列问题.(1)若n满足一元二次方程n2+n﹣2=0,先化简原分式,再求值;(2)原分式的值能等于0吗?为什么?22.为了解空气质量情况,河北省某市从环境检测网随机抽取了2015年100天的空气质量指数,绘制了如图所示的统计表和如图所示的不完整的频数分布直方图,请你根据图表中提供的信息,解答下面的问题.(1)请把空气质量指数的频数分布直方图补充完整:(2)在图中,空气质量指数的众数位于级别的;(3)长期在外地工作的王兵因家中有事返家,求他到家的当天恰好空气质量指数不高于150的概率.23.某超市经营的杂粮食物盒有A,B两种型号,单个盒子的容量和价格如下表所示,其中A型盒子正做促销活动:一次性购买三个及以上可返现8元.(1)张芳、王楠两人结伴去购物,请你根据两人的对话,判断怎样买最省钱:张芳:“A型盒子有促销,我正好买几个装大米用,我买4个正好够用.”王楠:“嗯,我也买几个,不过,我家得需要5个.”张芳:“走,结账去.”王楠:“等等,咱俩合计一下,怎么买最省钱…”(2)小红和妈妈也来买盒子,下面是两人的对话:妈妈:“这些盒子不错,买5个B型让孩子恰好能把咱家30升的小米都装上”小红:“可是B型盒子没有折扣,咱可以两种盒子搭配着买,既能每个盒子都装满,还能省钱”①设小红需要买A型号的盒子x个,一次性购买盒子的总费用为y元,求y与x的函数关系式;②当x=3时,求小红和妈妈当天一次性购买盒子的总费用.24.已知关于x的二次函数y=﹣x2﹣2x﹣与x轴有两个交点,m为正整数.(1)当﹣x2﹣2x﹣=0时,求m的值;(2)如图,当该二次函数的图象经过原点时,与直线y=﹣x﹣2的图象交于A,B两点,求A,B 两点的坐标;(3)将(2)中的二次函数图象x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M”形状的新图象.现有直线y=a(a≠0)与该新图象恰好有两个公共点,直接写出a的取值范围.25.发现:(1)若干平面上三点能够确定一个圆,那么这三点所满足的条件是.(2)我们判断四个点A,B,C,D(任意其中个三点不共线)是否在同一圆上时,一般地,先作过A,B,C三点的圆,然后判断点D是否在这个圆上,如果在,则这四个点共圆,如果不在,则不存在同时过这四个点的圆.思考:(1)如图1,∠ACB=∠ADB=90°,那么点A,B,C,D四点(填“在”或“不在”)同一个圆上;(2)如图2,如果∠ACB=∠ADB=a(a≠90°),(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?芳芳已经证明了点D不在圆内(如图所示),只要能够证明点D也不再圆外,就可以判断点D一定在圆上了,请你完成证明过程.芳芳的证明过程:如图3,过A,B,C三点作圆,圆心为O.假设点D在⊙O内,设AD的延长线交⊙O于点P,连接BP.易得∠APB=∠ACB.又由∠ADB是△BPD的外交,得到∠ADB>∠APB,因此∠ADB>∠ACB,这个结论与条件中的∠ACB=∠ADB矛盾,所以点D不在圆内.应用:如图4,在四边形ABCD中,连接AC,BD,∠CAD=∠CBD=90°,点P在CA的延长线上,连接DP.若∠ADP=∠ABD.求证:DP为Rt△ACD的外接圆的切线.26.在△ABC中,点E,F分别为AB,AC的中点,连接CE,BF,CE与BF交于点M,且CE⊥BF,连接EF.(1)如图1,当∠FEC=45°,EF=2时,①填空:BC=;BF=.②求证:AB=AC;(2)如图2,当∠FEC=30°,BC=8时,求CE和AB的长度;(3)如图3,在▱ABCD中,E,F分别是BC,AD的中点,连接AC,BF,AC与BF交于点M,且BF⊥AC,连接AE,EF,AE与BF交于点G,EF与AC交于点H,求的值.2016年河北省中考数学模拟试卷(二)参考答案与试题解析一、选择题:本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合要求的1.计算4﹣2的结果是()A.﹣8 B.﹣C.﹣D.【考点】负整数指数幂.【分析】根据负整数指数幂的运算法则进行计算,即可求出答案.【解答】解:4﹣2==;故选D.【点评】此题考查了负整数指数幂;幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.2.如果是二次根式,那么a的取值范围是()A.a≥﹣4 B.a≤﹣4 C.a≠﹣4 D.a>4【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,可以求出a的范围.【解答】解:由是二次根式,则3a+12≥0,解得:a≥﹣4,那么a的取值范围是:a≥﹣4.故选:A.【点评】本题考查了二次根式有意义的条件,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.下列图形中,∠1与∠2互为补角的是()A.B.C.D.【考点】余角和补角.【分析】根据补角的概念对各个选项进行判断即可.【解答】解:根据补角的概念可知,C中∠1与∠2互为补角,故选:C.【点评】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.12【考点】三角形的重心.【分析】首先根据D是△ABC的重心,可得BE是AC边的中线,E是AC的中点;然后根据AE=4,求出AC的长度是多少即可.【解答】解:∵D是△ABC的重心,∴BE是AC边的中线,E是AC的中点;又∵AE=4,∴AC=8.故选:B【点评】此题主要考查了三角形的重心的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的重心是三角形三边中线的交点.5.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别将多项式4x2﹣4与多项式x2﹣2x+1进行因式分解,再寻找他们的公因式.【解答】解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.【点评】本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.6.如图,四个有理数在数轴上的对应点分别为M,P,N,Q,若原点在点N与点P之间,则绝对值最大的数表示的点是()A.点M B.点P C.点Q D.点N【考点】绝对值;数轴.【分析】先根据相反数确定原点的位置,再根据点的位置确定绝对值最大的数即可解答.【解答】解:∵原点在点N与点P之间,∴原点的位置大约在O点,∴绝对值最大的数的点是M点.故选A.【点评】本题考查了数轴,相反数,绝对值,有理数的大小比较的应用,解此题的关键是找出原点的位置,注意数形结合思想的运用.7.如图所示的两个几何体都是由若干个相同的小正方体搭成的,在它们的三视图中,相同的视图是()A.主视图B.左视图C.俯视图D.三视图【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:从左边看两个图都是第一层两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.8.己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>6【考点】反比例函数的性质.【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选C.【点评】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.9.在河北某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里1.6元;方案二:起步价调至8元/3公里,而后每公里1.8元.若某乘客乘坐出租车(路程多于3公里)时用方案一比较核算,则该乘客乘坐出租车的路程可能为()A.7公里B.5公里C.4公里D.3.5公里【考点】一元一次不等式的应用.【分析】设该乘客乘坐出租车的路程是x千米,根据题意可得出租车费用,根据乘坐出租车(路程多于3公里)时用方案一比较核算列出不等式求解.【解答】解:设该乘客乘坐出租车的路程是x千米,根据题意得7+1.6(x﹣2)<8+1.8(x﹣3),解得:x>6.所以只有7公里符合题意.故选:A.【点评】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,依题意得出每一种方案的费用,进一步列出不等式进行求解.10.2016年1月5日,河北外国语学院举行“我说我校训”大学生演讲比赛,参赛选手共有12名.梦梦根据比赛中七位评委所给的某位参赛选手的分数制作了如下表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.众数 B.中位数C.平均数D.方差【考点】方差;算术平均数;中位数;众数.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选B【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.11.郑萌用已知线段a,b(a>b,且b≠a),根据下列步骤作△ABC,则郑萌所作的三角形是()步骤:①作线段AB=a;②作线段AB的垂直平分线MN,交AB于点O;③以点B为圆心,线段b的长为半径画弧,交⊙O于点C,连接BC,AC.A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形【考点】作图—复杂作图.【分析】根据题意作出线段AB的垂直平分线,进而作出⊙O,进而结合圆周角定理得出答案.【解答】解:如图所示:△ABC是直角三角形.故选:C.【点评】此题主要考查了复杂作图,根据题意正确作出图形结合圆周角定理分析是解题关键.12.如图,在一条笔直的小路上有一盏路灯,晚上小雷从点B处径直走到点A处时,小雷在灯光照射下的影长y与行走的路程x之间的函数图象大致是()A.B.C.D.【考点】函数的图象;中心投影.【分析】根据中心投影的性质得出小红在灯下走的过程中应长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小雷由B处径直走到A处,他在灯光照射下的影长l 与行走的路程s之间的变化关系,应为当小雷走到灯下以前为:l随s的增大而减小,∴用图象刻画出来应为C.故选:C【点评】此题主要考查了函数图象以及中心投影的性质,得出l随s的变化规律是解决问题的关键.13.如图,在△ABC中,AC=10,AB=8,直线l分别与AB,AC交于M,N两点,且l∥BC,若S△AMN:S△ABC=4:9,则AM+AN的长为()A.10 B.12 C.14 D.16【考点】相似三角形的判定与性质.【分析】由l∥BC,得到△AMN∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵l∥BC,∴△AMN∽△ABC,∴,==,∴=,∴,∵AC=10,AB=8,∴,∴AM+AN=12,故选B.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.14.张萌取三个如图所示的面积为4cm2的钝角三角形按如图所示的方式相连接,拼成了一个正六边形,则拼成的正六边形的面积为()A.12cm2B.20cm2C.24cm2D.32cm2【考点】正多边形和圆.【分析】根据题意得出面积为4cm2的钝角三角形为等腰三角形,顶角∠BAC=120°,∠B=∠C=30°,△DBC为等边三角形,作AM⊥BC于M,设AM=x,则AB=2x,BM=x,BC=2x,由三角形的面积得出x2=4,连接DM,则DM⊥BC,由等边三角形的性质得出DM=BM=3x,求出△BCD 的面积,即可得出结果.【解答】解:如图所示:根据题意得:面积为4cm2的钝角三角形为等腰三角形,顶角∠BAC=120°,∠B=∠C=30°,△DBC 为等边三角形,作AM⊥BC于M,设AM=x,则AB=2x,BM=x,∴BC=2x,∴•2x•x=4,∴x2=4,连接DM,则DM⊥BC,∴DM BM=3x,∴△BCD的面积=BC•DM=×2x•3x=3x2=3×4=12,∴拼成的正六边形的面积=3×4+12=24(cm2);故选:C.【点评】本题考查了正多边形和圆、等腰三角形的性质、等边三角形的性质、三角形面积的计算等知识;通过设未知数求出△BCD的面积是解决问题的突破口.15.如图,在▱ABCD中,AB=4,AD=2,E,F分别为边AB,CD上的点,若四边形AECF为正方形,则∠D的度数为()A.30°B.45°C.60°D.75°【考点】正方形的性质;平行四边形的性质.【分析】根据四边形AECF 是正方形,设AE=EC=CF=AF=x ,则在RT △DAF 中有AD=2,AF=x ,DF=4﹣x ,利用勾股定理求出x 即可解决问题.【解答】解:∵四边形ABCD 是正方形,∴AE=EC=CF=AF ,∠AFC=∠DFA=90°,设AE=EC=CF=AF=x ,在RT △DAF 中,∵∠DFA=90°,AD=2,DF=4﹣x ,AF=x ,∴(2)2=(4﹣x )2+x 2 ∴x=2,∴AF=DF=2,∴∠D=45°,故选B .【点评】本题考查正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程,体现了转化的思想.属于中考常考题型.16.如图,直线y=x+1分别与x 轴、y 轴交于点M ,N ,一组线段A 1C 1,A 2C 2,A 3C 3,…A n C n 的端点A 1,A 2,A 3,…A n 依次是直线MN 上的点,这组线段分别垂直平分线段OB 1,B 1B 2,B 2,B 3,…,B n ﹣1B n ,若OB 1=B 1B 2=B 2B 3=…=B n ﹣1B n =4,则点A n 到x 轴的距离为( )A .4n ﹣4B .4n ﹣2C .2nD .2n ﹣2【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】由直线解析式可以找出M、N点坐标,即得出NO、MO的长度,再由已知得出OC1,OC2,OC3,…,OC n这组线段的长度,依据三角形相似的性质可得出结论.【解答】解:令x=0,则有y=1;令y=0,则有x+1=0,解得:x=﹣2.故点M(﹣2,0),点N(0,1).B n,且∵一组线段A1C1,A2C2,A3C3,…A nC n分别垂直平分线段OB1,B1B2,B2,B3,…,B n﹣1OB1=B1B2=B2B3=…=B nB n=4,﹣1∴OC1=2,OC2=4+2,OC3=4×2+2,…,OC n=4×(n﹣1)+2,∴MC1=4,MC2=4+4,MC3=4×2+4,…,MC n=4×(n﹣1)+4=4n.∵A n C n∥y轴,∴△MNO∽△MA n C n,∴=.∵NO=1,MO=2,∴A n C n=MC n•=2n.故选C.【点评】本题考查了坐标系上点的特征依据相似三角形的判定及性质,解题的关键是找出OC1,OC2,OC3,…,OC n这组线段的长度.本题属于基础题,难度不大,解决该类问题的技巧是选找到线段长度的规律.二、填空题:本大题共4小题,每小题3分,共12分17.2015年12月31日,石家庄城市轨道交通建设规划调整获国家发改委批复,该项目的总投资约为132********元,其中资本金占总投资的40%,该资本金由石家庄市财政资金解决.用科学记数法表示资本金为 1.32×109元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将132********用科学记数法表示为:1.32×109.故答案为:1.32×109.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为0.【考点】多项式乘多项式.【专题】计算题;整式.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出原式的值.【解答】解:已知等式整理得:x2+2x﹣3=ax2+bx+c,∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.19.将一张宽为4cm的矩形纸片折叠成如图所示图形,若AB=6cm,则AC的长度为6cm.【考点】翻折变换(折叠问题).【分析】延长原矩形的边,然后根据两直线平行,内错角相等可得∠1=∠ACB,根据翻折变换的性质可得∠1=∠ABC,从而得到∠ABC=∠ACB,再根据等角对等边可得AC=AB,从而得解.【解答】解:如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.故答案为:6cm.【点评】本题考查了翻折变换的性质,平行线的性质,等腰三角形的判定,熟记各性质是解题的关键,难点在于作出辅助线.20.如图,已知直线y=2x+6与x轴、y轴分别交于M,N两点,以OM为边在x轴下方作等边三角形OMP,现将△OMP沿y轴向上平移,当点P恰好落在直线MN上时,点P运动的路程为+3.【考点】轨迹.【分析】易得点P的横坐标为﹣,点P运动到x轴上时,根据等边三角形的性质求得PC的长度;当点P落在直线MN上时,把点P的横坐标代入直线方程求得相应的y值,即P′C的长度,易得点P运动的总路程为CP′+CP.【解答】解:如图,∵直线y=2x+6与x轴、y轴分别交于M,N两点,∴M(﹣3,0),N(0,6),∴OM=3,ON=6.又∵△OMP是等边三角形,∴OC=,CP=.把x=﹣代入y=2x+6,得y=2×(﹣)+6=3,即CP′=3,故点P运动的路程为:CP′+CP=+3.故答案是:+3.【点评】本题考查了轨迹,解题时,利用了等边三角形的性质,一次函数图象与坐标轴的交点以及一次函数图象上点的坐标特征,根据直线方程求得点M、N的坐标是解题的关键.三、本大题共6小题,共66分,解答应写出文字说明、证明过程或演算步骤21.已知分式(+n)÷,然后解答下列问题.(1)若n满足一元二次方程n2+n﹣2=0,先化简原分式,再求值;(2)原分式的值能等于0吗?为什么?【考点】分式的化简求值.【分析】(1)将原分式化简,根据n2+n﹣2=0求出n的值,将求得的符合分式意义的n的值代入计算可得;(2)若分式的值为0,即分子为0,可得n的值不符合分式有意义条件.【解答】解:(1)原式===,∵n满足一元二次方程n2+n﹣2=0,∴n=1或n=﹣2,n=1时,n﹣1=0,分式无意义,故n=1舍去,当n=﹣2时,原式===;(2)原分式的值不能为0,当分式的值为0时,即n+1=0,得n=﹣1,当n=﹣1时,原式中分母为0,无意义,故分式的值不能为0.【点评】本题主要考查分式的化简求值,分式的化简是根本,选取符合分式有意义的n的值是关键.22.为了解空气质量情况,河北省某市从环境检测网随机抽取了2015年100天的空气质量指数,绘制了如图所示的统计表和如图所示的不完整的频数分布直方图,请你根据图表中提供的信息,解答下面的问题.(1)请把空气质量指数的频数分布直方图补充完整:(2)在图中,空气质量指数的众数位于优级别的;(3)长期在外地工作的王兵因家中有事返家,求他到家的当天恰好空气质量指数不高于150的概率.【考点】频数(率)分布直方图;频数(率)分布表;众数;概率公式.【分析】(1)利用总人数100减去其它组的人数即可求得m的值,然后利用重度污染的人数减去质量指数是201﹣250的天数求得指数是251﹣300的天数,从而补全直方图;(2)根据众数的定义即可求得;(3)利用概率公式即可直接求解.【解答】解:(1)m=100﹣22﹣18﹣9﹣15﹣6=8,251﹣300一组的频数是15﹣5=30.;(2)空气质量指数的众数位于良级别.故答案是:良;(3)他到家当天空气质量指数不高于150的概率是=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.某超市经营的杂粮食物盒有A,B两种型号,单个盒子的容量和价格如下表所示,其中A型盒子正做促销活动:一次性购买三个及以上可返现8元.(1)张芳、王楠两人结伴去购物,请你根据两人的对话,判断怎样买最省钱:张芳:“A型盒子有促销,我正好买几个装大米用,我买4个正好够用.”王楠:“嗯,我也买几个,不过,我家得需要5个.”张芳:“走,结账去.”王楠:“等等,咱俩合计一下,怎么买最省钱…”(2)小红和妈妈也来买盒子,下面是两人的对话:妈妈:“这些盒子不错,买5个B型让孩子恰好能把咱家30升的小米都装上”小红:“可是B型盒子没有折扣,咱可以两种盒子搭配着买,既能每个盒子都装满,还能省钱”①设小红需要买A型号的盒子x个,一次性购买盒子的总费用为y元,求y与x的函数关系式;②当x=3时,求小红和妈妈当天一次性购买盒子的总费用.【考点】一次函数的应用.【分析】(1)分别计算张芳、王楠分开单独购买和两人合在一起购买所需费用,比较可得;(2)①根据题意表示出需买B型盒子的数量,再根据“总费用=A型盒子的总费+B型盒子的总费用”可列出函数关系式,②将x=3代入①中所列函数关系式计算即可.【解答】解:(1)若张芳、王楠分开单独购买需4×10﹣8+5×10﹣8=74元,若张芳、王楠合在一起购买需(4+5)×10﹣8×3=66元,故张芳、王楠两人合在一起购买最省钱;(2)①若小红买A型号的盒子x个,则小红需买B型号的盒子数为:,即个;根据题意,得:y=10x+12×=2x+60,即y=2x+60;②当x=3时,y=2×3+60=66元,故当x=3时,求小红和妈妈当天一次性购买盒子的总费用为66元.【点评】本题主要考查一次函数的实际应用能力,根据相等关系列出函数关系式是解题关键.24.已知关于x的二次函数y=﹣x2﹣2x﹣与x轴有两个交点,m为正整数.(1)当﹣x2﹣2x﹣=0时,求m的值;(2)如图,当该二次函数的图象经过原点时,与直线y=﹣x﹣2的图象交于A,B两点,求A,B 两点的坐标;(3)将(2)中的二次函数图象x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M”形状的新图象.现有直线y=a(a≠0)与该新图象恰好有两个公共点,直接写出a的取值范围.【考点】二次函数综合题.【分析】(1)根据根的判别式,可得不等式,根据解不等式,可得答案;(2)根据解方程组,可得交点坐标;(3)根据翻折的性质,可得新函数翻折部分的顶点的纵坐标为﹣1,根据平行于x轴的直线与新函数翻折部分没有交点,可得答案.【解答】解:(1)由﹣x2﹣2x﹣=0有两个不相等实数根,∴△=b2﹣4ac=(﹣2)2﹣4×(﹣1)×(﹣)>0,解得m<2.由m是正整数,m=1;(2)联立抛物线与直线y=﹣x﹣2,得,解得,,A的坐标(﹣2,0),点B的坐标(1,﹣3);。
2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。
中考数学二模试卷(含解析)29

2016年河北省唐山市乐亭县中考数学二模试卷一、选择题(本大题共16个小题,共42分)1.比﹣2小3的数是()A.﹣5 B.1 C.﹣1 D.﹣62.如图,将三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.30° B.40° C.50° D.60°3.下列四个多项式,能因式分解的是()A.a﹣1 B.a2+1 C.x2﹣4y D.x2﹣6x+94.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.225.一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根6.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x D.x≥7.在▱ABCD中,对角线AC、BD交于O点,AC=6,BD=2,设AB的长为x,将x的取值范围在数轴上表示正确的是()A. B. C. D.8.阅读下面材料:在数学课上,老师提出如下问题:尺规作图1,作一个角等于已知角.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AO小明同学作法如下,如图2:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D;③以点O′为圆心,以OC长为半径作弧,交O′A′于C′;④以点C′为圆心,以CD为半径作弧,交③中所画弧于D′;⑤过点D′作射线O′B′,则∠A′O′B′就是所求的角.老师肯定小明的作法正确,则小明作图的依据是()A.两直线平行,同位角相等B.两平行线间的距离相等C.全等三角形的对应角相等D.两边和夹角对应相等的两个三角形全等9.下列说法中正确的是()A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近D.为了解某种节能灯的使用寿命,选择全面调查10.如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A. B. C. D.11.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.此时轮船与灯塔的距离为()A.40海里B.80海里C.60海里D.20海里12.星期日上午小明骑车去姥姥家吃午饭.已知从小明家去姥姥家的路是上坡路,吃过午饭后,下午按原路返回,设小明从家出发后所用的时间为x(小时),骑车所走的路程为y(千米),则y与x的函数图象大致是()A. B. C. D.13.定义:将一个图形L沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L在该方向的拖影.如图,四边形ABB′A′是线段AB水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是()A. B. C. D.14.已知x2﹣4x﹣1=0,则代数式2x(x﹣3)﹣(x﹣1)2+3的值为()A.3 B.2 C.1 D.﹣115.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O 恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π﹣9 B.9π﹣6 C.9π﹣18 D.9π﹣1216.二次函数y=ax2+bx+c(a≠0)图象如图所示,则下列结论中错误的是()A.当m≠1时,a+b>am2+bmB.若a+bx1=a+bx2,且x1≠x2,则x1+x2=2C.a﹣b+c>0D.abc<0二、填空题(本大题共4个小题,每小题3分,共12分)17.若﹣2a m b4与3a2b n+2是同类项,则m+n=______.18.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是S=0.20, =0.16,则甲、乙两名同学成绩比较稳定的是______.19.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是______.20.在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是______.三、解答题(本大题共5小题,满分共66分)21.怎么可能会有﹣2=8呢?小明边解答边琢磨,可还是找不出原因,下面是小明的解题过程,请你来帮他解决吧.解方程: +3=.解:方程两边通分,得. =,…第①步方程两边约去3x﹣5,得=,…第②步去分母,得8+x=x﹣2,…第③步所以8=﹣2.(1)小明的解法从第______步开始出现错误;(2)错误原因是______;(3)请写出正确的解答过程.22.如图,正方形网格中的每一个小正方形的边长为1个单位长度,题中所给各点均在格点上.(1)将△ABC向右平移4个单位,再向上平移1个单位,得到△A1B1C1,画出△A1B1C1(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的2倍,得到△A2B2C2,画出△A2B2C2;(3)连接AO,直接写出,tan∠CAO,sin∠BAO的值.23.八(1)班五位同学参加学校举办的数学知识竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分,赛后A、B、C、D、E五位同学对照平分标准回忆并记录了自己的答题情况(E同学只记准有6道题未答),具体如表:参赛同学答对题数答错题数未答题数A190 1B17 2 1C15 2 3D17 1 2E// 6(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分、81分、64分、83分、63分.①求E同学答对得个数和答错题的个数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分.与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,则记错的为______同学.24.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(﹣2,1),点B(1,n).(1)求此一次函数和反比例函数的解析式;(2)请直接写出满足不等式kx+b﹣<0的解集;(3)在平面直角坐标系的第二象限内边长为1的正方形EFDG的边均平行于坐标轴,若点E (﹣a,a),如图,当曲线y=(x<0)与此正方形的边有交点时,求a的取值范围.25.某公司销售的一种时令商品每件成本为20元,经过市场调查分析,5月份的日销售件数为:﹣2t+96(其中t为天数),并且前15天,每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤15,且t为整数),第16天到月底每天的价格y2(元/件)与时间t(天)的函数关系式为y2=t+40(16≤t≤31,且t为整数),根据以上信息,解答下列问题:(1)5月份第10天的销售件数为______件,销售利润为______元;(2)请通过计算预测5月份中哪一天的日销售利润w最大,最大日销售利润是多少?(3)在实际销售的前15天中,该公司决定每销售一件商品就捐赠m元利润(m<4)给希望工程.公司通过销售记录发现,前15天中,每天扣除捐赠后的日销售利润w随t的增大而增大,求m的取值范围.2016年河北省唐山市乐亭县中考数学二模试卷参考答案与试题解析一、选择题(本大题共16个小题,共42分)1.比﹣2小3的数是()A.﹣5 B.1 C.﹣1 D.﹣6【考点】有理数的减法.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣2﹣3=﹣5,故选A2.如图,将三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.30° B.40° C.50° D.60°【考点】平行线的性质.【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【解答】解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B3.下列四个多项式,能因式分解的是()A.a﹣1 B.a2+1 C.x2﹣4y D.x2﹣6x+9【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】利用平方差公式及完全平方公式的结构特征判断即可.【解答】解:x2﹣6x+9=(x﹣3)2.故选D.4.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22【考点】矩形的性质;翻折变换(折叠问题).【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选D.5.一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根【考点】根的判别式.【分析】代入一元二次方程中的系数求出根的判别式△=﹣8<0,由此即可得出结论.【解答】解:在方程x2﹣2x+3=0中,△=(﹣2)2﹣4×1×3=﹣8<0,∴该方程没有实数根.故选D.6.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x D.x≥【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得1﹣5x≥0,解得x≤,故选:B.7.在▱ABCD中,对角线AC、BD交于O点,AC=6,BD=2,设AB的长为x,将x的取值范围在数轴上表示正确的是()A. B. C. D.【考点】平行四边形的性质;在数轴上表示不等式的解集;三角形三边关系.【分析】首先由在▱ABCD中,对角线AC、BD交于O点,AC=6,BD=2,求得OA与OB的长,再由三角形的三边关系,求得x的取值范围,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=×6=3,OB=BD=×2=1,∴2<AB<4,故选C.8.阅读下面材料:在数学课上,老师提出如下问题:尺规作图1,作一个角等于已知角.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AO小明同学作法如下,如图2:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D;③以点O′为圆心,以OC长为半径作弧,交O′A′于C′;④以点C′为圆心,以CD为半径作弧,交③中所画弧于D′;⑤过点D′作射线O′B′,则∠A′O′B′就是所求的角.老师肯定小明的作法正确,则小明作图的依据是()A.两直线平行,同位角相等B.两平行线间的距离相等C.全等三角形的对应角相等D.两边和夹角对应相等的两个三角形全等【考点】作图—基本作图;全等三角形的判定.【分析】作图过程可得DO=D′O′=CO=C′O′,CD=C′D′,利用SSS判定△DOC≌△D′O′C′,可得∠O′=∠O.【解答】解:连接CD,C′D′,由作图得DO=D′O′=CO=C′O′,CD=C′D′,在△DOC和△D′O′C′中,∴△DOC≌△D′O′C′(SSS),∴∠O′=∠O.故选:C.9.下列说法中正确的是()A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近D.为了解某种节能灯的使用寿命,选择全面调查【考点】概率的意义;全面调查与抽样调查;随机事件.【分析】结合随机事件、概率的意义以及全面调查和抽样调查的概念进行判断.【解答】解:A、“打开电视,正在播放新闻节目”是随机事件,故本选项错误;B、“抛一枚硬币正面向上的概率为”表示随着抛掷次数的增加,“抛出正面向上”这一事件发生的频率稳定在附近,故本选项错误;C、“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近,该说法正确,故本选项正确;D、为了解某种节能灯的使用寿命,选择抽样调查,故本选项错误.故选C.10.如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A. B. C. D.【考点】相似图形.【分析】根据相似多边形的性质逐一进行判断后即可确定正确的选项.【解答】解:由题意得,B中三角形对应角相等,对应边成比例,两三角形相似;A,D中菱形、正方形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而C中矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形故选C.11.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.此时轮船与灯塔的距离为()A.40海里B.80海里C.60海里D.20海里【考点】等腰三角形的判定与性质;方向角;解直角三角形.【分析】设出CD,先利用锐角三角函数表示出BD,BC,再用三角函数表示出AC,列出方程求出即可.【解答】解:如图,设CD=x,在Rt△BCD中,∠BCD=60°,∴BD=x,BC=2x在Rt△ABD中,∠A=30°,∴AD=BD=×x=3x,∴AC=AD﹣CD=3x﹣x=2x,∵AC=40×2=80,∴BC=2x=80,故选B.12.星期日上午小明骑车去姥姥家吃午饭.已知从小明家去姥姥家的路是上坡路,吃过午饭后,下午按原路返回,设小明从家出发后所用的时间为x(小时),骑车所走的路程为y(千米),则y与x的函数图象大致是()A. B. C. D.【考点】函数的图象.【分析】小刚的运动过程分为三个阶段,分别分析出s、t之间的变化关系,从而得解.【解答】解:小明活动的整个过程共分3个阶段:①上午,s随时间t的增大而增大;②在同学家逗留期间,s不变;③骑车返回途中,速度是徒步速度的3倍,s随t的增大而增大,并且比徒步时的直线更陡;纵观各选项,只有B选项符合.故选B.13.定义:将一个图形L沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L在该方向的拖影.如图,四边形ABB′A′是线段AB水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是()A. B. C. D.【考点】平移的性质.【分析】将所给图形的各个顶点按平移条件找出它的对应点,顺次连接,即得到平移后的图形.【解答】解:只有三角形的拖影是五边形,故选A14.已知x2﹣4x﹣1=0,则代数式2x(x﹣3)﹣(x﹣1)2+3的值为()A.3 B.2 C.1 D.﹣1【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=2x2﹣6x﹣x2+2x﹣1+3=x2﹣4x+2=1+2=3,故选:A.15.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O 恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π﹣9 B.9π﹣6 C.9π﹣18 D.9π﹣12【考点】扇形面积的计算;翻折变换(折叠问题).【分析】首先连接OD,由折叠的性质,可得CD=CO,BD=BO,∠DBC=∠OBC,则可得△OBD是等边三角形,继而求得OC的长,即可求得△OBC与△BCD的面积,又在扇形OAB中,∠AOB=90°,半径OA=6,即可求得扇形OAB的面积,继而求得阴影部分面积.【解答】解:连接OD.根据折叠的性质,CD=CO,BD=BO,∠DBC=∠OBC,∴OB=OD=BD,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=∠DBO=30°,∵∠AOB=90°,∴OC=OB•tan∠CBO=6×=2,∴S△BDC=S△OBC=×OB×OC=×6×2=6,S扇形AOB=•π×62=9π,∴整个阴影部分的面积为:S扇形AOB﹣S△BDC﹣S△OBC=9π﹣6﹣6=9π﹣12.故答案为:9π﹣12.16.二次函数y=ax2+bx+c(a≠0)图象如图所示,则下列结论中错误的是()A.当m≠1时,a+b>am2+bmB.若a+bx1=a+bx2,且x1≠x2,则x1+x2=2C.a﹣b+c>0D.abc<0【考点】二次函数图象与系数的关系.【分析】利用x=1时函数最大值对A进行判断;利用对称性对B进行判断;利用对称性判断抛物线与x轴的一个交点在点(﹣1,0)与原点之间,从而得到x=﹣1时函数值为负数,从而可对C进行判断.抛物线的最大值用抛物线开口方向、抛物线的对称轴位置和抛物线与y 轴的交点位置可判断a、b、c的符号,则可D进行判断.【解答】解:A、因为抛物线的对称轴为直线x=1,则x=1时函数组最大,最大值为a+b+c,则当m≠1时,a+b+c>am2+bm+c,所以A选项的结论正确;B、因为a+bx1=a+bx2,则若a+bx1+c=a+bx2+c,且x1≠x2,所以1﹣x1=x2﹣1,则x1+x2=2,所以B选项的结论正确;C、由于抛物线与x轴的交点到对称轴的距离小于2个单位,则x=﹣1时,y<0,即a﹣b+c <0,所以C选项的结论错误;D、由抛物线开口向下得a<0,由对称轴在y轴右侧得b>0,由抛物线与y轴的交点在x轴上方得c>0,所以abc<0,所以D选项的结论正确.故选C.二、填空题(本大题共4个小题,每小题3分,共12分)17.若﹣2a m b4与3a2b n+2是同类项,则m+n= 4 .【考点】同类项.【分析】直接利用同类项的概念得出n,m的值,即可求出答案.【解答】解:∵﹣2a m b4与3a2b n+2是同类项,∴,解得:则m+n=4.故答案为:4.18.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是S=0.20, =0.16,则甲、乙两名同学成绩比较稳定的是乙.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S=0.20, =0.16,∴S>,∴甲、乙两名同学成绩比较稳定的是乙.故答案为:乙.19.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(a﹣b)2.【考点】完全平方公式的几何背景.【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.20.在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.【考点】概率公式;抛物线与x轴的交点.【分析】画出抛物线图象,确定各点横坐标所对应的纵坐标,与P点纵坐标比较即可.【解答】解:如图,﹣2,﹣1,0,1,2的平方为4,1,0,1,4.点P的坐标为(﹣2,4),(﹣1,1),(0,0),(1,1),(2,4);描出各点:﹣2<1﹣,不合题意;把x=﹣1代入解析式得:y1=2,1<2,故(﹣1,1)在该区域内;把x=0代入解析式得:y2=5,0<5,故(0,0)在边界上,不在区域内;把x=1代入解析式得:y3=6,1<6,故(1,1)在该区域内;把x=2代入解析式得:y4=5,4<5,故(2,4)在该区域内.所以5个点中有3个符合题意,点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.三、解答题(本大题共5小题,满分共66分)21.怎么可能会有﹣2=8呢?小明边解答边琢磨,可还是找不出原因,下面是小明的解题过程,请你来帮他解决吧.解方程: +3=.解:方程两边通分,得. =,…第①步方程两边约去3x﹣5,得=,…第②步去分母,得8+x=x﹣2,…第③步所以8=﹣2.(1)小明的解法从第②步开始出现错误;(2)错误原因是(3x﹣5)可能为0 ;(3)请写出正确的解答过程.【考点】解分式方程.【分析】(1)观察小明解法,找出出错步骤即可;(2)分析错误原因,写出即可;(3)写出正确的解法即可.【解答】解:(1)小明的解法从第②步开始出现错误;故答案为:②;(2)错误原因是(3x﹣5)可能为0;故答案为:(3x﹣5)可能为0;(3)正确解法为:方程两边通分得: =,当3x﹣5=0,即x=时,方程成立,经检验x=是分式方程的解,此时方程的解为x=;当3x﹣5≠0时,方程两边约去3x﹣5,得=,去分母,得8+x=x﹣2,所以8=﹣2,此时方程无解,综上,分式方程的解为x=.22.如图,正方形网格中的每一个小正方形的边长为1个单位长度,题中所给各点均在格点上.(1)将△ABC向右平移4个单位,再向上平移1个单位,得到△A1B1C1,画出△A1B1C1(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的2倍,得到△A2B2C2,画出△A2B2C2;(3)连接AO,直接写出,tan∠CAO,sin∠BAO的值.【考点】作图-位似变换;作图-平移变换.【分析】(1)先画出原三角形各顶点平移后的对应顶点,再顺次连接各顶点,得到△A1B1C1;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到△A2B2C2;(3)先根据△A2B2C2与△A1B1C1的位似比为2,判断这两个三角形的相似比,进而得到它们的面积之比;再利用网格构造直角三角形,求得tan∠CAO,sin∠BAO的值即可.【解答】解:(1)如图;(2)如图;(3)=4,tan∠CAO=3,sin∠BAO=.23.八(1)班五位同学参加学校举办的数学知识竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分,赛后A、B、C、D、E五位同学对照平分标准回忆并记录了自己的答题情况(E同学只记准有6道题未答),具体如表:参赛同学答对题数答错题数未答题数A190 1B17 2 1C15 2 3D17 1 2E// 6(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分、81分、64分、83分、63分.①求E同学答对得个数和答错题的个数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分.与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,则记错的为 C 同学.【考点】加权平均数.【分析】(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;(2)①设E同学答对x题,答错y题,根据对错共20﹣6=14和总共得分63列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是C,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.【解答】解:(1)==82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对13题,答错1题.②A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;C同学成绩错误,多算7分,也就是答对的少一题,打错的多一题,他实际答对14题,答错3题,未答3题.故答案为C.24.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(﹣2,1),点B(1,n).(1)求此一次函数和反比例函数的解析式;(2)请直接写出满足不等式kx+b﹣<0的解集;(3)在平面直角坐标系的第二象限内边长为1的正方形EFDG的边均平行于坐标轴,若点E (﹣a,a),如图,当曲线y=(x<0)与此正方形的边有交点时,求a的取值范围.【考点】反比例函数综合题;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;正方形的性质.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可得出反比例函数系数m,从而得出反比例函数解析式;由点B在反比例函数图象上,即可求出点B的坐标,再由点A、B的坐标利用待定系数法即可求出一次函数的解析式;(2)根据两函数图象的上下关系结合交点坐标,即可得出不等式的解集;(3)过点O、E作直线OE,求出直线OE的解析式,根据正方形的性质找出点D的坐标,并验证点D在直线OE上,再将直线OE的解析式代入到反比例函数解析式中,求出交点坐标横坐标,结合函数图象以及点D、E的坐标即可得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:(1)∵点A(﹣2,1)在反比例函数y=的图象上,∴m=﹣2×1=﹣2,∴反比例函数解析式为y=﹣;∵点B(1,n)在反比例函数y=﹣的图象上,∴﹣2=n,即点B的坐标为(1,﹣2).将点A(﹣2,1)、点B(1,﹣2)代入y=kx+b中得:,解得:,∴一次函数的解析式为y=﹣x﹣1.(2)不等式﹣x﹣1﹣(﹣)<0可变形为:﹣x﹣1<﹣,观察两函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例图象下方,∴满足不等式kx+b﹣<0的解集为﹣2<x<0或x>1.(3)过点O、E作直线OE,如图所示.∵点E的坐标为(﹣a,a),∴直线OE的解析式为y=﹣x.∵四边形EFDG是边长为1的正方形,且各边均平行于坐标轴,∴点D的坐标为(﹣a+1,a﹣1),∵a﹣1=﹣(﹣a+1),∴点D在直线OE上.将y=﹣x代入y=﹣(x<0)得:﹣x=﹣,即x2=2,解得:x=﹣,或x=(舍去).∵曲线y=﹣(x<0)与此正方形的边有交点,∴﹣a≤﹣≤﹣a+1,解得:≤a≤+1.故当曲线y=(x<0)与此正方形的边有交点时,a的取值范围为≤a≤+1.25.某公司销售的一种时令商品每件成本为20元,经过市场调查分析,5月份的日销售件数为:﹣2t+96(其中t为天数),并且前15天,每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤15,且t为整数),第16天到月底每天的价格y2(元/件)与时间t(天)的函数关系式为y2=t+40(16≤t≤31,且t为整数),根据以上信息,解答下列问题:(1)5月份第10天的销售件数为76 件,销售利润为190 元;(2)请通过计算预测5月份中哪一天的日销售利润w最大,最大日销售利润是多少?(3)在实际销售的前15天中,该公司决定每销售一件商品就捐赠m元利润(m<4)给希望工程.公司通过销售记录发现,前15天中,每天扣除捐赠后的日销售利润w随t的增大而增大,求m的取值范围.【考点】二次函数的应用.【分析】(1)将t=10代入﹣2t+96求得销售量,代入y1求得销售价格,继而根据利润=销售量×每件利润计算可得;(2)日利润=日销售量×每件利润,据此分别表示1≤t≤15和16≤t≤31的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前15天中每天扣除捐赠后的日销售利润,根据函数性质求m的取值范围.【解答】解:(1)当t=10时,销售件数﹣2t+96=76(件),销售价格y1=×10+25=22.5(元/件),∴销售利润为(22.5﹣20)×76=190元,故答案为:76,190;(2)①当1≤t≤15时,w=(t+25﹣20)(﹣2t+96)=(﹣2t+96)(t+5)=﹣t2+14t+480=﹣(t﹣14)2+578,∵1≤t≤15,∴当t=14时,w有最大值578(元).②当16≤t≤31时,w=(﹣2t+96)(t+40﹣20)=(﹣2t+96)(t+20)=﹣t2+8t+1920=﹣(t﹣4)2+1936.∵当t>4时,w随t的增大而减小,∴当t=16时,w有最大值为﹣(16﹣4)2+1936=1792(元).∵1792>578,∴第16天时,销售利润最大,为1792元;答:预测5月份中第16天的日销售利润w最大,最大日销售利润是1792元;(3)w=(﹣2t+96)(t+25﹣20﹣m)=﹣t2+(4+2m)t+480﹣96m,对称轴t=14+2m,∵a=﹣,∴只有当t≤2m+14时,w随t的增大而增大又每天扣除捐赠后的日利润随时间t的增大而增大,故:15≤2m+14解得:m≥,即m≥时,w随t的增大而增大,又m<4,∴≤m<4.。
最新整理唐山市中考数第二次模拟测试数试卷及答案.doc

唐山市中考数学第二次模拟测试 数 学 试 卷 20xx.4本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为 A .(-3,2) B .(-3,-2) C .(3,2) D .(3,-2) 2.一批货物总重量为71.210⨯kg ,下列运输工具可将其一次运走的是A .一艘万吨级巨轮B .一辆汽车C .一辆拖拉机D .一辆马车3.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是 A .14 B .15 C .16 D .17 4.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为每件360元,则每件服装获利 A .168元 B .108元 C .60元 D .40元5.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是A .58B .12C .34D .786.如图,△ABC 内接于⊙O ,∠C= 45º,AB=4,则⊙O 的半径为 A .22 B .4C .23D .247.如图,Rt △C B A ''是Rt △ABC 以点A 为中心逆时针旋转90°而得到的,其中AB =1,BC =2,则旋转过程中弧C C '的长为第5题图C' B' CB A第6题图CA B C A .π25 B .π25C .5π D8.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要 A .6天 B .4天 C .3天 D .2天 9.为了了解本校九年级学生的体能情况,随机抽查了其中名学生,测试了1频数分布直方图,请根据图示计算,仰卧起坐次数在15~20的频率是A .0.1B .0.2C .0.3D .0.4 10.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿折叠,B 点恰好落在AB 的中点E 处,则∠A 等于 ° C .45° D .60° 九年级第二次模拟检测数 学 试 卷卷II (非选择题,共100分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.8个小题;每小题3分,共24分.把答案写在题11.12-的倒数是 .12的点是 .13.抛物线y =2x2+4x+5的对称轴是x=_________.14.已知:⊙O 的半径为5,圆心O 到直线l 的距离为2.5,则直线l 与⊙O 的位置关系是 .15.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为 米(结果用含α的三角函数表示).第12题图A B CD PR 图2 A B C D 图1 第7题图第15题图 第16题图 第17题图16.如图,一次函数y ax b =+的图象经过A 、B 两点,当满足直线y ax b =+在第四象限时,自变量x 的取值范围是 .17.图1是四边形纸片ABCD ,其中∠B=120°,∠D=50°,若将其右下角向内折出△PCR 如图2所示,恰使CP ∥AB ,RC ∥AD ,则∠C= °.18.瑞士巴尔末从光谱数据95,1612,2521,3632,中,成功地发现了其规律,从而得到了巴尔末公式.请你根据这个规律写出第9个数 . 三、解答题(本大题共8个小题;共76分).本题7分解方程:x x x x -+=--2)2(322.本题7分如图1,O 为圆柱形木块底面的圆心,过底面的一条弦AD ,沿母线AB 剖开,得剖面矩形ABCD ,AD =24cm ,AB =25cm .测量出AD 所对的圆心角为120°,如图2所示.(1)求⊙O 的半径;(2)求这个圆柱形木块的表面积.(结果可保留和根号)图1图2.本题9分在学校组织的“知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B级以上(包括B 级)的人数的角度来比较一班和二班的成绩.一班竞赛成绩统计图 二班竞赛成绩统计图.本题9分如图,在平面直角坐标系中,点A,B分别在x轴,y轴上,线段OA=6,OB=12,C 是线段AB的中点,点D在线段OC上,OD=2CD.(1)C点坐标为;(2)求直线AD的解析式;(3)直线OC绕点O逆时针旋转90°,求出点D的对应点D'的坐标.图1 A BC PDE A D C图3 图4 C DA B 图2如图1,在直角梯形ABCD 中,AD ∥BC ,∠B=∠A=90°,AD=a ,BC=b ,AB=c , 操作示例我们可以取直角梯形ABCD 的非直角腰CD 的中点P ,过点P 作PE ∥AB ,裁掉△PEC ,并将△PEC 拼接到△PFD 的位置,构成新的图形(如图2). 思考发现小明在操作后发现,该剪拼方法就是先将△PEC 绕点P 逆时针旋转180°到△PFD 的位置,易知PE 与PF 在同一条直线上.又因为在梯形ABCD 中,AD ∥BC ,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD 和DF 在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF 是一个平行四边形,而且还是一个特殊的平行四边形——矩形. 实践探究(1)矩形ABEF 的面积是 ;(用含a ,b ,c 的式子表示)(2)类比图2的剪拼方法,请你就图3和图4的两种情形分别画出剪拼成一个平行四边形的示意图.联想拓展小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形. 如图5的多边形中,AE=CD ,AE ∥CD ,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由..本题10分如图已知等边三角形ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 的中点,M 为直线BC 上的一点,△DMN 为等边三角形(点M 位置改变时,△DMN 也随之改变).(1)如图1,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系,点F 是否在直线NE 上?都请直接写出答案,不必证明或说明理由. (2)如图2,当点M 在BC 上时,其他条件不变,(1)中的结论是否仍然成立?若成立,请利用图2证明,若不成立,请说明理由.C E B DA 图5(3)如图3,当点M 在点B 右侧时,请你在图3画出相应的图形,并判断(1)中的结论是否仍然成立?若成立,请直接写出答案,不必证明或说明理由.若不成立,请举例说明..本题12分某个体经营户把开始六个月试销A 、B 两种商品的逐月投资与所获利润列成下表: (1)设投资A 种商品金额A x 万元时,可获得纯利润A y 万元,投资B 种商品金额B x 万元时,可获得纯利润B y 万元,请分别在如图所示的直角坐标系中描出各点,并画出图像; (2)观察图像,猜测并分别求出A y 与A x ,B y 与B x 的函数关系式;(3)若该经营户准备下月投入资金12万元经营这两种商品,但不知投入A 、B 两种商品各多少才合算,请你帮助制定一个能获得最大利润的资金投入方案,并计算出这个最大利润是多少。
2016年河北省中考数学试卷附详细答案(原版+解析版)

2016年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.(3分)计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5D.2a2•a﹣1=2a3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.(3分)若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.(3分)关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.(3分)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.(3分)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.(3分)如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.(3分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.(2分)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁12.(2分)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.(2分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.(2分)a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为015.(2分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.16.(2分)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)8的立方根是.18.(3分)若mn=m+3,则2mn+3m﹣5mn+10=.19.(4分)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.(9分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.(9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.(9分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.(9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.(10分)某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y (元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6x3=72x4…x n调整后的单价y(元)y1y2=4y3=59y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.(10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.(12分)如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k >0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2016年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2016年河北省唐山市中考数学试卷及答案

2016年河北省唐山市中考数学试卷及答案本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考题时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)=( D )A.±1 B.-2 C.-1 D.12.计算正确的是( D )A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a3.下列图形中,既是轴对称图形,又是中心对称图形的是( A )A B C D4.下列运算结果为x-1的是( B )A.11x-B.211x xx x-•+C.111xx x+÷-D.2211x xx+++5.若k≠0,b<0,则y=kx+b的图象可能是( B )6.关于ABCD的叙述,正确的是( C )A.若AB⊥BC,则ABCD是菱形B.若AC⊥BD,则ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD,则ABCD是正方形7.12..的是( A )A12 B.面积为1212C1223D128.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的○1○2○3○4某一位置,所组成的图形不能..围成正方体的位置是( A )图1 图2第8题图 A .○1B .○2C .○3D .○49.图示为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( B )第9题图A .△ACD 的外心B .△ABC 的外心 C .△ACD 的内心 D .△ABC 的内心10.如图,已知钝角△ABC ,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以C 为圆心,CA 为半径画弧○1;步骤2:以B 为圆心,BA 为半径画弧○2,将弧○1于点D ; 步骤3:连接AD ,交BC 延长线于点H . 下列叙述正确的是( A )第10题图A .BH 垂直分分线段ADB .AC 平分∠BAD C .S △ABC =BC ·AH D .AB =AD11.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:第11题图 甲:b -a <0;乙:a +b >0;丙:|a |<|b |;丁:0ba.其中正确的是( C )A.甲乙B.丙丁C.甲丙D.乙丁12.在求3x的倒数的值时,嘉淇同学将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( C )A.11538x x=-B.11538x x=+C.1853xx=-D.1853xx=+13.如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为( C )第13题图A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( B )[源: A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( C )第15题图16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有( D )第16题图A.1个B.2个C.3个D.3个以上卷II(非选择题,共78分)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根为____2___.18.若mn=m+3,则2mn+3m-5nm+10=___1___.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.第19题图当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__76___°若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___6____°三、解答题(本大题有7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)请你参照黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15)-999×31185.21.(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.第21题图22.(本小题满分9分)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.(本小题满分9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.图1 图2第23题图如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法...求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.(本小题满分10分)某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如下表:第1个第2个第3个第4个…第n个调整前单价x(元)x1x2=6 x3=72 x4…x n调整后单价x(元)y1y2=4 y3=59 y4…y n已知这n个玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为_x,_y,猜想_y与_x的关系式,并写出推导出过.25.(本小题满分10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ (弧)上且不.与A点重合,但Q点可与B点重合.发现AP(弧)的长与QB(弧)的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求AP(弧)的长.(注:结果保留π,cos 35°=63,cos 55°=33)第25题图备用图26.(本小题满分12分)如图,抛物线L: 1()(4)2y x t x t =---+(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线(0,0)ky k x x=>>于点P ,且OA ·MP =12.(1)求k 值;(2)当t =1时,求AB 长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接..写出t 的取值范围.第26题图。
中考数学二模试卷(含解析)391

河北省唐山市开平区2016年中考数学二模试卷一、选择题:1-10小题,每小题3分,11-16小题,每小题3分.1.2﹣(﹣1)=()A.1 B.2 C.﹣3 D.32.据统计,某市人口总数为3780000人,用科学记数法表示为()A.0.378×107B.37.8×105C.3.78×106D.378×1043.下列运算正确的是()A.(﹣1)0=0 B. =±1 C. =1 D.3﹣1=4.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y6.﹣的绝对值是()A.﹣B. C. D.﹣7.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A. B. C. D.8.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?()A.1小时B.小时 C.2小时D.小时9.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个10.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x111.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,有下列结论:①∠BAE=30°;②S△ABE=4S△ECF;③CF=CD;④△ABE∽△AEF.正确结论的个数是()A.1个B.2个C.3个D.4个12.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1013.一个正方形和一个等边三角形的位置如图所示摆放,点G是BC中点,正方形对角线EG ⊥BC,则∠AFE=()A.10° B.15° C.20° D.25°14.如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A. B.16π﹣32 C. D.15.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:A→C→B;乙的路线为:A→D→E→F→B,其中E为AB的中点;丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.若符号[→]表示[直线前进],则根据图(三)、图(四)、图(五)的数据,判断三人行进路线长度的大小关系为()A.甲=乙=丙 B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲16.如图,在矩形ABCD中,AB=6,BC=8,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PAB沿直线PA折叠,使点B落到点B′处;过点P作∠CPB′的角平分线交CD于点Q.设BP=x,CQ=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题:每小题3分,共12分17.如图,一个可以自由转动的圆形转盘,转盘分成8个大小相同的扇形,上面分别标有数字1、2、3、4,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动转盘一次,当转盘停止转动时,则指针指向标有“3”所在区域的概率为______.18.已知a+2b=2016,则=______.19.如图,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA=58°,则∠GFB 的大小为______°.20.如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n段,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.三、解答题:共66分21.定义新运算为:对于任意实数都有a、b都有a⊕b=(a﹣b)b﹣1,等式右边都是通常的加法、减法、乘法运算,比如1⊕2=(1﹣2)×2﹣1=﹣3.(1)求(﹣3)⊕4的值;(2)若x⊕2的值小于5,求x的取值范围,并在如图所示的数轴上表示出来.22.(10分)(2016•开平区二模)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=______%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是______ 个、______个;(3)求被抽测的初三学生测试引体向上的个数在7个以下的平均数(不含7个);(4)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?23.(11分)(2016•开平区二模)如图直角坐标系中,直线l:y=kx+k经过A、B两点;点B(0,3);点P以每秒1个单位长度的从原点开始在y轴的正半轴向上匀速运动;设运动时间为t秒,直线y=t经过点P,且随P点的运动而运动.(1)求k的值和点A坐标;(2)当t=1.5秒时,直线y=t与直线l交于点M,反比例函数y=经过点M,求反比例函数的解析式;(3)若直线y=t与直线l的交点不在第二象限,求t的取值范围;(4)点C(3,0)关于直线l的对称点在直线y=t上,直接写出t的值.24.(11分)(2016•开平区二模)图1⊙O中,△ABC和△DCE是等腰直角三角形,且△ABC内接于⊙O,∠ACB=∠DCE=90°,连接AE、BD,点D在AC上.(1)线段AE与BD的数量关系为______,位置关系为______;(2)如图2若△DCE绕点C逆时针旋转α(0°<α<90°),记为△D1CE1;①当边CE所在直线与⊙O相切时,直接写出α的值;②求证:AE1=BD1;(3)如图3,若M是线段BE1的中点,N是线段AD1的中点,求证:MN=OM.25.(11分)(2016•开平区二模)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)00.160.20.40.60.640.8…X(米)00.40.51 1.5 1.62…y(米)0.250.3780.40.450.40.3780.25…(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.26.(14分)(2016•开平区二模)如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以2cm/s的速度向终点C运动,当点P出发后,过点P作PQ∥BC 交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)当点Q在线段AD上时,用含t的代数式表示QR的长;(2)求点R运动的路程长;(3)当点Q在线段AD上时,求S与t之间的函数关系式;(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.2016年河北省唐山市开平区中考数学二模试卷参考答案与试题解析一、选择题:1-10小题,每小题3分,11-16小题,每小题3分.1.2﹣(﹣1)=()A.1 B.2 C.﹣3 D.3【考点】有理数的减法.【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣1),=2+1,=3.故选D.2.据统计,某市人口总数为3780000人,用科学记数法表示为()A.0.378×107B.37.8×105C.3.78×106D.378×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3780000人,用科学记数法表示为3.78×106,故选:C.3.下列运算正确的是()A.(﹣1)0=0 B. =±1 C. =1 D.3﹣1=【考点】立方根;算术平方根;零指数幂;负整数指数幂.【分析】根据任何非零数的零次幂等于1,算术平方根的定义,立方根的定义,负整数指数次幂等于正整数指数次幂的倒数,对各选项分析判断后利用排除法求解.【解答】解:A、(﹣1)0=1,故选项错误;B、=1,故选项错误;C、=﹣1,故选项错误D、3﹣1=,故选项正确.故选:D.4.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.5.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y【考点】整式的加减.【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选:A.6.﹣的绝对值是()A.﹣B. C. D.﹣【考点】实数的性质.【分析】根据绝对值的定义,可以得到﹣的绝对值是多少.【解答】解:﹣的绝对值是,故选B.7.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A. B. C. D.【考点】由实际问题抽象出分式方程.【分析】关键描述语为:“两队同时开工且恰好同时完工”,那么等量关系为:甲队所用时间=乙队所用时间.【解答】解:乙队用的天数为:,甲队用的天数为:.则所列方程为:.故选:D.8.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?()A.1小时B.小时 C.2小时D.小时【考点】解直角三角形的应用-方向角问题.【分析】过B作AC的垂线,设垂足为D.由题易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°,得AC=BC.由此可在Rt△CBD中,根据BC(即AC)的长求出CD的长,进而可求出该船需要继续航行的时间.【解答】解:作BD⊥AC于D,如下图所示:易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°.∴AC=BC,∵轮船以40海里/时的速度在海面上航行,∴AC=BC=2×40=80海里,∴CD=BC=40海里.故该船需要继续航行的时间为40÷40=1小时.故选A.9.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个【考点】利用频率估计概率.【分析】由条件共摸了1000次,其中200次摸到白球,则有800次摸到红球;所以摸到白球与摸到红球的次数之比可求出,由此可估计口袋中白球和红球个数之比,进而可计算出红球数.【解答】解:∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球,∴白球与红球的数量之比为1:4,∵白球有10个,∴红球有4×10=40(个).故选C.10.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1【考点】反比例函数图象上点的坐标特征.【分析】由三点均在反比例函数图象上结合反比例函数图象上点的坐标特征可得出x1=,x2=,x3=,再根据y1<0<y2<y3,即可得出结论.【解答】解:点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=图象上的点,∴x1•y1=x2•y2=x3•y3=1,∴x1=,x2=,x3=.∵y1<0<y2<y3,∴<0<<,∴x1<x3<x2.故选B.11.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,有下列结论:①∠BAE=30°;②S△ABE=4S△ECF;③CF=CD;④△ABE∽△AEF.正确结论的个数是()A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;正方形的性质.【分析】首先根据正方形的性质与同角的余角相等证得:△BAE∽△CEF,则可证得②正确,①③错误,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴,∵BE=CE=BC,∴,∴S△ABE=4S△ECF,故②正确;∴CF=EC=CD,故③错误;∴tan∠BAE=,∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=2a,EF=a,AF=5a,∴,,∴,∴△ABE∽△AEF,故④正确.∴②与④正确.∴正确结论的个数有2个.故选B.12.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.13.一个正方形和一个等边三角形的位置如图所示摆放,点G是BC中点,正方形对角线EG ⊥BC,则∠AFE=()A.10° B.15° C.20° D.25°【考点】正方形的性质;等边三角形的性质.【分析】连接DF,由正方形和等边三角形的轴对称性可知△ADF是等边三角形,所以∠AFD=60°,再由正方形的性质可知∠DFE=45°,进而可求出∠AFE的度数.【解答】解:连接DF,∵点G是BC中点,正方形对角线EG⊥BC,△ABC是等边三角形,∴△ADF是等边三角形,∴∠AFD=60°,∵四边形DGFE是正方形,∴∠EFD=45°,∴∠AFE=60°﹣45°=15°,故选B.14.如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A. B.16π﹣32 C. D.【考点】扇形面积的计算.【分析】设半圆与底边的交点是D,连接AD.根据直径所对的圆周角是直角,得到AD⊥BC,再根据等腰三角形的三线合一,得到BD=CD=6,根据勾股定理即可求得AD的长,则阴影部分的面积是以AB为直径的圆的面积减去三角形ABC的面积.【解答】解:设半圆与底边的交点是D,连接AD.∵AB是直径,∴AD⊥BC.又∵AB=AC,∴BD=CD=6.根据勾股定理,得AD==2.∵阴影部分的面积的一半=以AB为直径的半圆的面积﹣三角形ABD的面积=以AC为直径的半圆的面积﹣三角形ACD的面积,∴阴影部分的面积=以AB为直径的圆的面积﹣三角形ABC的面积=16π﹣×12×2=16π﹣12.故选D.15.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:A→C→B;乙的路线为:A→D→E→F→B,其中E为AB的中点;丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.若符号[→]表示[直线前进],则根据图(三)、图(四)、图(五)的数据,判断三人行进路线长度的大小关系为()A.甲=乙=丙 B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲【考点】平行四边形的判定与性质;平移的性质.【分析】由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似【解答】解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE,∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC.∴甲=乙图3与图1中,三个三角形相似,所以==, ==,∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC∴甲=丙.∴甲=乙=丙.故选A.16.如图,在矩形ABCD中,AB=6,BC=8,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PAB沿直线PA折叠,使点B落到点B′处;过点P作∠CPB′的角平分线交CD于点Q.设BP=x,CQ=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.【考点】动点问题的函数图象.【分析】只要证明△ABP∽△PCQ得=即可解决问题.【解答】解:∵△ABP沿PA翻折得到△AB′P,∴∠APB=∠APB′,∵PQ平分∠B′PC,∴∠B′PQ=∠CPQ,∴∠APB′+∠QPB′=×180°=90°,∵∠C=90°,∴∠CPQ+∠CQP=90°,∴∠APB=∠CQP,又∵∠B=∠C=90°,∴△ABP∽△PCQ,∴=,∵BP=x,CQ=y,矩形ABCD中,BC=8,AB=6,∴CP=8﹣x,CD=AB=6,∴=,∴y=x(8﹣x)=﹣x2+x.∴图象是抛物线,开口向下.故选D.二、填空题:每小题3分,共12分17.如图,一个可以自由转动的圆形转盘,转盘分成8个大小相同的扇形,上面分别标有数字1、2、3、4,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动转盘一次,当转盘停止转动时,则指针指向标有“3”所在区域的概率为.【考点】概率公式.【分析】由一个转盘被分成8个大小相同的扇形,上面分别标有数字1、2、3、4,标有数字“3”的扇形有3个,直接利用概率公式求解即可求得答案.【解答】解:∵一个转盘被分成8个大小相同的扇形,上面分别标有数字1、2、3、4,标有数字“3”的扇形有3个,∴指针指向标有“3”所在区域的概率为:.故答案为.18.已知a+2b=2016,则= 3024 .【考点】分式的值.【分析】首先把分子分母分解因式,然后约分化简,在再代入a+2b=2016即可求值.【解答】解: ===,当a+2b=2016时,原式==3024.故答案为:3024.19.如图,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA=58°,则∠GFB 的大小为61 °.【考点】平行线的性质.【分析】求出∠DCF,根据两直线平行同位角相等即可求出∠GFB.【解答】解:∵∠ECA=58°,∴∠ECD=180°﹣∠ECA=122°,∵CD平分∠ECF,∴∠DCF=∠ECF=×122°=61°,∵CD∥GF,∴∠GFB=∠DCF=61°.故答案为61°.20.如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n段,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.【考点】一次函数图象上点的坐标特征.【分析】根据图象上点的坐标性质得出点T1,T2,T3,…,T n﹣1各点纵坐标,进而利用三角形的面积得出S1、S2、S3、…、S n﹣1,进而得出答案.【解答】解:∵P1,P2,P3,…,P n﹣1是x轴上的点,且OP1=P1P2=P2P3=…=P n﹣2P n﹣1=分别过点p1、p2、p3、…、p n﹣2、p n﹣1作x轴的垂线交直线y=﹣2x+2于点T1,T2,T3,…,T n,﹣1∴T1的横坐标为:,纵坐标为:2﹣,∴S1=××(2﹣)=(1﹣),同理:S2=(1﹣),S3=(1﹣),…S n=(1﹣),∴S1+S2+S3+…+S n﹣1=,∵n=2016,∴S1+S2+S3+…+S2015=.故答案为.三、解答题:共66分21.定义新运算为:对于任意实数都有a、b都有a⊕b=(a﹣b)b﹣1,等式右边都是通常的加法、减法、乘法运算,比如1⊕2=(1﹣2)×2﹣1=﹣3.(1)求(﹣3)⊕4的值;(2)若x⊕2的值小于5,求x的取值范围,并在如图所示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】(1)根据新定义计算;(2)由新定义得到(x﹣2)×2﹣1<5,然后解一元一次不等式得到x的取值范围,再利用数轴表示解集.【解答】解:(1)根据题意:(﹣3)⊕4=(﹣3﹣4)×4﹣1=﹣7×4﹣1=﹣29;(2)∵a⊕b=(a﹣b)b﹣1,∴x⊕2=(x﹣2)×2﹣1=2x﹣4﹣1=2x﹣5,∴2x﹣5<5,解得:x<5,用数轴表示为:22.(10分)(2016•开平区二模)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a= 25 %,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 5 个、 5 个;(3)求被抽测的初三学生测试引体向上的个数在7个以下的平均数(不含7个);(4)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?【考点】条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.【分析】(1)根据扇形统计图可以求得a的值,根据扇形统计图和条形统计图可以得到做6个的学生数,从而可以将条形图;(2)根据(1)中补全的条形图可以得到众数和中位数;(3)根据条形图可以得到被抽测的初三学生测试引体向上的个数在7个以下的平均数;(4)根据统计图可以估计该区体育中考中选报引体向上的男生能获得满分的人数.【解答】解:(1)由题意可得,a=1﹣30%﹣15%﹣10%﹣20%=25%,故答案为:25,做6 个的学生数是60÷30%×25%=50,补全的条形图,如右图所示,(2)由补全的条形图可知,55这次抽测中,测试成绩的众数和中位数分别是5个,5个,故答案为:5,5;(3)被抽测的初三学生测试引体向上的个数在7个以下的平均数是: =4.875,即被抽测的初三学生测试引体向上的个数在7个以下的平均数是4.875;(4)该区体育中考中选报引体向上的男生能获得满分的有:1800×=810(名),即该区体育中考中选报引体向上的男生能获得满分的有810名.23.(11分)(2016•开平区二模)如图直角坐标系中,直线l:y=kx+k经过A、B两点;点B(0,3);点P以每秒1个单位长度的从原点开始在y轴的正半轴向上匀速运动;设运动时间为t秒,直线y=t经过点P,且随P点的运动而运动.(1)求k的值和点A坐标;(2)当t=1.5秒时,直线y=t与直线l交于点M,反比例函数y=经过点M,求反比例函数的解析式;(3)若直线y=t与直线l的交点不在第二象限,求t的取值范围;(4)点C(3,0)关于直线l的对称点在直线y=t上,直接写出t的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点B(0,3)代入y=kx+k,求出k的值,得出直线l的解析式,进而求出点A坐标;(2)当t=1.5秒时,点P恰好是OB的中点,那么点M的纵坐标为1.5,将y=1.5代入直线l的解析式,求出M点坐标,再利用待定系数法即可求出反比例函数的解析式;(3)直线y=t与直线l的交点不在第二象限时,交点在第一或第三象限,根据A、B纵坐标的值即可求出t的取值范围;(4)设点C(3,0)关于直线l的对称点为C′,根据轴对称的性质得出直线l垂直平分线段CC′,设直线CC′的解析式为y=﹣x+b,把C(3,0)代入,利用待定系数法求出直线CC′的解析式为y=﹣x+1,设C′(x,﹣ x+1),根据AC′=AC,列出关于x的方程,解方程求出x的值,得到C′坐标,进而求解即可.【解答】解:(1)∵直线l:y=kx+k经过点B(0,3),∴k=3,∴直线l的解析式为y=3x+3,令y=0,则3x+3=0,解得x=﹣1,∴点A坐标为(﹣1,0);(2)∵当t=1.5秒时,OP=1.5,而B(0,3),∴点P恰好是OB的中点;又∵直线y=t与x轴平行,∴点M的纵坐标为1.5;∵点M又在直线l上,∴3x+3=1.5,解得x=﹣0.5;∴M(﹣0.5,1.5).∵反比例函数y=经过点M,∴n=﹣0.5×1.5=﹣,∴反比例函数的解析式为y=﹣;(3)∵A(﹣1,0),B(0,3),∴根据图象,可知直线y=t与直线l的交点不在第二象限时,t的取值范围是t≤0或t≥3;(4)设点C(3,0)关于直线l的对称点为C′,则直线l垂直平分线段CC′,∵直线l的解析式为y=3x+3,∴可设直线CC′的解析式为y=﹣x+b,把C(3,0)代入,得﹣1+b=0,解得b=1,∴直线CC′的解析式为y=﹣x+1,设C′(x,﹣ x+1),∵AC′=AC,A(﹣1,0),C(3,0),∴(x+1)2+(﹣x+1)2=42,解得x1=﹣,x2=3(舍去),∴x=﹣,∴C′(﹣,),∵点C′在直线y=t上,∴t的值为.24.(11分)(2016•开平区二模)图1⊙O中,△ABC和△DCE是等腰直角三角形,且△ABC内接于⊙O,∠ACB=∠DCE=90°,连接AE、BD,点D在AC上.(1)线段AE与BD的数量关系为相等,位置关系为垂直;(2)如图2若△DCE绕点C逆时针旋转α(0°<α<90°),记为△D1CE1;①当边CE所在直线与⊙O相切时,直接写出α的值;②求证:AE1=BD1;(3)如图3,若M是线段BE1的中点,N是线段AD1的中点,求证:MN=OM.【考点】圆的综合题.【分析】(1)结论AE=BD,AE⊥BD只要证明△BCD≌△ACE即可得到AE=BD,再由∠EAB+∠ABF=∠FAC+∠CAB+∠ABF=∠DBC+∠ABF+∠CAB=90°推出BD⊥AE.(2)①只要证明∠ACO=45°即可.②欲证明AE1=BD1,只要证明△BCD1≌△ACE1即可.(3)如图3中,延长BD1交AE1于点F,首先证明BF⊥AE1,再根据三角形中位线定理证明△OMN是等腰直角三角形即可解决问题.【解答】解:(1)AE=BD,AE⊥BD.理由:如图1所示;延长BD交AE于点F.∵△ABC与△DCE均为等腰直角三角形,∴∠BCD=∠ACE=90°,BC=AC,DC=CE.∵在△BCD和△ACE中,,∴△BCD≌△ACE.∴BD=AE,∠DBC=∠EAC.∴∠EAB+∠ABF=∠FAC+∠CAB+∠ABF=∠DBC+∠ABF+∠CAB=45°+45°=90°.∴∠BFA=90°.∴BD⊥AE.故答案分别为相等,垂直.(2)①如图2所示;∵CE1与圆O相切,D1C⊥CE1,∴CD1经过点O.∵BC=AC,OA=OB,∴∠ACO=∠BCA=45°.∴α=45°.②∵△ABC和△DCE是等腰直角三角形∠ACB=∠D1CE1=90°∴AC=BC,CE1=CD1∴∠ACB﹣∠ACD1=∠D1CE1﹣∠ACD1即∠ACD1=∠ACE1在△BCD1≌△ACE1中,,∴△BCD1≌△ACE1∴AE1=BD1(3)证明:如图3中,延长BD1交AE1于点F由(2)可知,△BCD1≌△ACE1,∴BD1=AE1,∠D1BC=∠CAE1,∴∠D1BC+∠AE1C=∠CAE1+∠AE1C=90°,∴BF⊥AE1,∵AO=OB,AN=ND,∴ON=BD1,ON∥BD,∵AO=OB,E1M=MB,∴OM=AE1,OM∥AE1∴OM=ON,OM⊥ON∴∠OMN=45°,又 cos∠OMN=,∴MN=OM.25.(11分)(2016•开平区二模)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)00.160.20.40.60.640.8…X(米)00.40.51 1.5 1.62…y(米)0.250.3780.40.450.40.3780.25…(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.【考点】二次函数的应用.【分析】(1)由表中数据可直接得出;(2)建立坐标系后,根据顶点坐标(1,0.45),设解析式为y=m(x﹣1)2+0.45,将(0,0.25)代入即可求得其解析式,再令y=0求得x即可;(3)①将(2)中所得点的坐标(2.5,0)代入即可;②由球网高度及球桌的长度可知其扣杀路线解析式为y=x,若要击杀则有a(x﹣3)2﹣a=x,根据有唯一的击球点即该方程有唯一实数根即可求得a的值,继而根据对应x的值取舍可得.【解答】解:(1)由表格中数据可知,当t=0.4秒时,乒乓球达到最大高度.(2)以点A为原点,桌面中线为x轴,乒乓球水平运动方向为正方向建立直角坐标系.由表格中数据可判断,y是x的二次函数,且顶点为(1,0.45),所以可设y=m(x﹣1)2+0.45,将(0,0.25)代入,得:0.25=m(0﹣1)2+0.45,解得:m=﹣0.2,∴y=﹣0.2(x﹣1)2+0.45.当y=0时,﹣0.2(x﹣1)2+0.45=0,解得:x=2.5或x=﹣0.5(舍去).∴乒乓球落在桌面时,与端点A的水平距离是2.5米.(3)①由(2)得,乒乓球落在桌面时的坐标为(2.5,0).∴将(2.5,0)代入y=a(x﹣3)2+k,得0=a(2.5﹣3)2+k,化简整理,得:k=﹣a.②由题意可知,扣杀路线在直线y=x上,由①得y=a(x﹣3)2﹣a,令a(x﹣3)2﹣a=x,整理,得20ax2﹣(120a+2)x+175a=0.当△=(120a+2)2﹣4×20a×175a=0时,符合题意,解方程,得a1=,a2=.当a=时,求得x=﹣,不合题意,舍去;当a=时,求得x=,符合题意.答:当a=时,可以将球沿直线扣杀到点A.26.(14分)(2016•开平区二模)如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以2cm/s的速度向终点C运动,当点P出发后,过点P作PQ∥BC 交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)当点Q在线段AD上时,用含t的代数式表示QR的长;(2)求点R运动的路程长;(3)当点Q在线段AD上时,求S与t之间的函数关系式;(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.【考点】相似形综合题.【分析】(1)易证△APQ是等边三角形,即可得到QR=PQ=AP=2t;(2)过点A作AG⊥BC于点G,如图②,易得点R运动的路程长是AG+CG,只需求出AG、CG 就可解决问题;(3)四边形APRQ与△ACD重叠部分图形可能是菱形,也可能是五边形,故需分情况讨论,然后运用割补法就可解决问题;(4)由于直角顶点不确定,故需分情况讨论,只需分∠QRB=90°和∠RQB=90°两种情况讨论,即可解决问题.【解答】解:(1)如图①,∵△ABC是等边三角形,∴∠ACB=∠B=60°.∵PQ∥BC,∴∠APQ=∠ACB=60°,∠AQP=∠B=60°,∴△APQ是等边三角形.∴PQ=AP=2t.∵△PQR是等边三角形,∴QR=PQ=2t;(2)过点A作AG⊥BC于点G,如图②,则点R运动的路程长是AG+CG.在Rt△AGC中,∠AGC=90°,sin60°==,cos60°==,AC=4,∴AG=2,CG=2.∴点R运动的路程长2+2;(3)①当0<t≤时,如图③,。
河北省唐山市路北区九年级数学第二次模拟试题(扫描版)

河北省唐山市路北区2017届九年级数学第二次模拟试题
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
河北省唐山市开平区2016届九年级数学下学期第二次模拟试题(扫描版)

河北省唐山市开平区2016届九年级数学下学期第二次模拟试题2016年第一次模拟考试数学试题参考答案一、选择题:1~10CCDDA BDACD 11~16CCBDAD二、填空题:17.83;18. 3024;19. 11°.20. 40322015 21. 解:(1)根据题意:(-3)⊕4=(-3-4)×4-1=-7×4-1=-29……………………3分(2)∵a ⊕b =(a-b )b-1∴x ⊕2=(x-2)×2-1=2x-4-1=2x-5∴2x-5<5解得:2x <10∴x <5………………………………………………………………………………………..8分………………………………………………………………………………………………..9分22.解(1)25,画图正确…………………………………………………………………………………………………………..2分(2)5,5;…………………………………………………………………………………………………………………………………4分(3)4.875………………………………………………………………………………………………………………………………7分(4) 50+40200×1800=810(名).…………………………………………………………..9分 答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.………….10分 23. 解:(1)∵直线l :y=kx+k 经过点A (0,3)∴k=3;∴直线l :y=3x+3令y=0,则3x+3=0,x=-1, ∴B(-1,0)…………………………………………….3分(2)当t=1.5秒时,∵B (0,3)∴点P 恰好是OB 的中点;又∵直线y=t 与x 轴平行,∴点M 的纵坐标为1.5;点M 又在直线l 上,∴3x+3=1.5,x=21-;∴M(21-,1.5)……………………………………………………..5分 M 在反比例函数y=x n 上, ∴n=43-.∴反比例函数的解析式为y=x 43-……………….7分 (3)t ≤0或t ≥3………………………………………………………………………………9分(4)t=511………………………………………………………………………………….11分 24.(1)相等,垂直,…………………………………………….2分 (2)①α=45°………………………………………………….3分 ②∵△ABC 和△DCE 是等腰直角三角形 ∠ACB=∠D1CE1=90°∴AC=BC,CE1=CD1 ∴∠ACB-∠ACD1=∠D1CE1-∠ACD1 即∠ACD1=∠ACE1∴△BCD1≌△ACE1B CD 1E 1AO •N M •图24-3∴AE1=BD1…………………………………………………………7分(3)证明:连接ON 、AE 、BD ,延长BD 交AE 于点F∵ ∠ABC=45°,∠ACB=90°∴ BC=AC ,又∠ACB=∠DCE=90°,DC=EC ∴ △BCD ≌△ACE ∴ BD=AE ,∠DBC=∠CAE ……………………………………….8分∴∠DBC +∠AEC=∠CAE +∠AEC=90° ∴ BF ⊥AE∵ AO=OB ,AN=ND ∴ ON=12BD ,ON ∥BD ∵ AO=OB ,EM=MB ∴ OM=12AE ,OM ∥AE∴ OM=ON ,OM ⊥ON ……………………………………………………………………………………10分 ∴ ∠OMN=45°,又 cos ∠OMN=OM MN∴MN =……………………………………11分25. 解:以点A 为原点,桌面中线为x 轴,乒乓球水平运动方向为正方向建立直角坐标系…………….1分(1)由表格中数据可知,当0.4t =秒时,乒乓球达到最大高度…………………………..2分(2)由表格中数据可判断,y 是x 的二次函数,且顶点为(1,0.45),所以可设()210.45y a x =-+………………………………………………………………..3分将(0,0.25)代入,得()20.25010.450.2a a =-+⇒=-,∴()20.210.45y x =--+.当0y =时,()20.210.450x --+=,解得 2.5x =或0.5x =-(舍去).∴乒乓球落在桌面时,与端点A 的水平距离是 2.5米…………………………………6分(3)①由(2)得,乒乓球落在桌面时的坐标为(2.5,0).∴将(2.5,0)代入2(3)y a x k =-+,得20(2.53)a k =-+,化简整理,得14k a =-………………………………………………………………….7分 ②由题意可知,扣杀路线在直线110y x =上,由①得21(3)4y a x a =--, 令211(3)410a x a x --=,整理,得()22012021750ax a x a -++=. 当()212024201750a a a ∆=+-⋅⋅=时,符合题意,……………………………9分 解方程,得12635635,a a -+--== . 当635a -+=时,求得35x =-,不合题意,舍去; 当635a --=时,求得35x =,符合题意. 答:当635a --=时,可以将球沿直线扣杀到点A ……………………………..11分26. 解:(1)如图①(题图),∵△ABC 是等边三角形,∴∠ACB=∠B=60°. ∵PQ ∥BC ,∴∠APQ=∠ACB=60°,∠AQP=∠B=60°,∴△APQ 是等边三角形.………………………………………………… 2分 ∴PQ=AP=2t .∵△PQR 是等边三角形,∴QR=PQ=2t ;………………………………………………………………… 4分(2)过点A 作AG ⊥BC 于点G ,如图②,则点R 运动的路程长是AG+CG . 在Rt △AGC 中,∠AGC=90°,sin60°==,cos60°==,AC=4, ∴AG=2,CG=2.∴点R 运动的路程长2+2;……………………… 7分(3)①当0<t≤时,如图③,S=S 菱形APRQ =2×S 正△APQ =2××(2t )2=2t 2;…………………………… 9分②当<t≤1时,如图④PE=PC•sin∠PCE=(4﹣2t )×=2﹣t ,∴ER=PR ﹣PE=2t ﹣(2﹣t )=3t ﹣2,∴EF=ER•tanR=(3t ﹣2)∴S=S菱形APRQ﹣S△REF=2t2﹣(3t﹣2)2=﹣t2+6t﹣2;………………………………………………………………………….12分(3)t=;t=………………………………………………………………..14分提示:①当∠QRB=90°时,如图⑤,cos∠RQB==,∴QB=2QR=2QA,∴AB=3QA=6t=4,∴t=;②当∠RQB=90°时,如图⑥,同理可得BC=3RC=3PC=3(4﹣2t)=4,∴t=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年河北省唐山市路北区中考数学二模试卷一、选择题(本大题共16个小题:1-10小题,每小题3分,11-16小题,每小题3分,42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算﹣3﹣(﹣2)的结果等于()A.1 B.5 C.﹣5 D.﹣12.如果单项式2a n b2c是六次单项式,那么n=()A.6 B.5 C.4 D.33.在下列各式中,二次根式的有理化因式是()A.B.C.D.4.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形5.在下面的四个几何体中,它们各自的左视图与主视图不全等的是()A.B.C.D.6.不等式组的解集在数轴上表示为()A.B.C.D.7.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45°C.45°或60°D.30°或60°8.已知一块蓄电池的电压为定值,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A.I=B.I=﹣C.I=D.I=9.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定10.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°A.该班一共有40名同学B.该班学生这次考试成绩的众数是25分C.该班学生这次考试成绩的中位数是25分D.该班学生这次考试成绩的平均数是25分12.若分式中的a、b的值同时扩大到原来的10倍,则分式的值()A.是原来的20倍B.是原来的10倍C.是原来的0.1倍D.不变13.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣3214.如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1 B.2 C.1+D.2﹣15.如图所示,Rt△ABO中,∠AOB=90°,点A在第一象限,点B在第四象限,且AO:BO=1:,若点A(x0,y0)的坐标(x0,y0)满足y0=,则点B(x,y)的坐标x,y 所满足的关系式为()A.y=B.y= C.y=D.y=16.如图,对于二次函数y=ax2+bx+c(a≠0)的图象,得出了下面五条信息:①c>0;②b=6a;③b2﹣4ac>0;④a+b+c<0;⑤对于图象上的两点(﹣6,m )、(1,n),有m<n.其中正确信息的个数有()A.2个B.3个C.4个D.5个二、填空题(本大题共4个小题;每小题3分,共12分,把答案写在题中横线上)17.已知在Rt△ABC中,∠C=90°,tanA=,则sinA=______.18.已知关于x的方程x2﹣x﹣m=0没有实数根,那么m的取值范围是______.19.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.20.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载(译文):“今有一座长方形小城,东西向城墙长7里,南北向城墙9里,各城墙正中均开一城门,走出东门15里处有棵大树,问走出南门多少步恰好能望见这颗树?”(注:1里=300步)你的计算结果是:出南门______步而见木.三、解答题(本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步鄒)21.解方程组:.22.某小区改善生态环境,促进生活垃圾的分类处理,将少活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为m,n,p,并且设置了相应的垃圾箱,“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共1000:23.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.24.已知二次函数y=kx2﹣4kx+3k(k≠0)(1)当k=1时,求该抛物线与坐标轴的交点的坐标;(2)当0≤x≤3时,求y的最大值;(3)若直线y=2k与二次函数的图象交于E、F两点,问线段EF的长度是否是定值?如果是,请直接写出其长度;如果不是,请简要说明理由.25.某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,试通过计算说明哪几个植树点符合要求.26.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为______°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).2016年河北省唐山市路北区中考数学二模试卷参考答案与试题解析一、选择题(本大题共16个小题:1-10小题,每小题3分,11-16小题,每小题3分,42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算﹣3﹣(﹣2)的结果等于()A.1 B.5 C.﹣5 D.﹣1【考点】有理数的减法.【分析】根据有理数的减法法则,求出﹣3﹣(﹣2)的结果等于多少即可.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1,故计算﹣3﹣(﹣2)的结果等于﹣1.故选:D.2.如果单项式2a n b2c是六次单项式,那么n=()A.6 B.5 C.4 D.3【考点】单项式.【分析】直接利用单项式的次数求法得出n的值.【解答】解:∵单项式2a n b2c是六次单项式,∴n+2+1=6,解得:n=3.故选:D.3.在下列各式中,二次根式的有理化因式是()A.B.C.D.【考点】分母有理化.【分析】直接利用有理化因式的定义得出答案.【解答】解:∵×=a﹣1,∴二次根式的有理化因式是:.故选:B.4.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.5.在下面的四个几何体中,它们各自的左视图与主视图不全等的是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【解答】解:A、正方体的左视图与主视图都是正方形,不符合题意;B、球的左视图与主视图都是圆,不符合题意;C、有正方孔的正方体的左视图与主视图都是正方形里面有两条竖直的虚线,不符合题意;D、三棱锥的左视图与主视图都虽然都是三角形,但是形状不相同,符合题意.故选:D.6.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【解答】解:,解不等式①得:x≥﹣5,解不等式②得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∴不等式的解集在数轴上表示为:故选C.7.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45°C.45°或60°D.30°或60°【考点】剪纸问题.【分析】折痕为AC与BD,∠BAD=120°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=30°,易得∠BAC=60°,所以剪口与折痕所成的角a的度数应为30°或60°.【解答】解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.故选D.8.已知一块蓄电池的电压为定值,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A.I=B.I=﹣C.I=D.I=【考点】反比例函数的应用;反比例函数的图象.【分析】设I=,把点(4,8)代入即可解决问题.【解答】解:由图象可知I是R的反比例函数,设I=,∵图象经过点(4,8),∴8=,∴k=32,∴I=,故选A.9.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定【考点】三角形中位线定理;矩形的性质.【分析】E、F、G、H分别是AB、AP、DP、DC的中点,则EF,GH分别是△ABP,△DCP的中位线,得到EF+GH=BC.【解答】解:在矩形ABCD中,BC=AD=10.∵E、F、G、H分别为AB、AP、DP、DC的中点,∴EF是△ABP的中位线,GH是△DPC的中位线,∴EF+GH=BP+PC=BC=5.故选:B.10.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】平行线的性质.【分析】根据“两直线平行,同位角相等”可得出∠BCD=∠1=40°,再根据DB⊥BC,得出∠BCD+∠2=90°,通过角的计算即可得出结论.【解答】解:∵AB∥CD,∠1=40°,∴∠BCD=∠1=40°.又∵DB⊥BC,∴∠BCD+∠2=90°,∴∠2=90°﹣40°=50°.故选C.根据表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是25分C.该班学生这次考试成绩的中位数是25分D.该班学生这次考试成绩的平均数是25分【考点】众数;加权平均数;中位数.【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得25分的人数最多,众数为25,第20和21名同学的成绩的平均值为中位数,中位数为:(25+25)÷2=25,平均数为:(15×2+19×5+22×6+24×6+25×8+28×7+30×6)=24.425.故错误的为D.故选D.12.若分式中的a、b的值同时扩大到原来的10倍,则分式的值()A.是原来的20倍B.是原来的10倍C.是原来的0.1倍D.不变【考点】分式的基本性质.【分析】依题意分别用10a和10b去代换原分式中的a和b,利用分式的基本性质化简即可.【解答】解:分式中的a、b的值同时扩大到原来的10倍,得=,故选:B.13.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣32【考点】代数式求值.【分析】先求得代数式﹣2a+3b的值,然后将所求代数式变形为3(﹣2a+3b)+2,最后将﹣2a+3b的值整体代入求解即可.【解答】解:∵﹣2a+3b+8=18,∴﹣2a+3b=10.原式=3(﹣2a+3b)+2=3×10+2=32.故选:C.14.如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1 B.2 C.1+D.2﹣【考点】圆周角定理;等腰直角三角形.【分析】连接AD,OD,根据已知分析可得△ODA,△ADC都是等腰直角三角形,从而得到两个弓形的面积相等,即阴影部分的面积等于△ACD的面积,根据三角形面积公式即可求得图中阴影部分的面积.【解答】解:连接AD,OD∵∠BAC=90°,AB=AC=2∴△ABC是等腰直角三角形∵AB是圆的直径∴∠ADB=90°∴AD⊥BC∴点D是BC的中点∴OD是△ABC的中位线∴∠DOA=90°∴△ODA,△ADC都是等腰直角三角形∴两个弓形的面积相等∴阴影部分的面积=S△ADC=AD2=1.故选A.15.如图所示,Rt△ABO中,∠AOB=90°,点A在第一象限,点B在第四象限,且AO:BO=1:,若点A(x0,y0)的坐标(x0,y0)满足y0=,则点B(x,y)的坐标x,y 所满足的关系式为()A.y=B.y= C.y=D.y=【考点】反比例函数图象上点的坐标特征.【分析】设点B坐标为(x,y),分别过点A、B作AC,BD分别垂直y轴于点C、D,由相似三角形的判定定理得出△AOC∽△OBD,再由相似三角形的性质得出△OBD的面积,进而根据三角形面积公式可得出结论.【解答】解:设点B坐标为(x,y),分别过点A、B作AC,BD分别垂直y轴于点C、D,∵∠ACO=∠BDO=90°,∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴,∵点A(x0,y0)的坐标x0,y0满足y0=,∴S△AOC=,∴S△BOD=1,而点B坐标为(x,y),∴x•(﹣y)=1,∴y=﹣.故选A16.如图,对于二次函数y=ax2+bx+c(a≠0)的图象,得出了下面五条信息:①c>0;②b=6a;③b2﹣4ac>0;④a+b+c<0;⑤对于图象上的两点(﹣6,m )、(1,n),有m<n.其中正确信息的个数有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:因为函数图象与y轴的交点在y轴的正半轴可知,所以c>0,∴①正确;∵函数的对称轴为x=﹣==﹣3,∴b=6a,∴②正确;抛物线与x轴有两个交点,∴b2﹣4ac>0,∴③正确;当x=1时,y>0,∴a+b+c>0,∴④错误;∵对称轴为x=﹣3,|﹣6﹣(﹣3)|=3,|1﹣(﹣3)|=4,∴m<n,∴⑤正确.其中正确信息的有①②③⑤,故选C.二、填空题(本大题共4个小题;每小题3分,共12分,把答案写在题中横线上)17.已知在Rt△ABC中,∠C=90°,tanA=,则sinA=.【考点】同角三角函数的关系.【分析】根据tanA=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出sinA的值.【解答】解:在Rt△ABC中,∠C=90°,∵tanA==,∴设a=3x,则b=4x,则c==5x.sinA===.故答案是:.18.已知关于x的方程x2﹣x﹣m=0没有实数根,那么m的取值范围是m<﹣.【考点】根的判别式.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2﹣x﹣m=0没有实数根,∴b2﹣4ac=(﹣1)2﹣4×1×(﹣m)<0,解得:m<﹣.故答案为:m<﹣.19.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是16.【考点】全等三角形的判定与性质;垂线段最短.【分析】由条件易知△BFE与△ADE全等,从而BF=AD,则BF+CD=AD+CD=AC=6,所以只需FD最小即可,由垂线段最短原理可知,当FD垂直AC时最短.【解答】解:∵BF∥AC,∴∠EBF=∠EAD,在△BFE和△ADE中,,∴△BFE≌△ADE(ASA),∴BF=AD,∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD,∴当FD⊥AC时,FD最短,此时FD=BC=5,∴四边形FBCD周长的最小值为5+11=16,故答案为16.20.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载(译文):“今有一座长方形小城,东西向城墙长7里,南北向城墙9里,各城墙正中均开一城门,走出东门15里处有棵大树,问走出南门多少步恰好能望见这颗树?”(注:1里=300步)你的计算结果是:出南门315步而见木.【考点】勾股定理的应用.【分析】根据题意写出AB、AC、CD的长,根据相似三角形的性质得到比例式,计算即可.【解答】解:由题意得,AB=15里,AC=4.5里,CD=3.5里,∵DE⊥CD,AC⊥CD,∴AC∥DE,∴△ACB∽△DEC,∴=,即=,解得,DE=1.05里=315步,∴走出南门315步恰好能望见这棵树,故答案为:315.三、解答题(本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步鄒)21.解方程组:.【考点】解二元一次方程组.【分析】根据y的系数互为相反数,利用加减消元法其解即可.【解答】解:,①+②得,3x=18,解得x=6,把x=6代入①得,6+3y=12,解得y=2,所以,方程组的解是.22.某小区改善生态环境,促进生活垃圾的分类处理,将少活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为m,n,p,并且设置了相应的垃圾箱,“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共1000:【考点】列表法与树状图法.【分析】(1)先画树状图展示所有9种可能的结果数,再找出垃圾投放正确的结果数,然后根据概率公式计算;(2)利用频率估计概率,通过计算“厨房垃圾”投放正确的百分比估计“厨房垃圾”投放正确的概率.【解答】解:(1)画树状图为:共有9种可能的结果数,其中垃圾投放正确的结果数为3,所以垃圾投放正确的概率==;(2)=,所以可估计“厨房垃圾”投放正确的概率为.23.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.【考点】翻折变换(折叠问题);全等三角形的判定与性质;勾股定理;三角形中位线定理.【分析】(1)点A1落在边BC即点A1与点C重合,可知此时DE为△ABC的中位线,得DE=BC;(2)Rt△BCD中求出BD的长,由折叠可得A1D=AD=1,根据A1B+A1D≥BD可得A1B长的最小值.【解答】解:(1)∵点D到边BC的距离是DC=DA=1,∴点A1落在边BC上时,点A1与点C重合,如图1所示.此时,DE为AC的垂直平分线,即DE为△ABC的中位线,∴DE=BC=1;(2)连接BD,DE,在Rt△BCD中,BD==,由折叠知△A1DE≌△ADE,∴A1D=AD=1,由A1B+A1D≥BD,得:A1B≥BD﹣A1D=﹣1,∴A1B长的最小值是﹣1.24.已知二次函数y=kx2﹣4kx+3k(k≠0)(1)当k=1时,求该抛物线与坐标轴的交点的坐标;(2)当0≤x≤3时,求y的最大值;(3)若直线y=2k与二次函数的图象交于E、F两点,问线段EF的长度是否是定值?如果是,请直接写出其长度;如果不是,请简要说明理由.【考点】二次函数综合题.【分析】(1)通过解方程x2﹣4x+3=0可确定该抛物线与x轴的交点的坐标,求自变量为0时的函数值可确定该抛物线与y轴的交点的坐标;(2)先确定抛物线的对称轴为直线x=2,再分类讨论:当k>0时,抛物线开口向上,根据二次函数的性质,x=0时,y有最大值;当k<0时,x=2时,y有最大值;(3)解方程kx2﹣4kx+3k=2k得x1=2﹣,x2=2+,于是得到E、F的坐标,然后计算两点的横坐标差的绝对值即可得到EF的长.【解答】解:(1)当k=1时,抛物线解析式为y=x2﹣4x+3,当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该抛物线与x轴的交点的坐标为(1,0),(3,0),当x=0时,y=x2﹣4x+3=3,则该抛物线与y轴的交点的坐标为(0,3);(2)抛物线的对称轴为直线x=﹣=2,当k>0时,x=0时,y有最大值3k,当k<0时,x=2时,y有最大值﹣k;(3)线段EF的长度是定值,EF=2.kx2﹣4kx+3k=2k,整理得x2﹣4k+1=0,解得x1=2﹣,x2=2+,所以E、F的坐标为(2﹣,2k),(2+,2k)所以EF=2+﹣(2﹣)=2.25.某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,试通过计算说明哪几个植树点符合要求.【考点】一次函数的应用.【分析】(1)先根据师生返校时的路程与时间之间的关系列出函数解析式,然后看图将两组对应s与t的值代入可得到一个二元一次方程组,解此方程组可得函数解析式.当返回学校时就是s为0时,t的值;(2)根据题意直接画出该三轮车运送树苗时,离校路程s与时间t之间的图象,看图可得三轮车追上师生时,离学校的路程;(3)先设符合学校要求的植树点与学校的路程为x(km),然后根据往返的平均速度、路程和时间得到一个不等式,解此不等式可得到x的取值范围,再确定植树点是否符合要求.【解答】解:(1)设师生返校时的函数解析式为s=kt+b,如图所示,把(12,8)、(13,3)代入上式中得,解此方程组得,∴s=﹣5t+68,当s=0时,t=13.6小时,即t=13时36分,∴师生在13时36分回到学校;(2)该三轮车运送树苗时,离校路程s与时间t之间的图象如图所示:由图象得,当三轮车追上师生时,离学校4km;(3)设符合学校要求的植树点与学校的路程为x(km),由题意得:<14,解得:x<,∵A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,∴13<,15<,17<,19>,答:A、B、C植树点符合学校的要求.26.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【考点】圆的综合题.【分析】(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图位置一,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.2016年9月24日第21页(共21页)。